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BAYESIAN RECONSTRUCTIONS OF m, n-PATTERNS!

By MARC MOORE
Ecole Polytechnique, Montreal

The notion of m, n-pattern is introduced—namely, a division of the
unit interval into at most # cells (intervals or points), each having one of
m colors. Given an unknown m, n pattern, it is desired to produce a re-
construction of the pattern using r = 1 sample points (fixed or chosen at
random) where the color is determined. The problem is studied from a
decision-theoretic point of view. A way to obtain all the probability
measures on the set of m, n-patterns is given. The notion of a Bayesian
reconstruction rule (B.R.R.) is introduced. It is proved that when B.R.R.’s
are considered, it is sufficient to use certain fixed sample points. A com-
plete class of reconstruction rules is obtained. Finally an example of a
B.R.R. is given for 2, 2-patterns.

1. Introduction and summary. Switzer (1967) studied the reconstruction of
patterns from sample data. We recall Switzer’s definition of a pattern: A
Euclidean k-dimensional region 4 having unit volume is partitioned into m
Lebesgue-measurable subregions 4,, 4,, - --, 4, each having positive volume
and an identifying color. It is supposed that this partition of A is a realization
of a random process with certain stationarity and isotropy properties. This
pattern is unobservable except at a fixed set of n sample points s, - - -, s,. The
color of these points is used to produce an estimated reconstruction of the
pattern.

In this paper, a different notion of pattern on the interval [0, 1] is introduced;
these patterns have at most m colors and at most  cells, a cell being a connected
subset, possibly a singleton, of [0, 1] the points of which are all of the same
color. These patterns are called m, n-patterns. The differences between the
two definitions are the following: the m, n-patterns are defined on [0, 1] only,
the notion of cells is introduced, there may be one (or more) subregion A4, with
length zero and it is not supposed, in the definition, that the division of [0, 1]
is a realization of a random process; however, when Bayesian methods are
considered a priori probability measures are placed on the set of m, n-patterns.

The problem considered is to reconstruct a fixed unknown m, n-pattern after
observing (without error) the colors at a selected set of sample points with fixed
or random locations. This reconstruction problem is introduced from a decision-
theoretic point of view.
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In Section 2, a way to obtain all the probability measures on the set of m, n-
patterns is given. The notion of a Bayesian reconstruction rule is defined in
Section 3; it is proved that when Bayesian reconstruction rules are considered,
it is sufficient to use certain fixed sample points. The selection of sample points
corresponds to the choice of experimental design in ordinary statistical problems,
and this result may therefore be interpreted as implying no advantage for a
randomized choice of design. This is done by showing that every random choice
of the sample points may be replaced, without loss, by the selection of a fixed
set of sample points. Only the existence of this set is proved. Section 4
is devoted to the application of Wald’s decision theory to the reconstruction
problem from fixed sample points; a complete class of reconstruction rules is
obtained. Finally, in Section 5, an example is given for the case of 2, 2-patterns.

2. m, n-Patterns. Let m,n be the two integers (m > 1,n > 1) and K =
{ki, -+, k,} be a set of m different colors. An m, n-pattern is a pair (=, C),
where - is a function from [0, 1] into K and C is a partition of [0, 1] into ordered
connected subsets C,, - - -, Cy, satisfying:

(1) x,yeC;implies =(x) = «(y) = k(C,) foreachi =1, ..., N, i.e. all points
in C, have the same color k(C,);

(2) 1 < N < n, and C, has zero at left end point;

(3) k(C;) # k(Ciyy)si=1, ..., N— 1, i.e. no two adjacent sets of the par-
tition have the same color.

The subsets C,, - - -, Cy are called “cells;” a cell reduced to a point is called
“point cell.” Denote by A the set of all m, n-patterns (m, n, K fixed).

Bayes procedures for the reconstruction of an m, n-pattern are introduced in
the next sections. A way to get all the probability measures on A is now given.

