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INTERPOLATING SPLINE METHODS FOR DENSITY
ESTIMATION 1. EQUI-SPACED KNOTS!

By GRACE WAHBA
University of Wisconsin

Statistical properties of a variant of the histospline density estimate
introduced by Boneva-Kendall-Stefanov are obtained. The estimate we
study is formed for x in a finite interval, x € [a, ] = [0, 1] say, by letting
Fa(x), x€[0, 1] be the unique cubic spline of interpolation to the sample
cumulative distribution function Fy(x) at equi-spaced points x = j, j = 0,
Leee, 1+ 1, I + Db =1, which satisfies specified boundary conditions
Fn'(O) =a, F,,’(l) = b. The density estimate fn(x) is then fn(x) d/dx Fn(x)
It is shown how to estimate aand b. A formula for the optimum # is given.
Suppose f has its support on [0, 1]and fim) € &[0, 1]. Then, form = 1,2, 3
and certain values of p, it is shown that

E(fu(x) — fix))? = O(n—@m=2/p)/Gm+1-2/p)) ,

Bounds for the constant covered by the ‘O’ are given. An extension to
the 27 case of known convergence properties of the derivative of an inter-
polating spline is found, as part of the proofs.

1. Introduction. In this paper we study the convergence properties of a histo-
spline density estimate of the type introduced by Boneva, Kendall and Stefanov
(BKS) [3] and discussed by Schoenberg [16], [17]. Although BKS considered the
estimation of densities supported on the entire real line as well as on a finite inter-
val, we consider here only densities supported on a finite interval, say, [0, 1].

Let W,'™ be the Sobolev space of functions

{f:ifabs.cont,y = 0,1, ..., m— 1, f™e 20, 1]}

Let & > 0 satisfy 1/h = I + 1, where [ is a positive integer. Let A; be the frac-
tion of independent observations from some density f, falling between jk and
(J+ DA j=0,1, ..., L Asadensity estimate f, BKS seek the unique function
in the space W, which minimizes

(1.1) §o (9'(x))" dx
subject only to
(1.2) farvh g(x)dx = h;, j=0,1,

Let F be the unique function in the space W,® which minimizes

(1.3) §A(G""(x))? dx
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SPLINE METHODS FOR DENSITY ESTIMATION 31

subject to
(1.4) , G(0) = 0

G(ih) = Y i h;, i=1,2,...,1+1.
Clearly, F satisfies £ = f, where f is the solution associated with the problem

of (1.1) and (1.2). Therefore this BKS histospline density estimate is the deriva-
tive of the so-called natural cubic spline of interpolation ¥ to the sample cdf F,

at the points i, i = 0, 1, ..., 4+ 1. See Schoenberg [15], Section 3 for a dis-
cussion of the natural cubic splines of interpolation. The spline £ is a cubic
polynomial in each interval [jA, (j 4+ 1)k], j = 0, 1, - - -, I, uniquely character-

ized on [0, 1] by (1.4) and the conditions F, £’, " continuous and F”'(0) =
F"(1) = 0. The drawback to using the natural cubic spline is that maximum
possible convergence rates in the cases m = 2 and m = 3 defined below will
not obtain in a neighborhood of the boundaries unless F also satisfies F’(0) =
F''(1) = 0. (See [9].) Another histospline was considered by BKS and subse-
quently Schoenberg [16], [17]. It is the derivative of the solution F to the
problem: Find the unique function in the space W, which minimizes (1.3)
subject to (1.4) and the additional conditions

(1.5) G'(0) = 0
G'(1)=0.
The histospline we study is a variation of this. We replace (1.5) by
(1.6) G'(0) = 4,
G'(1) = b,
where ¢, and b, are estimates of f(0) and f(1) formed from the sample cdf in a
manner to be described. Thus, if f has its support on [0, 1] we let £, be the

solution to the problem: Find the unique function in the space W, which
minimizes (1.3) subject to

G(Jh)an(]h)’ j=0,.1,~--,l—|—1,
G'(0) = 4,
G,(l) = l;l

and our density estimate £,(x) is
A d A
1.7 = — F, .
(.7 Fu) = 2 By

This estimate can be less smooth than the first (unconstrained) BKS estimate.
Of course, we may replace 4, and 5, by 0 if it is known that £(0) = 0, f(1) = 0.

