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BALANCED BLOCK DESIGNS AND GENERALIZED YOUDEN
DESIGNS, I. CONSTRUCTION (PATCHWORK)!

By J. KIEFER
Cornell University

The elementary constructive methods for BBD’s and GYD’s, which
have been used in optimality considerations for a number of years, are listed
and illustrated. These are not detailed algebraic or geometric prescriptions
for listing each entry, but rather methods for combining LS’s and known
BIBD’s to yield the desired products. Nevertheless, there results a large
class of useful and previously unpublished designs.

1. Introduction. The original Youden square (YS) for v varieties wasa k x v
array obtained from a BIBD (v, b, k, r, 2) with b = v > k by considering blocks
as columns, arranged to make each variety appear once per row. Generalizations
by Shrikhande [9] and Agrawal [1] allowed & = mv for integral v. In the simpler
setting of one-way heterogeneity, a number of authors have considered “binary”
and “ternary” designs which were meant to generalize BIBD’s to block size
k>w.

It was noticed in design optimality proofs over the last fifteen years [3], [4],
[5], [6], [7] that a restriction like k¥ > v seemed inessential and sometimes mathe-
matically unnatural (despite the obvious practical motivation), and the BIBD
and YS were generalized in [3] to the balanced block design (BBD)and generalized
Youden design (GYD), which we now define. In the block design setting with
v varieties and b blocks of size k, we again think of a design as a k x b array
with blocks as columns, and let n,; be the number of appearances of variety i
in block j. Write r, = Y}, n,; and 4, = >; n;;n,;, and let § be the fractional
part of k/v.

DerINITION 1. A BBD is a design with all r, equal, all 4, equal for i < #, and
|n;; — k/v| < 1 for all i, j.

The last condition is conveniently thought of and described as “n,;’s as nearly
equal as possible”. Designs satisfying all but this last condition have by now
been called “balanced” by some authors because they estimate every difference
between two varieties, with the same variance. This nomenclature seems mis-
leading combinatorially (the sets {n,;} and {n,,} may differ), and without the last
condition of Definition 1 there is no relationship to optimality. We also use the
notation (v, b, k, r, 2) or (v, b, k) for a BBD, with all r, = r = bk/v and all
A;, = 4 in the above definition. The usual counting argument shows that
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110 J. KIEFER

2 = b[K¥(v — 1) — v*6(1 — 6)]/v*(v — 1). Other formulas and resulting divisibility
restrictions are detailed in [8].

DEFINITION 2. A b, x b, array of the symbols 1,2, ..., visa GYD ifit isa
BBD when each of {rows} and {columns} is considered as blocks.

During the author’s investigation of optimality properties of GYD’s, designs
of this type were constructed by piecing together other designs—what we shall
call “patchwork methods”. (Example4.4 discusses a GYD of [3] not of this type.)
The resulting designs were referred to when needed, but the methods were never
published. Recently, Ruiz and Seiden [8] have given elegant geometric con-
structions of GYD’s for certain parameter values involving prime powers. Since
the patchwork techniques include additional parameter yalues which are of
practical value and which are required in the optimality considerations [7], and
since these techniques are quick to use, have not appeared in the literature, and
use ideas which may be applicable in other design constructions, it seems worth-
while to list them in the present note; optimality considerations, which use some
of the present results but contain mostly quite different ideas, will appear in the
sequel.

It will be seen that the basic techniques are elementary and largely obvious.
Nevertheless, if methodically applied they yield large families of previously un-
published designs of practical size.

We require some further definitions.

As usual, we use m|n to mean that n/m is an integer.

DEFINITION 3. A GYD is regular if v|b, or v|b,.

DEFINITION 4. A BIBD is partly resolvable (PR) if k | v and there are v/k blocks
whose union contains each variety once.

This last clearly generalizes resolvability. There is an extension to BIBD’s
or BBD’s in which tv/k blocks contain ¢ appearances of each variety, which for
our application must be suitably balanced in a manner which will be indicated
in connection with Proposition 6.

We denote by r x s LS(v) an rv x sv array formed from r x s latin squares
of order v. By int{x} we denote the greatest integer < x.

The author is indebted to Esther Seiden for many helpful discussions.

