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RATES OF CONVERGENCE IN EMPIRICAL BAYES
ESTIMATION PROBLEMS: CONTINUOUS CASE!

By P1-ErH LIN
Florida State University

In this paper we construct sequences of estimators for a density func-
tion and its derivatives, which are not assumed to be uniformly bounded,
using classes of kernel functions. Utilizing these estimators, a sequence of
empirical Bayes estimators is proposed. It is found that this sequence is
asymptotically optimal in the sense of Robbins (4nn. Math. Statist. 35
(1964) 1-20). The rates of convergence of the Bayes risks associated with
the proposed empirical Bayes estimators are obtained. It is noted that the
exact rate is n~7 with ¢ < 4. An example is given and an explicit kernel
function is indicated.

1. Introduction. Let f(x|6) be a density function of x € R, given 6 € Q, where
R is an interval of the real line and Q is the parameter space. Let (f) be a
real-valued measurable function of ¢ and d(x) be a decision function when x is
observed. We wish to estimate 1(¢) with respect to the squared error {d(x) —
A(0)}*. In the Bayes framework, it is assumed that § has an a priori distribution
G(0) on the o-field of subsets of Q. The Bayes estimate of (¢) relative to G(f)
is given by

do(x) = Yo A(0)f(x|0) dG(0)/f(x) »

where

f(x) = §a f(x]6) dG(0) .

The Bayes risk associated with dg(x) is given by
(1.1) B(G) = §a §x {do(x) — A(O)f(x|6) dx dG(6) -

In practice, G(6) is usually unknown. This leads to the consideration of the
empirical Bayes procedure first suggested by Robbins (1955) and later developed
by Johns (1957), Johns and Van Ryzin (1971, 1972), Krutchkoff (1967), Lin
(1972), Maritz (1970), Robbins (1963, 1964) and Samuel (1963), among others.

In the empirical Bayes framework, we make the following assumptions: Let
(%1 0), -+ 5 (x,, 8,), - - - be a sequence of independent random vectors, the 6,
having a common a priori distribution G(f) and the conditional density of x,
given 6, = 0 being f(x|0). At the (n + 1)st stage, when the decision is to be
made about 1(d,,,), we will have observed x,, - - -, x,,;, although the values of
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., - - -, 0, remain unknown. From this knowledge, we wish to construct the
empirical Bayes decision function

d(x) =d,(x, -+, x,5 X),

depending on x,, ---, x,, x, and thereby incur the loss {d,(x) — (0, ,)}>. The
Bayes risk associated with d,(x) is given by

n+1
— A

(1.2) B, = §a\r -+ Yo {du(x) — AOW [Lics fx)f(x[6) dx, - - - dx,-dx dG(0) .
The sequence of estimators {d,(x)} is called asymptotically optimal if B, — B(G)
as n — oo.

Recently, Johns and Van Ryzin (1971, 1972) obtained the convergence rates
for two-action problems. Lin (1972) obtained the rates of convergence in esti-
mation problems for the discrete case. In this paper, we investigate the rates
of convergence in estimation problems for the continuous case.

Consider the family of exponential distributions having a density of the form

f(x]0) = h(x)B(0)e=, x>a,0eQ=[0,c0),

where @ may be finite or infinite. Assume that G(@) is a prior distribution on
the natural parameter space such that

§5 2(6) dG(0) < oo,
and that g(x) = d,(x)f(x) may be written in the following form

(1.3) g(x) = Nrawi(x)f¥(x),

where we have defined
dt
f(t)(x)_—_'-a?f(x), t=0,..-.,m,

o) = %)
and w,(x) is a function of 2)(x), s = 0, .- -, t. In the following section we pro-
pose a sequence of empirical Bayes estimators for 4(f) by constructing estimators
of f¥(x), t =0, ---, m. The exact rates of convergence are obtained in Section
3. An example is given in Section 4.

