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CHARACTERIZATION OF THE PARTIAL
AUTOCORRELATION FUNCTION

By FRED L. RAMSEY

Institute for Mathematical Statistics,
University of Copenhagen

The conditions |¢i| < 1 forallk = 1,2, --- and |¢«| = 1 implies ¢ry1 =
ér are both necessary and sufficient for a sequence of real numbers {¢i; k =
1,2, ---} to be the partial autocorrelation function for a real, discrete pa-
rameter, stationary time series. If all partial autocorrelations beyond the
pth are zero, the series is an autoregression. If all beyond the pth have
magnitude unity, the series satisfies a homogeneous stochastic difference
equation. A stationary series is singular if and only if T1 4«2 diverges
with N. The likelihood function for the partial autocorrelation function
is produced, assuming normality.

1. Introduction and summary. Considerable attention has been given recently
to the partial autocorrelation functions (PACF) of time series having particular
model structure. (See [2] and [4].) This note provides necessary and sufficient
conditions for a sequence of real numbers to be a PACF for a weakly stationary
time series. One result in [2] is a special case of this theorem. The PACF pro-
vides an appealing vantage point from which to view the structure of time series
because its own structure is so simple. It is unfortunate that parametrization
of a time series by its PACF brings no apparent simplification of the difficult
inference problems.

2. Preliminaries. Let Z = {0, +1, +2, ...}and Z, = {1,2, ...}. Thedis-
crete parameter time series x = {x,, t € Z} is called a second order time series if
all second moments are finite. x is said to be wide-sense stationary if it is a
second order time series whose first and second order moments are independent
of cardinal time.

Let y be the set of all Gaussian, wide-sense stationary time series with zero
mean and unit variance. (It is convenient to consider only y but to think of an
element x € y as being a typical member of a broad class of w.s. stationary series
obtainable by location and scale changes and, possibly, distributional changes
leaving the first and second order moments fixed.)

Let R be the set of all sequences p = {p,, t € Z} which satisfy

(2.1) po=1;
Py =0, VI, (symmetry);
and, for every ne Z_ and all choices of indices ¢, < - .- < ¢, from Z and of real
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numbers 0, - -+, d,,

n

(2.2) r 0,00, _,. =0, (pos. semi-def.).

i_tj =
It is convenient to consider
R = B(R) + I(R),

where I(R)—the “interior”—consists of all sequences which are strictly positive
definite, while B(R)—the “boundary”—consists of all sequences where equality
in (2.2) is achievable for some non-trivial sets {9}, {t.}.

It is well known that there is a 1-1 mapping ¥': y — R for which ¥(x) = p
if and only if p, = E{x,x,} for every t e Z. (See [5].) The sequence p = W(x) is
called the autocorrelation function (ACF) for the time series x.

Consider the Hilbert Space of real random variables with zero means and finite
second order moments, with expected product as inner product (see [5]). Let
H,, be the subspace spanned by {x,,,, - - -, x,_,} for # > s 4 1 and let %, and %,
be the respective projections of x, and x, on H, ,.

DEeFINITION. The PACEF for the second order time series x is the doubly infi-
nite sequence {®, ,; t > se Z} defined by
D, ,,, = Correlation {x,, x,,,}, (se2),
and for ¢t > s + 1,
@, , = Correlation {(x, — £,), (x, — X,)} .
Thus ([7], page 424) @, , is the partial correlation between x, and x, eliminating
linear regressions on x,,;, -+ -, X,_;.

The PACF of an x € y is determined by a singly infinite sequence ® = {®,,
te Z,} where ®, = @, ., for all se Zand te€ Z,. Supposing that p € I(R) the
sequence ® can be determined by solving the sequence of matrix equations
(2.3) R, a® = p,, for keZ,
for a®’ = (a,'®, ..., a,'¥), where R, = (0,_;), i,j=1,---,k, and p,/ =
(o1, - - +» o). The PACF is the sequence given by

O, = a,'», for keZ,.

Durbin [6] gave a method (usable for p € I(R)) for sequentially solving (2.3).
The relevant equations are: ,

(D.1) D =" =p,

(D.2) o’=1— 02

(D.3) Oy = A = {Prs — Lhs &P 0 0r"

(D-4) a; Y = ;" — Oy, =1k
(D.5) ot = a1 — @)

The first two equations of D = {(D.1) — (D.5)} give starting values and the
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remaining three explain how to go from stage k to (k + 1). Physically, a;* may
be interpreted as the coefficient of x,,,_; in the linear regression of x,,, on
{x;, ---, x}. The value of ¢’ is the variance of the residual from that regres-
sion. Equation (D.5) can be used to show further that
(2.4) Ripa| = Tk (1 — @417,

What seems to have been overlooked is that any sequence of constants @ having
|®@,| < 1also defines via D a unique sequence p which is positive definite because
of (2.4). This is the essence of the proof for Theorem 1.