As do BKS, ([3], pages 34-35), we consider that # is a parameter to be chosen.
Our criterion is minimum mean square error at a point. Our theorems provide
results on the optimum choice of 4.
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Let W,™ (M) be given by
W, (M) = {f: fe W, ||[f™|l, = M}

where

fll, = [§ L™ (@I a1, pzl
lf ™l = supe [F™(€)] -

It is shown in Wahba [21], based on a result of Farrell [5], that if £,(x), n = 1,
2, ... is any sequence of estimates of the true density f at the point x, and ¢ is
any positive number, that if

U, e, mian B(u(3) — S0 = by mnosoamia-s/zro

then there exists D, > 0 such that b, > D, for inﬁnitelil many n. Thus, the best
possible mean square convergence rate uniform over W,™(M) is not better than
n~m=¥pta)/@mil-3/p+e) for arbitrarily small ¢. It is known for various density
estimates that the rate n—m-%/»/3m+1-%/p) js achieved, that is,

(18)  SUpewymun B(u(x) = ) < Damim-smvimsiin,

where D depends on m, p, M, the method (and, possibly, bounds on f). See,
for example [21], where the Parzen kernel type estimate ([12]), the Kronmal-
Tarter orthogonal series estimate ([11]) and the polynomial algorithm for density
estimation ([20]) are studied. The ordinary histogram with optimally chosen
“bin” size also satisfies (1.8) with m = 1.

It is the purpose (and main theorem) of this note to prove that the histospline
density estimate of (1.6) with optimally chosen 4 shares the rate of convergence
property (1.8) of these other estimates. The result (1.8) is proved form = 1, 2
and 3, and several sets of values for p. An upper bound for D is given. In par-
ticular, for m = 1, p = 2, h,,, ~ cn~*. Recent work indicates that the m = 1,
p = 2 result is true for the BKS histospline of (1.1) and (1.2). (R. Kuhn per-
sonal communication.)

In order to achieve the rate (1.8) for higher m, it is necessary (and doubtless,
sufficient) to use higher degree splines. A proof of (1.8) for m > 3 is not forth-
coming at this time, however, due to the complexity of the formula for higher
degree splines.

2. Explicit expressions for the histospline estimate, and outline of proof of
the main theorem. Our development of an explicit formula for an interpolating
spline will be slightly unorthodox, for the purpose of easing the proofs of the
main theorem. The reader may consult [2], [6], [7], [15] and the bibliography
[14] for additional background on splines.

We endow W,® with the inner product

(2.1) (F, G) = F(0)G(0) 4+ F'(0)G’(0) + §; F"'(x)G"(x) dx .
w,® is then a reproducing kernel Hilbert space (RKHS) with the reproducing
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kernel
O(@s, ) =1 4 st 4 §Pined (s — u)(t — u)du
2.2 =1 ’iﬂfﬁ)
(2.2) +st+<2 c) s <t
-1 £_£> .
+st+<2 c)’ s>t

Denote this Hilbert space 577, with norm ||.||,. The true cdf F is always as-
sumed to be in 57, that is, f = F' ¢ W,.
Let Q, be the function defined on [0, 1] by

(23) Qus) = Qs 1), - s, te[0, 1],
and let O,/ be the function defined on [0, 1] by

Q/(s) = %Q(s, I s, tef0,1]
SZ
(2'4) :S+—2—, Sét
? <
_s+st——2-, s=t.

By the properties of RKHS (see, e.g. [10]), Q,, Q.. € 57, for each ¢, and
(2.5) (G, Q) = G(r), GeS#, tel0, 1]
(G, Q> =G'(r).

Consider the solution to the problem:
Find G € &7, to min ||G||, subject to

G'(0) =<G, Q) = 4

G(0) = (G, Q) = 4,
(2.6) G(s) = <G, 0, = yi i=1,20,1

G(1) = <G, Q) = b,

G'(1) = (G, 0y = b,
where 0 < 5, < -+ < 5, < 1. i
Denoting § = (s, Sp o5 81)s = (Yo Ye o501y @ = (@, a5), b= (b, by), let
S(x) = S(x; 5, a, y, b) be the solution to this problem. Then, by observing that
S € () defined by
(2.7) () =span{Q/, Q,,i=0,1,---,14+ 1,0/}
where 5, = 0, s5,,, = 1, it may be established that
(2.8)  S(x; 5 a, y, b)

= (Q/'(%), Qu(x)s Q4,(%)s  + +5 Q) (%), Qu(x), Q' (x))Q57lu(; 75 bY

where Q,, is the (I 4 4) X (I + 4) Grammian matrix of the basis for .&(3).