2. Empirical Bayes estimations. If G(¢) is unknown and if dy(x) = g(x)/f(x)
where g(x) takes the form (1.3), an empirical Bayes estimator of A(f) can be
constructed using the estimators of f*(x) for t =0, --., m. Schuster (1969)
obtains estimators of a density function and its derivatives using a known dif-
ferentiable density, e.g., the standard normal, Cauchy, etc. In the same paper,
the convergence rates are obtained by assuming that the first m + 1 derivatives
of the density are uniformly bounded. In the paper by Johns and Van Ryzin
(1972) as well as in the present paper the authors relax the uniform bounded-
ness assumption and use the classes of kernel functions defined as follows: Let
%, be aclass of measurable functions K,(u), t =0, - - -, m, called kernel functions,
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satisfying the conditions

(2.1) Km) =0, u<0or uzu,u >0,
(2.2) S wtK(u)du =1, and
(2.3) sup, |K,(#)] < oo .

Using the kernel functions K,(x), we estimate /)(x) for each ¢ by
24 %) =l -5 X5 X)

1 n ¢ 8(t) 1 { X; — X }
=_ - __ 5" —o(—1 K z )
na,t+t L= Lo (=1) s/t—s+1 L@t —s+ a,

(and denote f,(x) = f,®(x)) where {a,} is a sequence of positive numbers such that

. 1
2. = O(n~* h . .
(2.5) a, (n=%) with 0 < a < D)

It will be shown in Corollary 3.1.2 that for any x > a,
(2.6) [29(x) > f®(x), in probability, as n—oco.

Utilizing f,(x), we propose a sequence of empirical Bayes estimators {d,(x)}
for 4(0) as follows: Let

(2.7) d”(x) = ”(xl, ceey Xh .X') — g'n(x) — Z;n=0 wt(x)fn(t)(x) ,

So¥ (%) ¥ (x)
where
(2.8) XX =fux) if | fu(x)] > 9,
=9, if |fu(0)] =9,,

with {9,} being a sequence of positive numbers such that
(2.9) bynr <0, < bynr, 0<b b, <00, 7>0.

It will be seen in the next section that the sequence {d,(x)} given by (2.7) is
asymptotically optimal.

3. Rates of convergence. In order to establish the convergence rates for the
sequence of empirical Bayes estimators {d,(x)}, we need further assumptions on
the kernel function K,(#). Assume that there exists a positive integer r such that
f"(x) exists and is continuous for all x > a, and that for any K,(u) e 57, t =
0,...,m,

(3.1) “uwKw)ydu =0  if k=t+1,---,r—1,
=d, if k=r,

and

(3.2) e ur|K(u)| du < oo ,

where d, is finite depending only on ¢ and r.
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Johns and Van Ryzin (1972, Lemma 2) have shown that if G(0) is any prior
distribution on the natural parameter space, then the existence and continuity
of ~"(x) imply the existence and continuity of f7(x) for all x > a. We have
the following convergence rate for the estimator of the rth (t =z 0) derivative

of f(x).

THEOREM 3.1. If h"(x) exists and is continuous forall x > a, r a positive inte-
ger, and if conditions (2.1), (2.2), (2.3), (3.1), and (3.2) are satisfied, then for
t=0,.-.,myande > 0,

(3.3) |Ef.0(x) — fO(x)| = O(n===9) . £,(x)
(3.4) E{fa0(x) — fO(x)) = O(n~2atr-v) . {78,
where a = [2(r 4 1)]7* and

(3.5) [7(x) = supogec. |f(x + €)| .

In (3.3) and (3.4) E denotes the expectation with respect to the joint distribution
of x;, -+, x,, holding x fixed.

Proor. For a given x > a, the expectation of [P(x) is

B = s Do () ey R A e

s/ t—s+1 s+ 1)a,
= LR (<170 S K@t + (¢ — s + Dau d
(3.6) = o7 Dhea (=170 Zizh 00 C= 2 e ne 4y g

+ a,""*R(r, x, n)
= fOx) + a,"*Ry(r, x, n) ,

where the remainder term is

Riroxom) = Tioy (=1 (1) C=2 2D ek ypoe + ) d

s r!

with 0 < ¢ < (f — s 4 1)a,u. The second equality of (3.6) is obtained by the
change of variable # = (y — x)/{(t — 5 + 1)a,}; the third and fourth equalities
follow by applying a Taylor’s expansion of fix 4+ (¢t — s + 1)a, u} about x and
by using the identity (see Feller (1957), page 63)

3.7 o (1O —s+ DHE=0 if k=0,...,r—-1
=t! if k=r¢.

