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STOPPING TIMES OF SOME ONE-SAMPLE SEQUENTIAL
RANK TESTS!

By HARRISON D. WEED, JrR., RALPH A. BRADLEY
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Dartmouth College, Florida State University and
University of Kentucky
Two models for modified, one-sample, sequential probability ratio tests
based on Lehmann alternatives are considered, one developed by Weed and

Bradley and one by Govindarajulu. It is shown how they are related. Sure
termination of the SPRT’s is established under very general conditions.

1. Introduction. Weed and Bradley (1971, 1973) and Weed (1968) developed
a model (Model 1) for a modified, one-sample, sequential probability ratio test
(SPRT) based on ranks and Lehmann alternatives and reported on Monte Carlo
studies of its properties. The research paralleled work on the two-sample se-
quential rank test by Wilcoxon, Rhodes and Bradley (1963)and Bradley, Merchant
and Wilcoxon (1966).

Govindarajulu (1968) proposed an alternative model (Model II) for the one-
sample SPRT using Lehmann alternatives in different form. Model I was chosen
by itsauthors to provide continuity at the origin for the probability density func-
tion of the random variable under consideration under alternative hypotheses.
I. R. Savage has given a transformation that shows Model I as a special case of
Model 1I.

The authors of both models considered termination properties of the resulting
SPRT’s using an extension of the techniques of Savage and Sethuraman (1966)
for the two-sample problem. Because of the similarity of the research, this joint
paper was developed.

In this paper, we shall show that the SPRT’s under both models terminate
with probability one and that the moments of stopping times are finite for all
alternatives within the classes defined by the models.

2. Notation and formulation of the problem. Let Z,, Z,, ... be independent
and identically distributed random variables observed sequentially and having
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a continuous cdf F. We wish to test the hypothesis,
(1) Hy: F(z) + F(—z) =1 forall z,

that is, F is symmetric about zero. Two models for F are considered leading to
alternatives to (1). Let H(z) = P(Z < z|Z = 0) = {F(z) — F(0)}/{1 — F(0)}and
G(z) = P(|Z| £ 7] Z < 0) = {F(0) — F(—2z)}/F(0) for z = O and H(z), G(z) = 0,
for z < 0. We can rewrite (1) as

H,: H(z) = G(2) forall z and F(0) =}
and take
H,: H(z) #+ G(2) for some z.

We postulate structure for two models under alternative hypotheses:

2) Model I: H,;: Hz) =1 — {1 — G(2)}*

forall z, A>0, A=+1,

A specified, F(0) = 4/(1 + A),
and
(3)  Model II: H,,: H(z) = G4z) forall z, A>0, A+1, A

specified, F(0) = 4,, 4, specified.

The two models are not the same, but see Theorem 1, and the discussion by
Weed and Bradley (1971). They have also given examples of cdf’s F(z) and as-
sociated pdf’s f(z) = F'(z) for Model I; it is easy to generate examples for Model
IT in the same way.

When the experiment has reached stage ¢, Z,, ---, Z, have been observed.
Let X, ..., X,, denote the absolute values of those Z’s that are negative and
let Y,, ---, Y, denote the positive Z’s, m + n = t. Note that m is binomially
distributed with parameters ¢ and 2 = F(0), 0 < 2 < 1. Let the ordered com-
bined sample of X’s and Y’s be denoted by Wi, ..., W,. LetG, and H, re-
spectively denote the empirical cdf’s of X, ..., X, and Y,, ..., Y,. Further,
following Savage’s (1959) definition, let A = (4,, ..., A,) where A, =1 or 0
according as W, corresponds to a negative or positive Z respectively. Also let

4) LA, 8) = P(A = 6| A)P(A = 6| A= 1) = 2P (A = | A)

where o represents a realization of the random rank order and P,(A = d|4)
denotes the probability of the rank order ¢ when either (2) or (3) holds. The
SPRT for testing H, against H,; or H,, is given by:
(i) Take one more observation if a < L, < b,
(5) (ii) Accept H, if L, <a,
(iii) Reject H, if L, =2b, t=1,2,...

where 0 < a < 1 < b are suitable constants (independent of ¢).
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The number of stages before termination 7" is defined as follows:

(6) T =r if a<L,<b for t=1,...,r—1 and
L.=zb or L. <a, r=1,2,....