3. Characterization of a PACF. Necessary and sufficient conditions for a
sequence of numbers to be a PACF are given. Some consequences are noted.

DEerFINITION. Let the set S consist of all real-valued sequences s = {s;, k € Z, }
which satisfy
3.1 @ s 1, forall keZ, ; and

(®) |s] =1 implies 5., =s,.
It is again convenient to decompose S as
S = B(S) + IS) ,
where I(S) consists of all se S for which (a) holds as a strict inequality for all k.
Thus B(S) consists of sequences which have |s,| = 1 for some k.

THEOREM 1. The real, discrete parameter, second order time series x is wide sense
stationary if and only if its PACF {®, ,, t > s Z} satisfies
(3.2) A @,,.,.,=0, forall seZ and keZ,; and

B) ©={D,keZ]}eS.
Furthermore, @ ¢ I(S) if and only if W(x) = p € I(R).
Equivalently,

THEOREM 1. There exists a one-to-one mapping &: R — S such that if p = W(x)
for x ey, then ® = &(p) is the PACF of x. Furthermore, p € I(R) if and only if
&(p) € (S)-

PrROOF. Case 1. Necessity for p € I(R). D has a unique solution for ®. Each

®, is the correlation between two well-defined random variables and thus
|®,| < 1. However, (2.4) implies strict inequality must hold so that ® € I(S).

Case 1. Sufficiently for ® € I(S). D has a unique solution for {o,, k € Z,},
which is extended to p by (2.1). (2.4) implies |R,| is strictly positive for all k.
So for each k, all principal minorants of R, have positive determinants. This
implies R, is positive definite for every k € Z, which implies that p is itself
positive definite.

Case TII. Necessity for p € B(R). There exists a positive integer p for which
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[R,| = O for all k > p and |[R,| > O for all kK < p. D has a unique solution for
(D), -+, O} with |D,] < 1fork < p and with |®,| = 1, by (2.4). There exists
a unique vector 2’ = (1, —4,, - -+, —4,) such that

(3.3) = 2,Rp+12 = E(xt - Z?=l '25 xt—:‘)z

for all ¢z, where x = ¥~*(p). (Indeed 1, = «;®.) Stationarity implies the re-
siduals from regression of x, and x, on x,,,,- - -, x,_, are zero with probability one
forall sand r > s + p. Hence in the sense that zero predicts itself perfectly, it is
natural to set ®,,, = @, for k = 1, 2, ..., arriving at a full sequence @ € B(S).

Case IV. Sufficiency for ® € B(S). There exists a p for which |®,| = 1 for all
k = pand |®,| < 1 for all k < p. D has a unique solution for {p,, o, ---, p,} -
where p, = 1, |[R,| > O for k < p and |R,,,| = 0. Let {x, ---, x,,,} be defined
as having a multivariate Gaussian distribution with means zero and covariance
matrix R,,, (of rank p). The residuals from regressions of x, on {x,, - - -, x,,}
and of x,,, on {x,, -- -, x,} are zero with probability one. That is, with proba-
bility one,

(3.4) X, = 121 BiXey; t=1
and
(3:5) X, = N0 X, (t=p+1).

Extend the sequence x,, - - -, x,,, according to the difference equation (3.4) for
t=0,—1, —2,... and according to (3.5) fort = p + 2, p 4 3, . ... Theresult
is a wide sense stationary time series for which @ is the PACF. Clearly the cor-
responding o, derivable from the series, is in B(R). This completes the proof. []

One advantage to characterizing y by S is that the structure of S is so simple.
Each partial autocorrelation is free to vary over the open interval (—1, 1) inde-
pendently of the others. Another is the simplicity with which singular (purely
deterministic, perfectly predictable) series may be described.

COROLLARY 1. A stationary time series is singular if and only if its PACF satisfies
limy_, >4 9= +oo.
The validity of this corollary follows from re-writing (D.5) as
oyt =TIl (1 — @) .
A third is that the likelihood function is easily derived.