34 GRACE WAHBA

Q,,, is of full rank (see for example [19]) and the entries may be found from
(2.5). By observing the nature of the inner product in 57, it is easily seen that
S(x; §; a, y, b) is also the solution to: Find G ¢ Sy to
min §} (G”(x))* dx
subject to (2.6). The solution to this problem is well known ([15]) to be the
unique cubic spline satisfying (2.6). It may easily be checked from (2.3), (2.4)
and (2.8) that S has the characteristic properties of a cubic spline, viz. S is a
polynomial of degree less than or equal to three in each interval [s,, 5,,,], i = 0,
1, ...,1,and S, S’ and S’ are continuous.
The density estimate f,(x) that we study is thus given by

2.9) Fu) = L Fy(),

F,(x) = S(x; §; 4, F,, b)

with
5, = (h,2h, ---, Ih), I+ DHh=1
d = (dy, 0)
F, = (F,(h), F,(2h), - - -, F,(Ih))
b=,5).

Equation (2.8) is not the computationally best method for computing ¥, because
Q,.. isill-conditioned for large /; however, computing routines for S(x) and $’(x)
are commonly available. See, for example, [1]. The estimates d, and Bl depend
on m, (= 1, 2, or 3) and are defined as follows: Let /, (x) be the polynomial
of degree m satisfying
(2.10) L,()=1, X =vh,

=0, x:jh, jiv, j:O,l,---,m.

and let /, (x) be the polynomial of degree m satisfying

(2.11) Lx)=1, x=1—yvh
=0, x=1—jh, j#v, j=0,1,---,m.

Let
@12) = £/0) = f0) = & b Feh
@13 h=A) =f0) =L m 0] R0 -,

4, is the derivative at 0 of the mth degree polynomial interpolating the sample
cdfat0, &, - - -, mh, and similarly for 5,. It follows from (2.8) that S(x; 5; 4, 7, b)
is linear in the entries of @, 7, and b, that is

S(x; 5@ + & J + & b + &) = S(x; 5; @, §, b) + S(x; 5 &,, &, &)
where é,, ¢ and ¢, are 2-, /- and 2-vectors, respectively. (d/dx)S(x; 3, a, 7, B) also
has this linearity property.
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Let F be the true cdf, and let F be the cubic spline of interpolation to F, with
knots jh, j = 1,2, ..., I, and matching F and F’ at the boundaries, that is
F(x) = S(x; 33 Foy Fy, F)
where
F, = (F'(0), 0)
F, = (F(h), F(2h), - - -, F(Ih))
F,=(1, F(1)).
(Note, by the nature of the minimization problem (2.6), that F is the projection

of F onto .#(3).)
We may write

1) = o) = £ (F(x) — Fo()

(2.14) =4 (Ftx) — ) + & (F) — £, ()
x dx
d ‘ d

(2.15) = 2 (F() — FQ) + 2 H,()

where

(2.16) Hy(x) = S(x; 5} &, & &)

and

&, = (&5 0), & = F'(0) — 4,
(2-17) E= (e o), & =F(h) —FGh, =121,
& = (0’ €;+1) ’ 5;.,.1 = F'(l) — i)l .

The first term on the right of (2.15), which we shall call the bias term, is non-
random and depends only on how well F can be approximated by an interpolating
cubic spline. The second, or variance term is a (linear) function of the random
variables ¢/, ¢;,,and ¢, i=1,2, ..., L.