2. Regular GYD’s. We shall see that no new methods are required in the
regular case. The first proposition is evident:

ProrosiTION 1. 4 BBD, after rearrangement in columns, is the union of b com-
plete blocks in which each treatment appears int {k[v} times, and a BIBD.

Thus, necessary for the existence of a BBD with given parameters is existence
of an associated BIBD with corresponding parameters.

The methods used to make YS’s from BIBD’s, as devised by Hartley and
Smith [2] or Shrikhande [9] and Agrawal [1] (using also systems of distinct
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representatives) can be extended to certain BBD’s, as described in [4]. We state
this along with a variant used later:

PRroOPOSITION 2. (i) A BBD with v|b can be made into a k x b GYD by rear-
rangement within columns (blocks).

(ii) If v|kb, any k x b array (not necessarily a BBD) with equal replications of
varieties can be rearranged in columns so that each variety occurs as nearly equally
as possible per row (and hence equally if v |b).

The above simple rearrangement schemes can fail to yield a GYD if v t b,
even if one starts with a BBD [4]. In a sense, the nonregular GYD construction
problem can be thought of as that of finding when a BBD with v } b, k can be
suitably rearranged within columns. But this point of view has not yet yielded
any useful generalization of the methods of [2], [9], [1].

By applying Fisher’s result to the BIBD of Proposition 1, we obtain

PropOSITION 3. 4 BBD with b < v must have v | k.

Hence, the only nonregular GYD’s have b,, b, > v.

Thus, for given b,, b,, v, the existence of a regular GYD is by Propositions 1
and 2 equivalent to that of a corresponding BIBD; when such a BIBD is known,
these propositions yield a method of constructing the desired GYD. Proposition
3 delimits the additional cases we must study.

3. Patchwork methods. In what follows, ¢, a;, b,and ¢, denote positive integers.
When v is understood from the context, we shall often describe a GYD by its
b, alone. The simplest patchwork joins a regular GYD to a general GYD in
obvious fashion:

PROPOSITION 4. The union of rows of an a,v x b, GYD and a ¢, x b, GYD yield
an (a,v + ¢,) x b, GYD.

This is used to yield new designs when the ¢, x b, GYD is nonregular. The
conclusion of Proposition 4 is not generally true if the a,v x b, GYD is replaced
by a nonregular one.

In view of Proposition 1, a necessary condition for existence of a GYD with
b, = a,v + ¢, is existence of the two BIBD’s B, = (v, b;, ¢;_;). The next two
propositions are our main patchwork methods, which impose additional condi-
tions on the B, to obtain GYD’s. (We also illustrate, in Example 4.4, that not
all GYD’s can be constructed by these methods.)

PROPOSITION 5. Suppose there are PRBIBD’s with parameters (v, a,v 4 ¢,, ¢,)
and (v, a,v + ¢, ¢;) where ¢,c, = v. Then there is an (a,v + ¢;) x (a,v + ¢,) GYD.
Construction. We label the required array
G — <G11 G12) .
G21 G22

Here G, is any a,v x a,v GYD, for example (but not necessarily) a, x a, LS(v).
Next, (G,,, G,,) is the PRBIBD with block size ¢,, the ¢, blocks which contain
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each treatment once being G,. After a renumbering of varieties in the other
PRBIBD, to make the ¢, blocks containing each treatment once be G;,, that
PRBIBD is taken to be (G, G;,). Finally, the columns of G, and of Gj, are
rearranged as described in the second part of Proposition 2 so that each row of
G, contains each variety a, times, and similarly for Gi,.

The dual role of G,, in the above construction makes clear a generalization
of the notion of partial resolvability of the two designs used above: We require
¢,¢, = tv and the existence of BBD’s (v, a,v + ¢, ¢;_;) as before (no longer nec-
cessarily BIBD’s), but with G,,, containing each variety ¢ times, having columns
which are ¢, of the blocks of the first BBD and rows which are ¢, of the blocks
of the other. It is no longer automatic, as it was when ¢ = 1, that existence in
these BBD’s of ¢;_; blocks of size ¢, containing each variety ¢ times suffices to
permit a renumbering of varieties which allows the two BIBD’s to fit consistently
in G,,. Illustrations of how this generalization works are contained in Section 4.
We now state the principle formally, and then some simple sufficient conditions
which will be useful for large ;. We denote the columns of (G,;, G,,) by B,, and
those of (G}, G;,) by B,.

