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A NOTE ON OUTLIER-PRONE FAMILIES
OF DISTRIBUTIONS!

By RicHARD F. GREEN
University of California, Riverside

It is shown that (k, n)-outlier-proneness of a family of distributions is
equivalent to complete outlier-proneness.

In their paper, “Outlier proneness of phenomena and of related distributions,”
Neyman and Scott (1971) offer definitions of “outlier” and of “outlier prone-
ness.” They show that the family of gamma distributions is outlier-prone com-
pletely, as is the family of lognormal distributions. On the other hand, the
family of Cauchy distributions is not outlier-prone but is outlier-resistant.

Neyman and Scott define outlier-prone completely in terms of the seemingly
weaker condition (k, n)-outlier-prone. In this note it is shown that (k, n)-outlier-
proneness is equivalent to complete outlier-proneness.

The following definitions are those given by Neyman and Scott.

Let S, = (x,, x,, -+ -, X,) be a sample of independent, identically distributed
random variables from a distribution F. Let x,,, x,, - - -, X,,, be the ordered
values. Thatis, x;, < x5 < -+ £ X(y-

DEerFINITION 1. For a positive number k we shall say that x,, € S, is a k-outlier
on the right if its value exceeds that of x,_,, by more than k(x,_,, — x,).

Let P(k, n| F) denote the probability that a sample S, of observations from a
distribution F will contain a k-outlier.

Let . be a family of distributions and let =(k, n|.5 ") stand for the least
upper bound of probabilities P(k, n|F) for Fe & .

DEfFINITION 2. If m(k, n| %) < 1 then we shall say that the family & is
(k, n)-outlier-resistant. Otherwise, that is, if z(k, n| %) = 1, we shall say that
the family & is (k, n)-outlier-prone.

DerFINITION 3. If a family of distributions & is (k, n)-outlier-prone for all
k > 0 and all n > 2, we shall say that & is outlier-prone completely.

THEOREM 1. The family of distributions, & is outlier-prone completely if and
only if it is (k, n)-outlier-prone for some k > 0, n > 2.

Proor. That & is outlier-prone completely means that it is (k, n)-outlier-
prone for all k > 0, n > 2. If & is (k, n)-outlier-prone for all k > 0, n > 2,
it clearly is (k, n)-outlier-prone for some k > 0, n > 2.
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Further, if & is (k,, n)-outlier-prone for a particular k, > 0, it will also be
(k, n)-outlier-prone for all k such that 0 < k < k,.

Therefore, to prove the theorem it suffices to prove three facts for k > 0,
n > 2, namely,

(1) & being (k, n)-outlier-prone implies that & is (k, n 4- 1)-outlier-prone.
(2) & being (k, 2n)-outlier-prone implies that .5~ is (k, n)-outlier-prone.
(3) & being (k, 3)-outlier-prone implies that &~ is (2k, 3)-outlier-prone.

PRrOOF OF (1). Assume that & is (k, n)-outlier-prone. For any ¢ > 0 there
must exist an F ¢ &, callit F,, such that P(k, n|F;) > 1 — ¢/(n + 1). Consider
asample S,,, from F,. The probability that a random subsample of size n from
S,+1 Will have a k-outlier is > 1 — ¢/(n + 1). Therefore the probability of all
samples of size n from S, ,, having k-outliers is > 1 — e. But if all samples of
size n from S, ,, have k-outliers then S, ,, itself has a k-outlier. Thus P(k, n +
1|F) >1—c¢and & is (k, n + 1)-outlier-prone.

PROOF OF (2). Assume that & is not (k, n)-outlier-prone. Then there exists
an ¢ > 0 such that forany Fe &, P(k,n|F) < 1 — ¢. Consider two independ-
ent samples of size n from F. These can be combined to produce a sample S,,.
If both the samples of size n fail to have k-outliers then the combined sample
will fail to have a k-outlier as well. Therefore the following inequalities hold
for any Fe &

1 — P(k,2n|F) = (1 — P(k,n|F)? = ¢.
Therefore,
Pk,2n|F) <1 — ¢,
and & is not (k, 2n)-outlier-prone.

PRroOF OF (3). Assume that % is (k, 3)-outlier-prone. Pick any ¢ > 0 and
show that there exists an F € % such that P(2k,3|F)>1—e. Let N=[6/e] + 1,
¢, = 3¢/N°. Pick F e & suchthat P(k,3|F) > 1 — ¢,. Take a sample S, from
F. All subsamples of size 3 from S, will have k-outliers with probability
=1—(Fe >1—¢/2.

Order the points in S, and consider the probability that a subsample of size
3 will have its largest two values adjacent values from the ordered sample. This
probability is 3/N < ¢/2.

But

1 — PQk,3|F) < ({)eg + 3IN<e, or PQ2k3|F)>1—c¢,

and & is (2k, 3)-outlier-prone.
This completes the proof of the theorem.

The significance of this result lies in the fact that the strength of complete
outlier-proneness of a family of distributions does not come from the requirement
that outliers be likely from samples of arbitrary size (arbitrary n), or from the



OUTLIER-PRONE FAMILIES OF DISTRIBUTIONS 1295

requirement of arbitrarily wild outliers (arbitrarily large k), but rather from the
requirement that for some sample size » and some outlier index k an outlier will
occur with arbitrarily high probability less than one.

REFERENCE

NEYMAN, J. and ScortT, E. L. (1971). Outlier proneness of phenomena and of related distribu-
tions. Optimizing Methods in Statistics. Academic Press, New York.

DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA
RIVERSIDE, CALIFORNIA 92502