Then, as usual,

” d N 2 d 2
@18)  B(fex) — ful) S 2 (2 (F@) — Fw)) + 28 (5 Hy) -
dx dx

Bounds on the absolute bias, |d/dx(F(x) — F(x))| appear in the approximation
theory literature in various forms, for equally spaced, as well as arbitrarily
spaced knots. If F™tb e 0, 1], then it is known ([18], Theorems 5.1, 5.2
and 5.3) that, form =1, 2, 3,

(2.19) sup, |4 (Fx) — Fx))| = Ko(ml[Fev]| e

where ||+, is the &£, norm, and K,(m) is a constant depending on m. Generali-
zations of (2.19) to arbitrary m are given when F is replaced by an interpolating
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spline of higher degree. For F'™*V e <~ [0, 1], m = 3, ([9]) gives

(2.20) sup,

) — FQ)| < Ke(m|F=] A7,

and [9] is easily extendable to m = 1, 2. (For earlier results, see [13].) Some
information about generalizations of (2.20) up to, but not beyond m = 5 are
known ([4]). We would like to have the result

(2.21) Fmth e &£ = sup,

(—j; (]"(x) — F‘(x))l < Kp(m)HF(”‘H’”phm—l/p ,

p=1,
or, equivalently, fe W,™ =

d - 2 A
2:22) sup, (7, (F) — R ) < 17w Pzl

where A’ = A'(m, p). We are not aware of such results for p 2 or co. We
provide a proof of (2.22) good for m = 2, 3, 1 < p < 2. In the proof, the de-
pendency on the knots {s,}._, is retained so that the results may be used in a
sequel paper where the knots are determined by the order statistics. Combining
these results will give us a bound on the bias for

m=1, p=2, o
m=2, 1£p=2,
m=3, lépgz, o .

The establishment of bounds on the variance term is tedious for cubic splines,
and we are unable to do it for higher degree splines. It will be shown that

d *_B 1 A"
2.23 E(__ H,(x ) < B 2 2 )| apeme2p
(2.23) LHE) S 5+ S,
where A", B are constants to be given. Then we will have
(2.24) wmwwwmmn_ﬁpngMWww+B%
n

where A = A’ + A",
The right-hand side of (2.24) is minimized by taking # = k,/n with

1 B wem+i-2/p
(2.25) k, = |:(2 277) MzA] . p(am=2/p)/(m+1-3/p)
m—2/p ‘

Then, we will have the main result, which is:

(2.26) SUP ey man ELf(X) — fu(0)]* < Dn-em-rm/amii=az)
where
(2_27) D= (2m +1— 2/]’) (MZAB2M—2/p)1/(2m+1—2/p) .

(@m —2jp)™

Details of these assertions are in the next section.
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3. Proof of the main theorem.
3.1. Bounds on the bias term. The case m = 3, p = oo is covered by

PROPOSITION 1. Let F'V' e &£, [0, 1]. Then
@D (55 (Fe) = Fon) = Gy leeme.
X

Proor. This is Theorem 2 of [9]; the proof there may be extended from F'v
continuous to F'" ¢ &,
The case m = 1 or 2 and p = oo is covered by

PROPOSITION 2. Let F'V ¢ &£ [0, 1]. Then

(3:2) (£ ) = B} 5 @)
Suppose only that Fil e < [0, 1]. Then
(3.3) (% (Fe) — Fes)) = PRl

Proor. This may be proved from the argument in [9] by following the proof
of Theorem 2 in [9], and noting that, if Fi» ¢ &, then r; of [9], equation (8)
is bounded by 3h|sup, F')(§)|, if only FUil e &, then r; of [9], equation (8) is
bounded by 6|sup, Fi(§)|.

The next series of lemmas result in a theorem which provides bounds on the
biasform=1,p=2,andm=2,3,1<p < 2.

LeEMMA 1.

(3.4 (% F = Fep) s 110 = SISIF — il

where Q,' is the projection of Q,' in 57, onto (3).

Proor. Since F is the projection of F onto &(3),

(3-5) l—(F(x) Fx))| = KQ.s F — F)| = KQ,' — 0., F — F)|.

LeEMMA 2.
(3-6) 10, — 0.'ll¢* < 4k
Proor. See Appendix.
LEMMA 3. Let F'"e £[0,1], 1 < p < 2. Then
(3.7 IF — Fllg* < JgllF||, = .