PROPOSITION 6. Assume v |c,c,. Suppose (i) there are BBD’s B, = (v, b;, ¢;_;)
with v|b, — ¢, and (ii) there are c, blocks of B,, whose union contains each variety
exactly t times, and such that (iii) the ¢, x ¢, array formed with these blocks as
columns has rows which are blocks of B,. Then there isa b, x b, GYD. Moreover,
(iii) is satisfied if (ii) is satisfied and (iv) B, is composed of all the blocks of at least
¢, BBD’s; and (ii) and (iii) are satisfied if, in addition to (iv), B, is composed of all
the blocks of at least ¢, BBD’s.

Construction. The GYD is constructed from (i), (ii), (iii) as in Proposition 5.
Next, assuming (ii), rearrange within the columns of G,, so that varieties are as
nearly equally replicated as possible in each row (Proposition 2). Each of these
¢, rows can be taken as a block of a different (relabeled) component BBD of B,,
proving that (iv) implies (iii). If also B, has ¢, component BBD’s this device
also produces the columns of G,,.

The number of component BBD’s needed for B, to satisfy (ii) can often be
reduced from c, without much knowledge of B,. For example, if c, is even, B,
contains at least ¢,/2 copies of the same sub-BIBD, and one knows two blocks
of the latter with an even number of common varieties, that clearly suffices.

There are various BIBD operations which can be extended to BBD’s, such as
derivation and residuation. Because of Proposition 1, these yield nothing new for
BBD’s, and additional argument is needed to yield new GYD’s. (Itis well known
that certain operations, such as identification of varieties in sets of ¢ to form a
design with v/q varieties, do not work at all except for very special parameter
values.) As an illustration of the type of additional argument that is needed to
obtain new GYD’s, after an obvious consideration of the operation of com-
plementation, we then give an application of it (Proposition 8).
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ProposITION 7. If ab, x a,v GYD G containsa b, x b, GYD G asa rectangular
subarray, then the complement G—-G of the latter in the former is a GYD.

If the a,v is replaced by a number not divisible by v, the above conclusion is
generally false.

The operation of complementation is in a sense the opposite of that of union,
used in Proposition 4. Similarly, there is an opposite of the operation of Propo-
sition 5, consisting of the removal of G, G, G,, from an a,v x a,v GYD G,
under appropriate conditions.

It is not clear which GYD parameter values are obtainable from Proposition
7 but not from Propositions 4, 5, and 6, but the use of Proposition 7 sometimes
avoids the more complex verifications needed in using Proposition 6.

PROPOSITION 8. Suppose v = c,c, and that there exist

(i) BIBD (v, a;v — ¢,, ¢y),
(ii) PRBIBD (v, a,v + ¢,, ¢,),
(iii) PRBIBD (v, a,v + ¢, ¢,).
Then there is an (a,v + ¢;) x (a;v — ¢;) GYD.

Construction. Let G be the (a,v + ¢,) x (a, + ¢,v) GYD obtained by the meth-
od of Proposition 5; we shall use the same notation for the G,;. Since each
variety occurs once in G, so that rearrangement of its columns amounts merely
to relabeling varieties, it follows from the second part of Proposition 2 that a
reordering of the columns of the BIBD (i) can be used to produce an array G,
such that each of the rows of the ¢, x a,v array (G,,, G,;) has equal replication
of each variety. Let Hbe an a,v x (v — ¢,) array whose rows are complements
in {1, 2, ..., v} of the corresponding rows of G,,. By the second part of Propo-
sition 2, we can reorder within the rows of H so that each of the columns of H
has equal replication of each variety. Let G,; be the union of the columns of
this reordered H with those of an a,v x (¢, — 1)v GYD (or with nothing, if
a, = 1). Then G = [G, (61)] is seen to be a regular GYD, and hence (Proposi-
tion 7) so is (G13).

Proposition 8 can be extended using Proposition 6.

We note that a useful condition implying (i) and (ii) is existence of a PRBIBD
(v, b, ¢;) with b|a,v — ¢,, a,v + c,.