The continuity of £ (x) for all x > a and assumption (3.2) ensure that
[Ry(r, x, n)] < M, . £, (x), O< M <.
This proves the assertion (3.3). As for (3.4) we note that for a given x > a,

(3.8) E{f,"(x) — fO(x)} = Var {£,%(x)} + {Ef, O (x) — fO(x))2.
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The variance of f,®(x) is

(3.9)  Var{f,“(x)}

1 t 1 —x
na, ¥+ a [ o (=1) s/ t—s+1 t{(t—s—}- D)a,

Using the c,-inequality (Loéve (1960), page 155) with & = 2, we have

Var[ =0 (= 1) (;)t _ sl + 1 K {(t —ys_+x1)anﬂ

1 — X 2
3.10 < (2| >, (=1 (! K Yy :|
( ) = [ o= ( )<s>t—5+1 t{(t—s-}-l)an} f(y)dy
e (Y L gege] y—x d
= s=oc2<s) (t—s+1)’ Sa t {(t—-s—i-l)a,,}f(y) 'y
\? 1
= Zim s <s> sy 1y P K], (¢ = 241)
which is finite by condition (2.3). Thus (3.8) is bounded by
(3.11) O(n'a,~**+V) 4 O(n—2r=0) . { £ O(x)}?

which is equal to O(n=(=/t"+1)) . { £ (")(x)}? by choosing a = [2(r 4 1)]7* such
that both terms of (3.11) have the same convergence rate. This completes the
proof of the theorem.

The results (3.3) and (3.4) both depend on f,(x). If we impose the uniform
boundedness on f"(x), the following corollary to Theorem 3.1 is easily obtained.
The proof is omitted.

CoroOLLARY 3.1.1. If the conditions of Theorem 3.1 hold and if for every ¢ > 0,

(312) supzfe(r)(x) < 0,
then
sup, |Ef,(x) — f(x)] = O(nsr=1),
sup, E{fn(t)(x) — fO(x)} = O(n~2r=v) |
with a = [2(r + D]
If condition (3.1) does not hold, the convergence rate for f,“(x) may not be

obtained. However, the asymptotic unbiasedness and the convergence property
of f,(x) can always be established.

CoRrOLLARY 3.1.2. Suppose that h'"(x) exists and is continuous for x > a, t a
positive integer, and that condition (3.12) holds. If f,'¥(x) is given by (2.4) using the
kernel function K ,(u) satisfying conditions (2.1), (2.2), and (2.3), then (2.6) holds.

Proor. We wish to show that (3.8) converges to 0 as n — co. From (3.9)
and (3.10) it is clear that Var {f,)(x)} — 0 as n — oo. It remains to show that
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the bias of f,*(x) also converges to 0. Similar to (3.6) we have

(3.13)  Ef0(x) = o (—1P() D f<k>(x>(’——si—‘)—‘lusutukK(u)du

'Ib

S (=1 (1) C=2 W gk o + gy au,

t!

where 0 < § < (¢t — 5 + 1)a,u. Note that the first term of the RHS of (3.13)
vanishes and the second term converges to f)(x) as n — oo, by the bounded
convergence theorem using conditions (3.2), (3.7), (2.2), (3.12), and the con-
tinuity of f®(x). This completes the proof of the corollary.

The following lemma is useful for establishing the convergence rate of B,, as
n — co. The proof, here omitted, may be found, for exarflple, in Maritz (1970,
page 46).

LemMA 3.1. Let B(G) and B, be given by (1.1) and (1.2), respectively. Then
(3.14) 0 < B, — B(G) = §7 f(0E[d,(x) — do(x)} dx ,
where E denotes the expectation with respect to x,, - - -, X, given x.