]»-n

Proor. See Appendix.
LEMMA 4. Let F''Y e £[0,1], 1 < p < 2. Then
(3.8) [|F — F”Qz < 4| Fam)| -,
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ProoF. See Appendix.
THEOREM 1. Let f™e L, form=1,p=2,0orm=2,3,1<p=<2. Then

(3.9) <_d‘i (F(x) — F(x))>2 < A”f(m)”p2h2m—2/p
X
where
A= %, m=1 sy P =
A=3, m=2, 1<p<2

Proor. The result follows upon combining Lemmas 1, 2, 3 and 4, and noting,
in the case m = 1, p = 2, that ||[F — F||* < ||/,

3.2. Bounds on the variance term. We seek a bound on

d 2
el H, :l
l:dx *)

where
(3.10) H,(x) = S(x; 5, &g &, &)
and
5, = (hy 2k, - -, lh),
&, = (&, &) » &=0, ¢ =F(0) —4dg,
E=(epep - s 8)> e; = F(jh) — F,(jh) = F(jh) — E,(jh), j=1,2,---,
& = (e130 €141) > 6 =0, ¢, =F(Q1)—b,.

Lemma 5 bounds the derivative of a cubic spline in terms of 4 and the data ¢,
g, &,.

LEMMA 5. Forjh < x< (j+ DA, j=0,1,...,1,

d o, 1, 1,
@1y L He| s 8 {mhoe B ) ]
where
by = &0 — & = [F((j + Dh) — F(jB)] — [F( + DA) — F.(jh)]
1 1 : L
“= 2li—gl+1 + li+i—ji+1’ i=0,1,..,Li#]

1 1 1
“=z Tty
Proor. See Appendix.

Bounds on E[d/dx H,(x)]* may now be found by bounding the random variables
on the right of (3.11).
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Now

$; = ¢ — & = [F((J + Dh) — F(B)] — [Fu((G + Dh) — F.(jh)]
__ % of observations between jh and (j + 1)A

i

n
where
Py = S () dE < A
and
A = sup, f(§) -
Thus n(p; — ¢;) is binomial B(n, p;) and so
(3.12) By =Lp0—pys i

To complete the bound on the variance term, we need to know E(e,)* =
E(F'(0) — 4,)* and E(e},,)* = E(F'(1) — b,)*. The answer is given by

LEMMA 6. Let d, and b, be given by (2.12) and (2.13) form =1,2,3. Then
E(F'(0) — dy)*

A
3.13 . < (m)|| 2p2m—2/p il
(3-13) EF (1) — by] = Wl + A
where
(3.14) a = Smm=¥2[[(m — 1)1

B =2m¥m + 1)’A .
ProoF. See Appendix.
Note that, if x =0, or x = 1,
E(f(0) — f(0)} = E(F'(0) — 4,)?
E(f(1) — fu()) = E(F'(1) — by’

and the mean square error is given by the right-hand side of (3.13). For x %
0, 1, we combine Lemmas 5, 6 and (3.12) to obtain, for j2 < x < (j + 1)A,
E(LH@) s82nte e vy a (1 L)

> 22i+2 22l+4-24

A
(m)|| 2f2m—2/p £
(3.15) x (allp@il,ene 4 5 2]

=8 20602 + 4 (50 + )

22(2/}») 22(1—:6)/h

A
(m) 2h2m—2/p il .
x (all =il + 52

Note that if x is bounded away from 0 and 1, then [1/2%=/® | 1/2%1-2/k] _, 0
rapidly as & — 0.

3.3. Final result. Summarizing the results from (3.1), (3.2), (3.3), (3.9) and
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(3.15) gives

E(f(x) _fn(x))z < A”f(m)”pzhzm—ﬂp + Bi},
n

where

, 4 4
(316) A4=2 [A + 64a <—227/h + 22(1-45)/}»)]

, 4A 4A
S )
and

A':(g—)2 m=1, p =
@ m=2, p=oco

(%)’ m=3, p=o

% m=1, p=2
% m=2, 1<p<2
147 m=3, 1=p=<2

B =2.(8-3})
and a and B are given by (3.14). It can be shown easily that there exists A =

A(m, p, M) < oo such that SUP;, gensiey e w,tmi an SUPe f(€) = A, so that our results
are uniform over W, (M). This demonstration is omitted. We have proved

THEOREM 2. Suppose f has its support on [0, 1] and f € W,‘™(M) for one of the

following cases:
m=1 ’ P = 2 N p =

m=2, 1£p=<2, p=o

m=3, 1£p=2, p=o.
Let F, be the sample cdf based on n independent observations from F, and let F.,(x)
be the cubic spline of interpolation to F, at the points jh, j = 0,1, ..., +1;
(I + 1)k = 1, which satisfies the boundary conditions F,/(0) = d, F,/(1) = b,, where
d, and b, are given by (2.12) and (2.13). Let fu(x) = djdx F,(x), and suppose h is
chosen as h = k,/n,

_ I: 1 B :Il/(z"‘“_wp) n(3m=2/p)/(3m+1-2/p)
" 2m — 2/p) M*4

where A and B are given by (3.16) and (3.17). Then

(3.18) SUDsew ,tm (o) E[f(x) —f""(x)]2 < Dn~Gm=y/p)/am+1-2/p)
with
(3.19) D = (2m + 1 — 2/P) (M2ABZm—2/p)1/(2m+1_2/p) .