Note that the construction cannot be simplified to mere application of Propo-
sition 6 to (Gu gu) in place of G; for, (§12) will not be a GYD unless ¢, = v
(Proposition 3).

4. Examples of nonregular GYD’s. We do not attempt an exhaustive list of
GYD’s, but rather illustrate the patchwork methods in a representative selection
of cases, including ones which have turned out to be important in optimality
considerations [7]. Designs for many of the parameter values we consider can
be obtained by using any of several methods (Propositions 4-8), but we give
only one construction here in each case.
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In optimality considerations, the values of #, = fractional part of b,/v are
important. In a sense, the cases where 6, = § represent maximum departure of
a GYD from the regularity of @, x a, LS(v), and the best chance for a GYD not
to be optimum.

In these examples ¢, ¢, J;, and J;/ will be positive integral parameters of design
series. J; generally represents the number of replications of a sub-BIBD making
up B,, and is expressed in terms of the unrestricted J;.

ExAMPLE 4.1. The 0, = 0, = } series. It is easily seen that these designs can
be represented in terms of three integer parameters t > 0, J, > 0, J, > 0, with

(4.1) v = 4t, b, = 2t(4t — 1)(2J; — 1).
The J defined above will be seen to be (2J, — 1)t.

ExAMPLE 4.1.1. Thet = 1 series. A 6(2J, — 1) x 6(2J,— 1) GYD withv = 4
is obtained by using Proposition 5 with (G,,, G,,) equal to (2J, — 1) copies of the
(4, 6, 2) BIBD and (Gj,, G},) equal to (2J, — 1) copies.

EXAMPLE 4.1.2. General considerations for t > 1. We must now use Proposi-
tion 6, since each variety occurs ¢ times in G,(2t x 2t). The required BIBD’s
are most easily obtained as (2J, — 1)t replicates of the BIBD

(4.2) (41, 2(4t — 1), 21,4t — 1,2t — 1),

if it exists. Professor Seiden points out that this is always the case if an 8¢ x 8¢
Hadamard matrix exists.

PROPOSITION 9. Fort > 1, if either J, = 2 and the BIBD (4.2) exists, then the
GYD exists.

Construction. Suppose (4.2) exists and J, > 2, so that (2J, — 1)t > ¢;,. Then
(iv) of Proposition 6 is satisfied, and we need only verify (ii). In the design
(4.2), the number (*;?) of pairs of different blocks is odd, and the sum of all
block intersection numbers is 4#(*;*), which is even. Hence, at least one in-
tersection number is even, and the corresponding pair of blocks can be used as
described in the paragraph following “Construction” of Proposition 6, since
(27, — Dt = ¢,)2.

In the remainder of the discussion of the §, = §, = % series, assuming (4.2)
exists, it is thus only necessary to consider the values J, = J, = 1.

EXAMPLE 4.1.3. The case t = 2. Here there is a resolvable design (4.2) which
easily yields

o 6 3 4
0 2 5 1
G = 1 5 2 0
3 4 o 6

as a G, whose rows and columns are blocks of (4.2); one does not even need
the 2 copies of (4.2) available to us, in obtaining G,,.
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ExXAMPLE 4.1.4. The case t = 3. A resolvable design (4.2) can be developed
mod 11 from the blocks 8, = (1,2,4,5,6,10) and 8, = (3,7, 8,9, 0, o). There
are many possible constructions of G,,. For example, to get equal replication
numbers, add 0, 1 and 3 to 5, and 0, 1, 3 to 8,. Theresulting G,,, whose columns
are 8, +2,4,7and B, + 2,4,7, is

2 4 101 56
07 53 62
|52 714 809
2719 0 o 7 3 8
10 oo 4 8 9 1
© 1 36 100

The author is again grateful to Esther Seiden, this time for pointing out the
existence of this resolvable design on Preece’s list [7a]; the more common non-
resolvable design on most BIBD lists had not led to a successful construction.

ExAMPLE 4.1.5. The case t = 4. There is a resolvable design (4.2), and G,
is easily constructed in a manner similar to that used in Example 4.1.3.

The above examples give constructions of the 6, = 6, = 4 series for all v < 16,
which probably includes most “practical” cases.