We investigate properties of the distribution of T'.
3. Preliminary results. We obtain explicit expressions for L,(4, 9).
LemMMA 1. Under Model 11,
(7) Ly(A, 0) = 21! 2,™(1 — 2)*A" [[t2, {mG (W) + AnH (W)} .
Proor. It follows at once that
P(A = 3| A) = (L)A™(1 — 2)"P(A = 3|4, m), A = F(O),
where P(A = 6| A, m) is the conditional probability that A = J given m.
Following Savage (1959), we have
PO =3[ dym) =mint § - § T3 {dG(w,))s(dH(w,)}="s

0<w < o <wy<oo

= m! n! An 't;=1 {mc,,‘( Wz) + AnH'n( Wi)}_l

where G,, and H, are the sample cdf’sof X, - .., X, and Y}, - .., Y, respectively.
The result (7) follows with use of (4).

An expression similar to (7) for L,(4, d) under Model I was obtained by Weed
and Bradley (1971), formula (2.18) of the reference.

The transformation suggested by Savage yields the following theorem.

THEOREM 1. If Z* is a random variable with cdf’s F*, G*, H* and parameter A*
satisfying Model 1 in (2), then Z = —1/Z* has cdf’s F, G, H and parameters A =
1/4* and A, = 1/(1 + A*) satisfying Model 11 in (3).

Proor. The proof follows easily with use of (2) and (3) and demonstration
that G() = 1 — H*(1)t), H(t) =1 — G*(1/t), t = 0, and F(r) = F*(—1/1) —
F*(0), t <0, F(t) = 2, + F*(—1/t), t = 0. The converse of the theorem is
also true.

CoRrOLLARY 1. Given samples of independent observations Z*, ..., Z,* and
Zy o ZyZi=—=1]Z*i=1,...,t onZand Z* of Theorem 1, the probability
ratios for the two models and corresponding samples are identical.

The corollary follows from the theorem. It may be demonstrated also through
use of L,(A, 6) of Lemma 1 for Model II and the corresponding form for Model
I. Reason for the forms of G,* and H, * will be apparent.

Theorem 1 and Corollary 1 demonstrate that Model I may be taken as a special
case of Model II. The remainder of this paper will deal with Model II and all
results will apply also to Model I.
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The following notation is required:
8) S, = (log L4, b))t
=log2 — 1 + log{A(1 — 4)} — 4, log {A(1 — 4j)/4,} — B,
+ O(t7*log 1),
%) S)(A4, 2y, G, H) = log2 — 1 + log {A(1 — 4)}
— Alog {A(1 — A,)/4} — By(A4, G, H),

where
(10) A, = mft,
(11) B, =t 3t log (2,6, (W)) + A(1 — 2)H, (W)},

(12)  By(A4, G, H) = § log {AG(z) + A(1 — )H(2)}d{AG(z) + (1 — A)H(z)} .
Consider
(13) S, — S)(4, 4, G, H) = (2, — 2) log {A,/A(1 — 2,)}

— (B, — By(4, G, H)} + O(t* log 1) .

The main theorem of this section follows; the proof is delayed until needed
lemmas are developed.

THEOREM 2. Foreverye > 0 and for t sufficiently large, there exists 0 < p(e) < 1
such that

(i) PB, — By(4, G, H)| = ¢} = p'(e),
(ii) P{S, — S(4, 4 G, H)| Z ¢} < 6'().

LemMMA 2. For every ¢ > 0 and sufficiently large t, there exists 0 < p(e) < 1
such that

(14) P2, — 2] Z ¢} < 01) -

COROLLARY 2. For every e > 0, sujﬁciehtly large t, and 0 < 2 < 1, there exists
0 < p(s, 4) < 1 such that

(15) P{log 2,4/3%) = ¢} < p'(e. 2) ,
(16) Pllog {(1 — 2)=4/(1 — 2™} Z ] < p'(es A) -

COROLLARY 3. Let Q(m) = sup, |G,.(2) — G(2)|, Q(n) = sup, |H,(z) — H(2)|
and Q1) = (1 + A)|2, — 2| + 2Q(m) + A1 — 2)Qy(n). For each 0<e<
min (4, 1 — 2) and for sufficiently large t, there exists 0 < p(e) < 1 such that