= (2m — 2[p)emP

APPENDIX
This appendix contains the proofs of Lemmas 2-6. The proofs are carried out
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where the knots {5;}!_, do not necessarily satisfy s,,, — s, = &, butonly 0 = 5, <
5 < +o0 < 8 < 84, = 1. The purpose of this generality is to allow the lemmas
to be referenced for a later report which deals with the situation where the knots
are determined by the order statistics. Let /; be the interval [s,, 5;,,], for j =
0,1, ...,1

LEMMA 2. Let §,’ be the projection of Q,' onto #(3), and let x ¢ I;. Then
10" — @.'ll¢* < 4(s51 — 54) » J=0,1,...,1.
Proof. For x e I, define R,’ in 57, by

1
R/ = — — .
) (5j+l - Sj) (Qsj-H Q"j)
Since R,’ € &(5) and Q,’ is the projection of Q,’ onto ¥(5)
(ALI) 10" — @.'lle < 110, — R.llq -
To compute the square of the right side of (Al.1), note from (2.4) that
(A1.2) Q,/(0)=0
(A1.3) 4o =1
ds 8=0
d2
(Al.4) —Q,/(5) =1 s < x
ds*
=0 s> Xx.
After some calculations,
(A1.5) R,(0) = 0
(AL.6) 4R =1
ds 8=0
a: .,
(A1.7) Es—”Rz(s)zl’ 0<s=<sy;
($41— 5)
= , ;S S
(Sj+1 — 55) ! ™
=0, S;usSs< 1.
Al.8 T oxs)— L Ry =0, f I
(AL.8) a5t x(s)_d—sz_ J(5)=0, or s ¢l
and
’ ’ 1 z 85
1Q." — R,/||¢* = m [§:, (0 — ;)" du + §9% (s;,, — u)* du]

= $(Sjm — 55) -
LEMMA 3. Let Fe 57, satisfy F'" = pe Z[0, 1]. Let F be the projection of
F onto &#(5). Then

(A2.1) IF = Fllg* < 7% Do (541 — ;) ¥2[§25%1 |0 (€)|” dET> .
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If sjpy—s;=h, j=0,1,...,l,,and 1 < p <2,
|F — Hlg* < k|| F™™]|,” .
Proor. First we show that F!'") = p implies that
(A22)  F(1) = §50(1, 5)p(s) ds + ¢, Qo(t) + € Qu(t) + € Q0/(t) + ¢, Q/(7)

for some {c,}. But Qy(t, s) = §4(s — u),(t — u), du is the Green’s function for
the operator D*, with boundary conditions

G»(0) =0, v=20,1
G»(1) =0, v=2,3.
Thus, F always has a representation \
(A2.3) F(t) = §3 Qu(t, s)o(s) ds + X3 ,d,t.
But

§3 Qu(t, 5)p(s5) ds = §3 Q(¢, 5)p(s) ds — §o (1 + st)p(s)ds .
Since Q(), Q,/(f), Q,(f) and Q,'(f) span the same space as {1, ¢, 1% 1%}, {c,} can
always be found so that (A2.2) equals (A2.3).
Next, if v is any element in 527, of the form
v = it Q, + aQ) + bQ, .
Then, since v € (),
(A2.4) IF — Fllg < [IF = vllg -

The proof now proceeds by finding an element v € &(5) so that the right-hand
side of (A2.4) is bounded by the rlght -hand side of (A2.1). For x ¢ I;, define

R, e &(3) by

Rzz(s"“_x)Q + (x —s;) Q j=0,1,...,1.
(501 — 55) (5541 — 55)