EXAMPLE 4.2. The series v = ¢,¢,, b, = a,v 4+ ¢;. To avoid trivialities, we
assume ¢, = 2, ¢, = 3; the case ¢, = ¢, = 2 falls under Example 4.1.1. We first
consider a subseries for which the calculations are particularly simple.

EXAMPLE 4.2.1. Assume each ¢, — 1 relatively prime to c¢,c, — 1 (always true
if ¢, =2). For a PRBIBD (G,, G,,)(v, ', k', ', 2’) to exist, we need r' =
A — D))k — 1) = X(c;c, — 1)/(¢; — 1); hence, 7’ is of the form J,/(¢c,c, — 1)
and ' = vr'[k’ = ¢,J)/(c,c, — 1). Also, in order to use Proposition 5 we require
v| b’ — ¢,, which yields J,’ = J,¢; — 1. Thus, finally, the parameters of (G,,, G,,)
are necessarily of the form
(4'3) (Clc29 c2("2cl - 1)(c1c2 - 1)’ €1 (chl - 1)(clc2 - 1)’ (chl - 1)(c1 - 1))
with J, > 0, and @, = J,¢,¢, — ¢, — J,. Interchanging subscripts 1 and 2 in (4.3),
we obtain the form (4.3)" (say) of (G}, G},).

The design (4.3) can be obtained as J,c, — 1 copies of a (¢, ¢,, ¢,(¢c;c, — 1), ¢y)
BIBD if the latter exists, and similarly for (4.3)’. One must still check that PR
designs result.

If
4.4 J,e, — 1 =g and Jie,—1=¢,

we can use the tool of Proposition 6(iv) in this simpler ¢+ = 1 setting: There are
enough copies of (¢, ¢, ¢(¢c,¢, — 1), ¢;) to take a relabeled block from each of c,
different copies, as the columns of G,,; similarly for rows. Thus, a GYD always
exists under (4.4), if the two BIBD’s (¢, ¢,, ¢i(c,c, — 1), ¢;_;) exXist.
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If one (or both) of the inequalities (4.4) is violated but the corresponding
design(s) (4.3) or (and) (4.3)’ is PR, of course we still obtain a GYD. This is
the case when ¢; = 2, since the BIBD (2¢,, ¢,(2¢, — 1), 2) is resolvable and J, ¢, —
1 =2 for ¢, = 3. Thus, we need only check the existence of the BIBD (2c,,
2(2¢y, — 1), ¢,) to know that a GYD exists forall J, > 0, if ¢, = 2. As in Example
4.12, if a 4¢, x 4c, Hadamard matrix exists, so does this BIBD.

If ¢, = 3 and ¢, is even, we are still in the framework of Example 4.2.1. On
the other hand, if ¢, = 3 and ¢, is odd, we obtain an illustration of the fact that
the present example gives sufficient conditions for the existence of a design even if
the ¢; — 1 are not both relatively prime to ¢,c, — 1, but there may exist GYD’s for
other parameter values. Rather than attempt an exhaustive study of the relevant
divisibility considerations for general ¢,, c,, we treat onl)" the cited illustration:

EXAMPLE 4.2.2. The series ¢, = 3, ¢, = 2q + 1. The possible values of ' in
the development of Example 4.2.1 (and, hence, of ' and 1’) are seen to be
multiplied by } in the present setting, for both (G,,, G,,) and (Gj,, G},). In the
subsequent treatment of the requirement v|b — ¢,, we obtain that any even
J/ is of the form 2(J;¢,_, — 1). The parameter values of (4.3) and (4.3)" are
unchanged, but one tries to achieve them as 2(3J, — 1) copies of (69 + 3,
(29 + 1)(3q + 1), 3) and 2[(2¢9 + 1)J, — 1] copies of (6¢ + 3, 3(3¢ + 1), 2¢q + 1).
If these latter BIBD’s exist, we see that there are indeed some GYD’s which
were obtainable as indicated in italics in the previous paragraph.

If J/ is odd, we obtain that it is of the form ¢,_,(2J, — 1) — 2. We are led
to seek 6J, — 5 copies of (69 + 3, (29 + 1)(3¢ + 1), 3) and 2(29 + 1)/, — (29 + 3)
copies of (6¢ + 3, 3(3¢g + 1), 2¢ + 1). Of course, the J’ can have opposite
parity.