The main theorem of this paper is stated below:

THEOREM 3.2. Let B(G) and B, be given by (1.1) and (1.2), respectively. If

(i) the conditions of Theorem 3.1 are satisfied,
(ii) for every ¢ > 0, (3.12) holds,
(iii) §2 {w ()P f(x)dx < oo, fort =0, ..., m(m <r),
(i) §7 {[d(x))'f(x) dx < oo,
(v) forsome h (0 < h < 1)and b (0 < b < o),

(3.15) § {d (PP fu(0)| = 0, x}f(x) dx < bo,},
where dy(x) = g(x)[f(x) and {9,} satisfies (2.9). Then

(3.16) B, — B(G) = O(n™9)

with

(3.17) g = Mr—m

(h+2)(r+ 1)

Proor. To simplify notation, we suppress the argument (x). Notice that by
applying the c,-inequality with d = 2 repeatedly the integrand of (3.14) is
bounded above by
2f

E(g, — 9) E 2
5 (9. —9) + f (fa* = 1)
2 4 )
L BLZR w0 = [N 4 SR B = )+ B~ L)

f S 2 2E{f, 0 — fO) 4gf E(fs — ) + Ef* — [
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where we have set g, = g,(x) = L, w,(x)f,”(x). From the above inequality
in x, with the aid of Lemma 3.1, B, — B(G) is bounded above by

g3 L2 STWCELL = [Pfdx 4 Sl s2 LB, — py d
4 2
(3.18) + 53 S.‘fgf—E[(% = [ fal S 0] PlIfal < 0, ] x] dx
— O(nzr—(r—m)/(r-f-l)) _l_ O(an—r/(r+1)) _|_ O(n—hr)
= O(n“’) .

The first equality of (3.18) is obtained by using the second result of Corollary
3.1.1 and Conditions (iv) and (v). The second equality follows by choosing
7 = (r — m)[{(h 4 2)(r + 1)}. Finally, (3.16) is established by letting g = hy.

Condition (v) of Theorem 3.2, which depends on P{|f,(x)| < 4, |x}, does not
look appealing. If we impose a somewhat stronger condition on the Bayes esti-
mator d,(x) than that given by (iv), then Condition (v) may be replaced by a
condition depending only on P{f(x) < 4,}. The following lemma provides a rela-
tionship between the unconditional probabilities of {|f,(x)| < d,} and {f(x) < 4,}.
Using this lemma other convergence rate results may be obtained.

LemMmA 3.2. For any o, > 0,

1
9,°

(319 PUAM] =8 = <5 17 B — fOPA) dx 4+ P{f(x) < 20,},

where E is as defined in Lemma 3.1.
PRrOOF. Let 4, = {x|f(x) > 24,}, B, = {x;, - -+, x,; x| |fu(x)] < 0,}; then,
P(B,) < P(B, n 4,) + P(4,")
= Y4, P(B,|x)f(x) dx + P(A4,°) .
Now x € 4, implies B, C {|f(x) — f.(x)| > d,}, and applying Chebyshev’s inequ-
ality conditional on x, one obtains the RHS of (3.19) with the integral restricted

to 4,, which of course can be removed.
The following corollaries to Theorem 3.2 present the convergence rate results

without Condition (v).
CoroLLARY 3.2.1. If Conditions (iv) and (v) of Theorem 3.2 are replaced by

(vi) for some o > 0, {7 |dy(x)]**f(x) dx < oo, and
(vii) forsome B,0 < B <1, P{f(x) <4,} <£dj,f, 0<d< .