PIQ() = ¢} < p'(e) -

Proors. Lemma 2 is well known; it follows, for example, from Theorem 1
of Chernoff (1952). Corollary 2 gives easy consequences of Lemma 2. For
Corollary 3, write as two sums with the same argument

P{Q,(m) = e} = (D i-nse + D) P{(m) = ¢|m = rlP(m = 1) < p'(e)
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In reaching this result we have used Theorem 1 of Sethuraman (1964) in the
first summation and Lemma 2 in the second. A similar result holds for Q,(n).
Then these results with a second use of Lemma 2 yield Corollary 3.

Lemma 2 is used to bound the first term in the right-hand side of (13) and,
together with Corollary 3, in Lemma 3 below. We consider the second term
in the right-hand side of (13) and Part (i) of Theorem 2. Let

(17) B® = A,m™* ¥ log {AG(X,) + A(1 — A)H(X)}
+ (1 = 2)n™" 5., 10g {2G(Y) + A(1 — HH(Y;)}
and
(18) Bzm — -1 5:1 10g { ZtGm( Wz) + A(l - Zt)Hn(W’i) } .
AG(Wy) + A(1 — HH(W,)

It is easily checked from (11), (17), (18) that
(19) B, = B, + B,” .

LEMMA 3. For every ¢ > 0 and for sufficiently large t, there exists 0 < p(e) < 1
such that

(i) P{|B" — By(4, G, H)| = ¢} < p'(e)s

(i) P{B™] = ¢} < 0'(o).

Proor. (i) Let V;, = log {1G(X,) + A(1 — A)H(X,)},i =1, ..., m,and V;* =
log {AG(Y;) + A(1 — )H(Y,)}, j=1, ---,n. For fixed m, the V, are inde-
pendent and identically distributed random variables having a finite moment
generating function. Application of Theorem 1 of Chernoff (1952) yields the
first inequality of (20) below and use of Lemma 2 in a manner similar to that
of the proof of Corollary 3 yields the second. We have

(20) Plm? X, Vi — E(V)| 2 ¢} < o"(e) = 0Ye) 0= pie), p(e) < 1.
An analogous result holds for the V*’s. Since |E(V)) — E(V,*)| £ |E(V)| +
|E(V1*)| < 2|log (1 + A)| and since then
P{|BY — By(A, G, H)| z e} < P{lm™ T, V, — E(V))| = ¢/4}
+ P{In™ Zia Vi* — E(V)] = ¢/4}
+ P2 — Az ),

e, = ¢/4|log (1 + A)|, use of (20), its analogue for the V*’s and Lemma 2 lead
to Part (i) of this lemma.

(ify From (18) and the definitions of Corollary 3,
@ 1y Zin(m) + A(1 — 2)Qyn) + (G,, — AH,)(2, — 2)
B S 7 Bl log {1 + AG(W,) + A(L — DH(W) |
(1) = m™ Zi log {1 + Q(1)/2G(X))}
+ 0t 3r log {1 4+ Q(r)/A(1 — A)H(Y,)} .
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Let 0 < 0 < 4. Then
Plm= T, log {1 + Q(1)/AG(X,)} = €]

< PIQ(D) 2 0] + Tioo P[m™ Ty log {1 + 0/AG(X)} = ¢|m = rlP(m = 1)

< P[Qr) 2 8] + P[|, — 4 2 9]

+ Dir-sica Plm™ Ly log {1 + 9/2G(X)} 2 ¢|m = 1]

= 0%e) » 00 <1,
for sufficiently large 7. The last result follows after applying Corollary 3, Lemma
2, and a result due to Savage and Sethuraman (1966, equation 10). An analo-
gous result holds for the second term in the right-hand side of (21). Hence
(22) P(B,® = ¢) £ p'e) » 0= p(e)< 1.

Savage and Sethuraman (1968) filled a gap in their earlier paper. Following
their method, with consideration of 4, as a random variable as done several
times above, one may show that P(—B,® = ¢) < p'(¢), 0 < p(e) < 1, for suf-
ficiently large r and Part (ii) of Lemma 3 follows.