The analogue of (4.4) is
(4.5) J; even: 2(¢, 0y — 1) = ¢y

J/ odd: (2, — 1) =2 +¢,.
For i =1 and ¢ > 1, these inequalities are valid for all J;. For g = 1, we have
¢, = ¢, and the same problem in both directions. Thus, as in the paragraph
following (4.4) (with obvious modifications), we are led to seek a PRBIBD
(69 + 3, (3¢ + 1)(29 + 1), 3).

This is the resolvable Steiner triple design, which is known to exist for all
g > 0. We conclude:

If the BIBD (69 + 3, 3(3q + 1), 29 + 1) exists, then a GYD exists forall J,, J,
(with J; of both odd and even forms).

For example, for ¢ = 1 we obtain the v = 9, 6, = 6, = } series for b, of the
form 12(6J; — 2) or 12(6J; — 5); that is, of the form 12(3J; — 2). For ¢ = 2,
the design (15, 21, 5) does not exist, and one would have to try to work with a
(15, 21h, 5) design for some # > 1; such a modification of our treatment can in
general yield impractical parameter values. When ¢ = 3 or 4, the required
BIBD again exists.
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EXAMPLE 4.3. The series tv = c,c,, t > 1. This extends Example 4.2 in the
same way that Examples 4.1.2—4.1.5 extended 4.1.1. We must again use
Proposition 6. We illustrate with an extension for the v of Example 4.2.2 with
t =2

ExAMPLE 4.3.1. The seriesv = 3(2q + 1), ¢, = 3, ¢, = 2(29 + 1). We now
obtain, for (G, Gy), that r' = (3¢ + 1)/, and J, = 3J, — 1. Similarly, for
(Glzs Giy), we obtain r’ = (6 + 2)J,’ and J' = (2¢ + 1)J, — 2. We thus try to
apply the technique of Proposition 6 to J,' copies of (6 + 3, (29 + 1)(3¢ + 1), 3)
and J’ copies of (69 + 3, 3(3¢ + 1), 2(29 + 1)).

For ¢ > 1 or J, > 1, we have J’ > 3 and thus the rows of G,, can be arbitrary
(provided no variety occurs more than once per row -and each variety occurs
twice). Since J,’ = 2, we have at least two Steiner triples making up (G, G,,),
so we can choose the first 2¢ + 1 columns of G,, from one Steiner triple so as
to contain each variety once, and the last 2g + 1 columns from cyclic permuta-
tion of the rows of the first 2¢g + 1 columns.

There remains the case ¢ = 1, J;, = 1. The prescription of the previous para-
graph then yields three rows of G,, which can be taken as blocks of the BIBD
(9, 12, 6) (obtained as complements of the blocks of (9, 12, 3)). We conclude:

If the BIBD (6q + 3, 3(3q + 1), 2(2q + 1)) exists, then there is a 3[(2q 4 1)J, —
21(3¢ + 1) x (3J, — 1)(29 + 1)(3¢g + 1) GYD withv = 6q + 3, for all positive J,.

ExAMPLE 4.4. Nonisomorphic GYD’s. These can of course occur when non-
isomorphic BIBD’s with the same parameter values exist and are used in our
construction. More interesting is the existence of GYD’s which are nonisomor-
phic because one is obtained from one of our patchwork methods and the other
cannot be so obtained. For example, when v = 4, the 6 x 6 GYD of [3], [6],

1 4 2 4 3 2
21 4 3 3 4
2 313 42
(4.6) 1 331 2 4
4 1 4 2 1 3
321 4 21

has no subarray of 4 rows and columns which constitute a LS (4), since any such
4 x 4 array has at least one row or column with zero or two one’s. Hence,
this design is not isomorphic to (obtainable by row or column permutations or
relabeling from) that of Example 4.1.1 with J, = J, = 1.

It appears that the methods of [8] are likely to yield designs of the form (4.6).
Since all GYD’s with the same v, k,, k, have the same covariance matrix for
variety contrasts, optimality properties of GYD’s cannot vary between two
nonisomorphic designs. However, our preliminary investigations indicate that
counterexamples to optimality, where they exist, may be more easily obtainable
from slight modification of one of two such designs [6], [7], [8].
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