THEOREM 2. Let x = {x,, t € Z} be such that, for every t ¢ Z,

X, =p 4+ 7otye s
where y = {y,, te Z} isin y. Then x, has a Gaussian distribution with mean = and
variance y,; and for k = 1,2, - .. the conditional distribution of x,,, given x, - - -,

x, is Gaussian with mean and variance given respectively by

(3.6) E(Xppy | Xy o5 X)) = ¢+ D521 0GP (Xpepamy — 1)



1300 FRED L. RAMSEY

and
3.7 Var (x| x5 o x) = 7(1 = @) - (1 — D).
Here the a;* coefficients are defined in (2.3).

The proof consists simply of remarking that x,,, — E(x,,,[x;, ---, x,) is un-
correlated with x,, x,, - - -, x, and has variance ¢,” and then extending (D.5) to
3.7).

Unfortunately, however, (3.6) is a rather complicated function of the PACF.

4. Stochastic difference equations. A time series x is called an autoregression
of order p, denoted AR(p), if it satisfies the pth order stochastic difference
equation

(4.1) Xp = D=1 @ X + Ve
for all ¢, where y = {y,, t € Z} is a “white noise” sequence of uncorrelated shocks

having mean zero and variances ¢* > 0. The following result, the necessity of
which is well known, is used in [4] for identifying autoregressions.

THEOREM 3.! The stationary time series x is an AR(p) if and only if its PACF
is zero beyond p.

Proof of sufficiency. Assume x € Xand for each ¢ € Zlet (4.1) denote the unique
decomposition of X, into the sum of its projection on an orthogonal distance, y,,
to H,_,_,,. Stationarity and Corollary 1 imply E(y,) = 0 and E(y,’) = ¢* > 0
for all . To establish that y, | y, for all s = ¢, define H,* as the subspace
spanned by all y, for s < ¢t. Then H,* = Uy., H,_,,. We have y, | H,_,_,,
by construction. So if, according to H,_,_, , we write x,_, , = X,_,_; + W,_,_,,
theny, | %,_, ,(eH,_,,,)andy, | w,_,_, because ®, , = 0. Thusy, | x,_,_,,
implying that y, | H,_,_,,. This argument may be iterated when it is noted
that this implies that (4.1) also represents the decomposition of x, according to
Ht—p—Z,t' u

Time series texts state conditions on the structural coefficients in (4.1) which
guarantee a stationary solution of (4.1) for x given that y is as stated. The con-
ditions are that no roots of the polynomial equation

(4.2) a(u):l—alu—---——apu”:O

lie on the unit circle. If all of the roots (call them g,, -- -, g,) lie outside the
unit circle, a stationary solution exists where x, is an infinite moving average of
past and present shocks. Furthermore, if some roots lie inside the unit circle,
a stationary solution exists whose autocorrelation function is identical to that
of a stationary solution to a pth order stochastic difference equation where all
roots do lie outside the unit circle. Therefore, Theorems 1 and 3 are seen to
provide a statistical proof to the Barndorff-Nielsen and Schou theorem which
states: the mapping of the (complicated) parametric region {(«a;, - - -, a,); |g;| > 1

L A similar statement, not using the PACF directly, was proved in [3].
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forj =1, ..., p}into the PACF of the corresponding AR(p) is a one-to-one map
onto the cube (—1, +1).

An interesting situation arises when ¢* = 0 in (4.1). Proofs of the foregoing
statements (see e.g. Anderson [1]) show that the roots of (4.2) need not be off
the unit circle. The following corollary to Theorem 1, whose proof is Case IV,
identifies these situations as boundary cases.

CoRrOLLARY 2. If, according to the equivalent decompositions of R and S, we
write

x = B() + 1(x)»

then x e B(y) if and only if it is a solution to (4.1) with y, = 0 for some finite
integer p.

And the final result is a counterpart to the discussion above.

THEOREM 4. The structural coefficients {a,, - - -, a,} admit a non-trivial, stationary
solution to (4.1) with y, = 0 only if some roots of (4.2) lie on the unit circle. Fur-
thermore, the spectral measure, v, for such a series has its support limited to those
frequencies {f,, k =1, ..., g < p} for which exp(i2=zf,) is a root of (4.2). (That
is, only those roots exactly on the unit circle are relevant to the structure of the
series.)

PROOF. A stationary series has a spectral representation (see [5]), about which
our assumptions imply the condition

(4.3) o = §t, la(e™)u(d) = 0

holds for the spectral measure v. This implies that v({f | @(¢**/)  0}) = 0. So
if no root of (4.2) is on the circle, the only series possible is the trivial one. But
if g roots are on the circle, then (4.3) will still hold if the support for v is as stated.
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