Part (i) of Theorem 2 follows at once from Lemma 3. Part (ii) of Theorem
2 follows from (13), Lemma 2, and Part (i) of Theorem 2.

4. The basic results. We are ready to give the main theorems.

THEOREM 3. From (9) let S;(A, 4, G, H) # 0 and let T denote the number of
stages before termination of the SPRT under Model 11. Then

(i) P(T > 1) < p* for sufficiently large t and some 0 < p < 1,

(i) P(T < o0) = 1,

(iii) E(e’T) < oo for @ in some interval (—oo, 1), v > 0.

Proor. Parts (ii) and (iii) immediately follow from (i). If S;(4, 4, G, H) + 0
and L, is as defined in (7),

PT<t)y=PL,<a or L, =b)
(23) = P[S, < (log @)/t or S, = (log b)/1)
> P|S, — Sy(4, 4, G, H)| < e} =1 — p(e), 0= p(e) < 1

for sufficiently large r. Hence (i) follows from Theorem 2. This completes the
proof of Theorem 3.

REMARK 1. When H, or H,,, is true, S,(4, 4, G, H) # 0 provided that 4 + 1
and/or 2, # 1 and the SPRT terminates with probability 1. For example, under
H, we have H = G and A = } and

(24) S,(4, 2, G, G) = (3) log {16421 — 2)/(1 + AY}.
In view of Theorem 1, the similar expression for Model I is, say,
5,(4, G, G) = log {44/(1 + A)}.
REMARK 2. We have assumed throughout that 0 < 2 < 1. Consider Model I1
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and 2 = 0. Then m = 0 and n = ¢ and, from (4),
L,(A, 0) = 2/(1 — ) or S, = log {2(1 — 2,)}.

Hence P{S, < (loga)/t} =1 for 1, > % and sufficiently large ¢ and P{S, >
(log b)/1} = 1 for 4, < % and sufficiently large t. Analogously we can cover the
case 4 = 1.

In the following lemma we list some of the properties of S;(4, 4,, G, H).

Lemma 4. (i) S;(1, 4, G, G) =log2 + (1 — 2)log (1 — 2,) + Alog 4,.

(i) S,(1,4,G,G) = 0.

(iii) S,{4, 4y, G, I(G)} is independent of G where I(+) denotes a distribution func-
tion on [0, 1].

(iv) S_;(1/4,1 — 2, H, G) = S,(4, 2,, G, H).

(V) 8y(4, 4y, G, G) = log [4{A2(1 — 2)}/(1 + A)] and is zero only when
20 = % and A = 1.

(vi) For each A there exists a unique C(A) lying between 1 and A such that
S,(4, %, G, G% = 0. Further 1/C(1/4) = C(A).

PRrOOF. Properties (i)—(v) follow from the definition (9).

In (vi) we assume that the Lehmann alternatives as well as the sampling dis-
tribution have zero medians. Thus, when 2 = 1, = }, S;(4, 4, G, H) is equal
to one half the parameter studied by Savage and Sethuraman (1966). Hence
S,(4, %, G, H)enjoysall the properties given inLemma 4 of Savage and Sethuraman.
In particular, the pairs of values of (4, C) for which §,(4, §, G, G°) = 0 will be
those values tabulated in the reference. Use of Theorem 1 yields similar properties
for Model 1.

5. Discussion and concluding remarks. Theorems 1 and 3 establish the sure
termination of the SPRT’s for Models I and II under very general conditions.

Model I was devised for a sequential test of location within the family of dis-
tributions indexed by A4 in (2); as 4 departs from unity, location change and
asymmetry are induced in the distribution. Weed and Bradley (1973) showed
through Monte Carlo studies that the sequential test was adequate for applied
purposes for the test of location for a normal population.

Model II is more difficult to interpret. The density f(z) has a discontinuity
at the origin except in the null case with 4, = 4, 4 = 1. Specification of 4, = }
in (3) leads to a location change in terms of the median for all 4 > 0. Ifit is
specified that 2, = 4, 4 # 1 in H,, an alternative hypothesis is provided within
the class of distributions given by (3) with 4 indexing departure from symmetry.
Inversion of Model II through the transformation Z* = —1/Z produces a class
of distributions broader than that of Model I.