Then the result (3.16) holds with q given by (3.17) and h = Bd6/(0 + 2).
Proor. It suffices to show that (vi) and (vii) imply (iv) and (v) with A =
B0/(9 + 2). Since (iv) is a direct consequence of (vi), it remains to show that

(v) holds. If we partition the region of integration of the LHS of (3.15) by
A, = {|ld,(x)| < n*} and B, = {|d4(x)| > n*} for some v > 0. Then, with the aid
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of Lemma 3.2, the LHS of (3.15) becomes
§o {deOPP{Ifu(x)] = 0, | x}f(x) dx
= SAn + SBn
< WP(f (0] S 8} + n §7 [dp(x)PH f(x) dx
< {152 BUA,(0) — J) i + PLAW) < 2,1} + 0(r-)
— 0(n2v+27—r/(r+1)) + O(nz"‘“’) + O(n“’”)
= O(n™=r¥\e+D@+0)) 4 O(n=), by choosing 7 = r/{(r + 1)(8 + 2)}
= O(n"T), by choosing v = rB/{(r + 1)(8 + 2)(0 + 2)},
where & = $6/(6 + 2). This completes the proof of Corollary 3.2.1.

It should be noted that in order to apply this corollary the sequence of real
numbers {d,} used in constructing the kernel functions K,(x) must be of order
n~7 with y = r/{(r + 1)(8 + 2)}. The rate of convergence obtained in Corollary
3.2.1 is 9/(0 4 2) times that obtained in Theorem 3.2. If |dy(x)| is uniformly
bounded for all x > a, all absolute moments of d,(x) exist and # — § as § — oo.
This can be obtained directly from Theorem 3.2 as well.

CoroLLARY 3.2.2. If Conditions (iv) and (v) of Theorem 3.2 are replaced by

(viii) sup, |dg(x)| < oo, and
(ix) P{f(x)<0,} <do,',0<d< o0, 0<h< 1.

Then the result (3.16) holds with q given by (3.17).

Proor. It suffices to show that (viii) and (ix) imply (iv) and (v). The proof
is easy and is omitted.

It is noted that, in Corollary 3.2.2, ¢ < 4. The value of # in Condition (ix)
achieves its maximum for the density f(x) = e~*. In this case ¢ = (r — m)/{3(r 4
1)}, which converges to } as r — oo.

4. An example. Consider the family of negative exponential distributions
with density
f(x]0) = e~ if x>0, 6>0,

=0 otherwise.

We wish to estimate @ relative to the squared error loss. If the prior distribution
is given by
1
L(a)

G(0) = {Je " u*'du, 0<a< .

Then

4.1 f(x) = a(x 4 1)~ x>0, 0<a< oo,
=0 otherwise.
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By a direct computation we have, foreacht =0, 1, -- -,
(4.2) fO(x) = (— 1) Fla+1t41) (x 4 1)-ta*t+n
[(a)
which is continuous for all x > 0. From (4.2) it is clear that
(4.3) fe(r)(x)ész, O< Moo, r>t,
L(a)
uniformly in x, verifying (3.12). The Bayes estimator of 4 is

(4.4) do(x) = —fP(X)/f(x)

_ a(a 4 I)(x 4 1)~

- a(x 4 1)-t+d
a4 1
x4+ 1 ’
that is, w,(x) = 1 for = 1 and O for # = 1. This implies that Condition (iii) of
Theorem 3.2 holds for m = 1. Moreover, it is seen from (4.4) that dy(x) is uni-
formly bounded for all x > 0, Corollary 3.2.2 may be applied. To do so, it
remains to find the value of # such that Condition (ix) holds. Note that f(x) is
strictly decreasing in x > 0 and that

P(f(x) < 8,) = P {x > (%)”‘““) — 1}

n

= s(“(’a/ﬁn)l/(,,ﬂ)_” {a(x + 1)@} dy < § /@D

for1 < @ < co. Thatis, h = a/(a 4 1). Therefore, Corollary 3.2.2 holds with
q = a(r — /{(3a + 2)(r 4+ 1)} which is close to § for sufficiently large a and r.

In concluding, we present a kernel function K,(#) € %, satisfying conditions
(2.1), (2.2), (2.3), (3.1) and (3.2) with an arbitrary positive integer r > 7. Let D
be the determinant of the (r — #)-matrix with elements d,; = 1/(t +i +j — 1)
and let D* be the determinant of the same matrix except with d,; replaced by
(u/u,)i. Thekernel function is then given by K,(u) = D*/(Du,***) for 0 < u < u,
and 0 otherwise.
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