This is done in several steps: the set A is partitioned into five categories of
m, n-patterns, a measurable subset B of R** and a measurable partition B* of B
are defined, a one-to-one correspondence is established between B* and A4, and
finally the objective is reached by the definition of probability measures on B*.

Let ~ be a fixed element of 4. The pattern - is said to be of:

Category 1. if there are no point cells in ..

Category 2. if N = n and there are s point cells (s> 1) in ..

Category 3: if 1 < N < n and there is exactly one point cell in ., this cell
being at point one.

Category 4: if 1 < N < n and there are s point cells (s > 1) in », no point
cell being at point one.

Category 5: if 1 < N < n and there are s point cells (s > 1) in =, one being
at point one.

Let B be the set of points (X, Y}, K, S, -+, X,, Y,, K,, S,) in R**, such that:
(1) 0:‘X1§Y1=X2§Y2=X3§ c =Xn§Y«n=1,
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Q) K,e{l,2,---,m}(i=1,..-,n),
(3) S, =2,8¢e{l,2}(i=2,--,n),
@) ifX, <Y, =X,,<Y, forsomel <i<n—1thenK, + K,,,,

G ifxX,=Y,=X,=Y,=---=X;,=Y;,=X,;,, <Y,;,,forsome 1 <
i<j<nand X,_ <Y, =X, (if i>1) then K,_, K, (if i >1), K, =
Ky=--=K;#K;,,,8=8,=--=8=2,85;,,=1,

6) ifX,,<Y,,=X,=Y,=... =Y, =1forsomel <i< nthenk, =
K., = ... = K,; furthermore, if K,_; + K;then S, = 2and §,,, = ... =S, =
l,ifKi_,l = KithenSi:SHl: :Sn= 1.

Let ~ be a fixed element of A. Consider the sequence of N triplets (Z,, T,
H) ... (Zy, Ty, Hy) where Z, and T, are respectively the left and the right end
points of C;, and H, is the index of k(C,) ({ = 1, ---, N). To associate a point
in B with ~ we use the following idea: the X.’s, Y,’s and K,’s correspond re-
spectively to the Z;’s, T;’s and H,’s, S, is put equal to 1(2) if the ith cell is open
(closed) at his left end. These correspondences have to be described more
precisely because the number N of cells might be less than n. Without going into
the details (they may be obtained from Moore (1971)) we give some indications.

If - is of category 1 and N<nweput Xy, =Y, =-..-- =Y, =1 (i.e.
X,=Z2,Y,=T,i=1, ..., N and the remaining components are all put equal
to 1) and K, = Hy; this specifies exactly one point in B. If a is of category
2 or 3, by the same method exactly one point in B is associated with a.

Suppose now that » is of category 4. In this case we must add n-N com-
ponents “X”” and n-N components “Y”, to the one naturally defined by the Z,’s
and T;’s, to get a point in B. This is done by adding equal components, these
components being equal to 1 or to the Z;’s corresponding to point cells. The
number of equal components added at each place is arbitrary, the only restric-
tion being that the total number of equal components added must be n-N. The
components “K” corresponding to a sequence of added components “X”” and
“Y” are all put equal to the component “K” corresponding to the last com-
ponents “X” and “Y” naturally defined by the Z;’s and T,’s. The components
“S” corresponding to a sequence of added components “X” and “Y” are all put
equal to 2 if the added components are not 1 and, all put equal to 1 if the
added components are 1.

The following simple example illustrates the procedure. Let .. be the 3, 5-
pattern where C, = [0, %), C, = {3}, C;, = (3, 1], k(C)) = ky, k(C,) = k;, k(C;) =
k,. To this pattern we could associate the point in B where

X, =0 X,=4} X,=1 X, =% X, =1

Y,=% Y,=1% Y,=% Y, =1} Y, =1
added

K=1 K=2 K=2 K=2 K, =3

S, =2 8§,=2 S,=2 §,=2 S, =1
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or the point in B where

X, =0 X, =% X, =1 X, =1 X, =1
Y,=1% Y,=1 Y, =% Y, =1 Y, =1

* added added
K=1 K=2 K=2 K =3 K, =3
S, =2 S, =2 Sy =2 S, =1 S,=1.