The methods of this paper in investigation of the stopping times of the specified
one-sample sequential rank tests can be extended to related test statistics. As
an example, Govindarajulu (1968) considered substitution of 2, = m/t for 2, in
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(7) to obtain L,*(4, ) and ¢S, * = log L,*(A4, 0) where
S,* =log2 — 1 + log {A(1 — 4,)} — 4, log{A(1 — 2,)/2,} — B, + O(t~*log¢)
with B, defined in (11). Then, parallel with S;(4, 4,, G, H) in (9),
S;*(A4,G, H) =log2 — 1 + log{A(1 — 2)} — Alog{A(1 — 2)/2} — B,(A4, G, H)
is defined where B,(A4, G, H) is given in (12). It follows that
S,* — $,%(4, G, H) = (A — 4,)log A + log (4,%/2%)

+ log {(1 — 2)=*/(1 — 277}

— {B, — B;(A, G, H)} + O(t™*log 1) .
Corollary 2 is needed now, but otherwise proofs follow as before. It is clear
that, if 7* denotes the number of observations before termination of the test
based on L,*(4, d) or S,*, Theorem 3 applies with T* replacing T'and S,*(4, G, H)
replacing S,(4, 4,, G, H). Remarks analogous to those following Theorem 3 may
be made and properties similar to those of Lemma 4 may be noted. Research
is needed before use of any test based on L,*(4, ) or S,*. The test is not an
SPRT. No information is available on how to specify bounds @ and b for specified
Type I and Type II error probabilities, but it is anticipated that the effective

error probabilities will be close to the nominal error probabilities when Wald’s
bounds are used.

Acknowledgments. We are indebted to J. Sethuraman and I. R. Savage for
many helpful suggestions. The excellent insight of a reviewer effected improve-
ments in the paper.

REFERENCES

[1] BRADLEY, R. A., MERCHANT, S. D. and WiLcoxoN, F. (1966). Sequential rank tests II.
Modified two-sample procedures. Technometrics 8 615-623.

[2] CHERNOFF, H. (1952). A measure of the asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math. Statist. 23 493-507.

[3] GOVINDARAJULU, Z. (1968). Stopping time of a rank order SPRT for symmetry based on
Lehmann alternatives. Unpublished manuscript.

[4] SAvAGE, I. R. (1959). Contributions to the theory of rank-order statistics—the one-sample
case. Ann. Math. Statist. 30 1018-1023.

[S] SAvaAGE, I. R. and SETHURAMAN, J. (1966). Stopping time of a rank order sequential prob-
ability ratio test based on Lehmann alternatives. Ann. Math. Statist. 37 1154-1160.

[6] SAvVAGE, I. R. and SETHURAMAN, J. (1967). Correction to stopping time of a rank-order
sequential probability ratio test based on Lehmann alternatives. Ann. Math. Statist.
38 1309.

[7]1 SETHURAMAN, J. (1964). On the probability of large deviations of families of sample means.
Ann. Math. Statist. 35 1304-1316.

[8] WeEDp, H. D. Jr. (1968). Sequential one-sample grouped rank tests for symmetry. Ph. D.
dissertation, Florida State Univ.

[9] WEEeD, H. D. Jr. and BRADLEY, R. A. (1971). Sequential one-sample grouped signed rank
tests for symmetry: Basic procedures. J. Amer. Statist. Assoc. 66 321-326.

[10] WEED, H. D. Jr. and BRADLEY, R. A. (1973). Sequential one-sample grouped signed rank

tests for symmetry: Monte Carlo studies. J. Statist. Comput. Simul. 2 99-137.



1322 HARRISON D. WEED, JR., RALPH A. BRADLEY AND Z. GOVINDARAJULU

[11] WiLcoxoN, F., RHODES, L. J. and BRADLEY, R. A. (1963). Two sequential two-sample
grouped rank tests with applications. Biometrics 19 58-84.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF STATISTICS
DArRTMOUTH COLLEGE FLORIDA STATE UNIVERSITY
HANOVER, NEW HAMPSHIRE 03755 TALLAHASSEE, FLORIDA 32306

DEPARTMENT OF STATISTICS
UNIVERSITY OF KENTUCKY
LEXINGTON, KENTUCKY 40506