Define v € &(5) by
v = {3 R, p(x) dx + ¢,Q, + ¢, Q¢ + 60, + ¢, Q)
= Za o{Q Sa,+1 (Sg+1 x) p(x) dx + Qs,~+1 S;gﬂ (x — :) p(x) dx}

(85401 — 55) (S541 — 55)
+ a0+ ¢, Q) + 0, + ¢, Q).
Now
F—wv=§(Q, — R,)p(x) dx

and, by the properties of the reproducing kernel, it can be shown that

IF — ol = §5 §5 p()P(X)KQ, — Ry O — Ry dxd’.
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Since
Q.(0) — R,(0) =0

% (@) = R(s)| =0

d? (x — 5;)(8;41 — 5)
—(Q,(5) — R(s)) = (x — 5), — EZASE k2 s xel;sel,
i (@0 = Ri9) = (¢ — ), — il ssel;
=0, xel,sel,k+j,
it follows that
{Q,—R,, 0, —R,>=0
if xeI;, x' € I, with j # k. Thus
[1F — vllg* < Zi=o {15542 [0(N)][1Q, — R,||q dx}* .
Furthermore
— . 2
10, — Rillg? = §tgm | (x = 9), — 25y, — ), Tlas
(85401 — 55)
= F5(851 — 5% xel;,
so that
IF = llg" = o5 Zizo (8551 — 8,0’ [§3541 [0())] dr]” -
For 1/p + 1/p’ = 1, a Holder inequality gives

§r; lo@)| dt < [§,; T [§ 1, lo(0)]” de]
= (S01 — 8281, lo(O)|? d]? .
Thus,
IF — ]|’ = 5 Lo (5541 — 57 [§1; lo(@)|” di]*? .
If (s;,, — ;) = hand 1 < p < 2, then
IF — vllg* = #h**7[§5 |o(n)]? dr]¥” .
LEMMA 4. Let F ¢ 57, satisfy F'' = ye Z,[0, 1]. Let F be the projection of
F onto (). Then
IF — Fllg* < & Dico (s541 — 5, 7[ 5554 [n(€)]? AT .
If (5;41 — 8;) = h,and 1 < p < 2, then
IF — Fllg* < g~ 2
PrOOF. As in the proof of Lemma 3, by the Green’s function properties of

Q,'(s) there exist ¢;, ¢,, ¢;, ¢, such that

F(1) = §5 Q. (On(x) ds + ¢, Q(t) + ¢.Q0'(?) + ¢ Qu(F) + 0,/ .
Let
v = {5 R,/9(x) dx 4+ ¢,Qy + ¢,Qy + ;0 + ¢, Q)
where R,’ is defined as in the proof of Lemma 2,

1

R/=__ L
(8501 — 5;)

(Qsjﬂ — Qsj) for xel;.
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Then
IF — Fllgt < IF — vll¢* = §4 5 9()n(x)<Q." — R, O} — Ry) dxdx’.
Also, it can be shown that
(Q,) —R/,Q.,, —R.>=0 if xel;,, xXel,, j+k;
so that
IF =l = Zizo {3t [n(0]Q." — R[] dx}* .
By Lemma 2,
19, — R < $(5;41 — 5;) for xe I,
from which the result follows as in Lemma 3.

LEMMA 5. Letr S(x) = S(x, §; &,, &, &,) be the cubic spline of interpolation defined
by (2.8) with
Sps g5 ¢ 05 5)

& = (S145 E141) & =0
Let
A, = (500 — 5) i=0,1, 1,
(/IiZ(SH_l 8) i:O,l,---,l.
Then, for x ¢ I,
d Ao, 1
(Ad.1) ‘E} S| = 8{Ztoee ‘i‘ i , o] + g zm_J 3 B |
where
1 1 . . ,
€= S + FiHI=ji+1 i=0,1, - L i)
1 1 1 . ,
= P — 1 = .
2 + 22 + 8 J
ProoF. Define
1
R, = N (@, — Os) for xel;.

Then
950 = (5, @3¢ = (S R yq + (5, 0 = R

Since S(s;) = ¢;,j =0, 1, e L1,

1 R
(A4.2) SRy =1 Ca—e) = .
i i
Since the spline S is a cubic between the knots 0, s,, - - -, 5;, 1, d*/dx* S(x) is linear
between the knots, and by the properties of cubic splines, continuous. Define
£; by
d2
e S(s) =K.