In this example we must add 2 components “X” and 2 components “Y”; in the
first case both are put equal to § (there is a point cell at }), in the second case
one is put equal to { and one is put equal to 1. We could also put both com-
ponents “X” and both components “Y” equal to 1.

Using the same procedure we associate a point in B with a pattern of category 5.

To a pattern of category 4 or 5, it is possible to associate many points in B.
Grouping these points in a class we can form a measurable partition B* of B
and establish a one-to-one correspondence T between B* and A.

Let 8 be the class of Borel subsets of B, r the g-algebra of subsets C of B*
being such that the set of points in B forming C is an element of 3. On 4,
consider the g-algebra y given by the images (T') of the elements of z. Consider-
ing all the 4n-dimensional cumulative distribution functions Q such that x,(B) =
1 (u, being the probability measure associated with Q), all the probability
measures on (B, 8) are obtained, then also all the probability measures on (B*,
7), and finally, T being one to one, all the probability measures on (4, 7).

3. Bayesian reconstruction rules. Let » be a fixed unknown element of A,
i.e. = has at most n cells and at most m colors, these colors being in a fixed
known set K of m colors; nothing more is known about -.

Let F be an r-dimensional (» = 1) cumulative distribution function such that
1r(U)y =1 where U=1[0,1]x ... x [0, 1] is the r-dimensional unit cube.
Following F a point (y,, ---,y,) in U is chosen and the points y,, ---, y, on
[0, 1] are considered; at each of these points, called sample points, the position
and the color of the point is observed. The sample space is then Q, the r-fold
Cartesian product of [0, 1] x K. Using this information, it is desired to con-
struct an element of 4 which will be considered as a reconstruction (estimation)
of the unknown m, n-pattern .. This problem will be studied from a decision
theoretic point of view where the set of “states of nature” is 4 and the “decision
space” is also A.

Let 27" be the set of finite measures W on [0, 1]. The loss functions con-
sidered are the functions ~ of the form, /(=, £) = W(= A «) where = A « = {x:
«(x) # £(x)}, We 27". The number /(=, «) is the loss which occurs when the
pattern = is reconstructed by the pattern . It is easy to see that for each We
%" the function / defines a pseudometric on A. Denote by T, the topology
generated by the pseudometric ~ and by ¢ the smallest g-algebra of subsets of
A, containing all the open spheres (7',).
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To define precisely a reconstruction rule, a g-algebra of subsets of Q must be
defined. Denote by .o/ the class of Borel subsets of [0, 1], by 2~ the class of
subsets of K, by 7 the product c-algebra %7 x 27" Consider the g-algebra
777 of subsets of Q, which is the product g-algebra of 27, r times by itself.

DEFINITION. A reconstruction rule é (abbreviated as R.R.) is a function which
assigns to each Y e Q a probability measure G, on (4, ¢) in such a way that for
every C e ¢ the application Q —, G. (C) is 77 "-measurable.

Denote by D the set of reconstruction rules. The following proposition is
proved in the Appendix.

ProrosiTION 3.1. For each We 977, each set in ¢ is in 7.

Then, the way to get all the probability measures on (4, 7) introduced in
Section 2, gives also all the probability measures on (A4, ¢).
LetoecA,YeQ,0ecD. The expected loss which occurs when the observation
is Y, and 0 is used to reconstruct .., is given by
L, 8(Y)) = §4 £(c, £) dG(2)

where G is the probability measure on (4, ¢) assigned to Y by 4.

It can be proved (using Proposition 4.2) that for each We 27 and each 6 ¢ D,
the real function defined on 4 x Q by L(-, §(+)) is y x 2 "-measurable.