8 =8i
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Thus

d? 1
e S(s) = 1 [£:(sj01 — ) + £;4.(5 — 5;)] for sel;.

J
Combining this with (A1.2)—(A1.8) gives
<S’ Qa:’ - Rz')Q
1
=z §5, (5 — )8 (S41 — 8) 4 £554(s — 5;)] ds
i

1
A2

J

+ §27 (801 — 9)[E(S541 — 8) + Kypa(s — 57)] ds, for xel;
and so
(A4.3) <S5 Q. — R,o| = A;max (|x,], |k;,4]) xel;.

To proceed, we need to know the relationship between the «; and the data 5,
&, &, &. By using a formula found in Kershaw, [9], equation (5), we may ex-
press this relationship for cubic splines. It is

(’50, Eys * 005 Ky 'Cz.,.l) = 6A_1(Eo, Ev tety ‘st €z+1)

where A is the (I + 2) X (I + 2) matrix given by

r2 1 T
a 2 1 —a 0
a, 2 1 —a
A= .
0 a, ) 1 — a
i 12
where
A, .
a = —M— l=1723"'91
Ai_Ai—l
and

§o = (9o — Agey)/A
§i=<§i_ >/(Ai+Ai—l)" i=1,2,...,1

§iia = — (4 — Ayel /A0
Fori=1,2,...,1, &, is the second divided difference of S(x) at (s;,_y, s;, 5,.,)-
We are now going to appeal to another result of Kershaw’s, which gives bounds
on the entries of 4-'. Leta™, r,s =0,1, .-..,1 4 1, be the r, sth entry of 472,
According to [8],

Pia
A,

4 1

Ianlé"é"w’ r,s=0,1,-.-,l+l.
Therefore, since £; = 6 Y !t aig,,
1
(A4.4) lesl <6-4- 2% S |€]
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and, combining (A4.2), (A4.3), and (A4.4) gives
KS, Q. — R/Y| < B;-6-4- Dith L

i=0 ST

Igila xelj

and

s,on| <19 g5 1 |¢¢I 2] A;
5051 = A; 8 2 2""'“{ + A }Ai +’A

1 , 1
e CRTI R (R

’Io'|+

"A—f 2:+1 A, 2t+2 i A, "“'
where .
¢, = 1 + 1 ’ i=0’1a2,"‘al’i#:j

U=+l | DlHI—jl+1

1 1 1
=g tEtge

We remark that the lack of a generalization of this lemma for higher degree
splines is the stumbling block in generalizing the main theorem to higher m.

LEMMA 6. Suppose f™ € £, on [0, 1]. Let F, be the sample cdf for n inde-
pendent observations from f. Let

£ =& 30| Fah)

2 d
Fl0) = & o) Pt — v
X z=1
where 1, , and I, , are the Lagrange polynomials defined in (2.10) and (2.11). (For
m =1, f,(0) = (1/n)F,(k).) Then

E(f(0) — fn(O))ﬁ} __ Smem

(m) 2hL2m—2/p 3 2 A
(AS.I) E(f(l) —fn(l))z = [(m )|]2 ”f || h -+ 2m (m 1)

PROOF.

(A52) IA0) = FuO) = |A0) = 5 Brabu()| _ FOR)

| Do b (LFEH) — F6)])

By combining Lemma 3.1 of [21], and Theorem 3 of [20], and noting that
117, (0 — jk) = 0 in equation (3.28) of [20], it can be shown that

fO) = & Treob(0)|  Fon)|

(AS5.3) < ['(m—ii')_,:r [§3% | f™(&)|? de?(mhym—22
Pz 1,m= 1,2, e,
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It can be verified, for m = 1, 2, 3, that

(A5.4) W] s

Now

F(vh) = % observations in [0, vA] ’
h

and hence nF,(vh) is binomial B(n, 3}%_, p;), where p; = §#2 . f(£) d¢, and hence
Amh

(AS5.5)  E[F(vh) — F,OW)] = (Dj=1pi)(1 — Zhapi)in < —
Putting together (A5.2) (AS5.3) (A5.4) and (A5.5) gives.

< 8m2m-—2/p
= ((m = 1)ty

The proof is carried out similarly for x = 1.

E(f(0) — f.(0))" f ™Il hem=® 4 2m(m + 1>2% '
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