The risk associated with §, when § is used to reconstruct .., is defined by

R(ey 8) = §q L(=, 3(Y)) dP(Y)
where P, is the probability measure given by
P.yieBy,k(y) =k, -y, €B,,k(y,) = k; ]
= SBlnail T SBr”“i,. dF(yl’ e yr) ’
B, ..., B, being Borel sets in [0, 1] and ey = {X1a(x) = k; }.

Given an a priori distribution (probability measure) 2 on (4, 1), the risk
corresponding to J relative to 4 is

r(4,0) = §, R(=, 0) dA(=) .
DeriniTION. Given F and A, a R.R. ¢* is called a Bayesian reconstruction
rule (abbreviated as B.R.R.) relative to 4, if
r(4, 0*) = inf,_, (2, d) .
In the above definition F is fixed; if F is modified 6* may change. So the F
for which r(6*, 1) is as small as possible should be used in practice.
THEOREM 3.1. For each F and 2 (for which a B.R.R. relative to 2 exists) there
is a fixed point y € U (which depends on F and 3) such that
14, 0;%) < ro(4, 0,%)
where r (2, 0,*) is the risk corresponding to the B.R.R. relative to 1, when the infor-
mation is taken from J, and r,(2,0,*) is the risk corresponding to the B.R.R.
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relative to A, when the information is taken from a random point chosen on U follow-
ing F.

Proor. We can write

re(2, 05%) = Sy Dxr $u Va 4(2s ) dGy p(2) di(= | (3, k(1)) dQ(k(Y) | y) dF (y)
where: K7 is the r-fold Cartesian product of K,

y=0uay)el, k() = kG, - k()
G, r is the probability measure associated to Y = (y, k(y)) by

0%, Qk(y) e D|y) = A({=: («(3)> - -+ =«(y,)) €D}, D CK".

So ry(4, 6,*) is the expectation, with respect to F, of a nonnegative function.
Then there is at least one fixed point y € U such that

7e(2; 05%) 2 Lxr §4 §4 2(=, £) G, p(<) dA(« | (§, k(D)) dQ(k(D) | 9)
= I‘Tl(l, 51«‘*)

where r;(4, 6,*) is the risk corresponding to the rule d,* used with the infor-
mation obtained from . In the next section, it is proved that, when the sample
points are fixed, for any 4 there is a B.R.R. relative to . Then

ri(4, 0p%) = ry(4, 0;%) . 0

Using Theorem 3.1 as motivation, it may be supposed that the sample points
are fixed (F degenerate). In that case, the sample space is Q' = K" and a R.R.
is a function which assigns to each Y e Q' a probability measure G on (4, ¢);
denote by D’ this set of R.R. In the next section, it is supposed that the obser-
vations are taken at fixed points; it would be necessary to find the fixed point
7€ U for which the risk r(2, %) is minimum. An example will be given in
Section 5, but this problem will not be considered in general here.

4. Application of Wald’s decision theory. In this section we first verify the
first six assumptions of Wald’s decision theory (Wald (1950) Chapter 3), and
then, applying Wald’s results, we obtain a complete class of reconstruction
rules.

Among the first six assumptions of Wald’s decision theory, the first three and
the fifth assumptions are trivially satisfied here (when the sample points are
fixed).

The intrinsic distance between two elements ., « of A is defined by

A(ey 4) = SUP, /(s <) — A4, 2)]

Wald’s fourth assumption is: “A4 is compact relative to A.” This assumption is
satisfied here as follows from Propositions 4.1 and 4.2.

PrOPOSITION 4.1. For each =, £ € A, /(«, £) = A(=, 2).
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Proor. The function ~ is a pseudometric on A; then for each . € 4
|Her <) = 263 )| £ s 2)
and likewise for the supremum over .. It is clear that
SUP, |/, <) — (4, )| Z 1> ) — 24, 2)] = £ )
and hence the result. []
PROPOSITION 4.2. For each We 277, A is compact relative to the topology T,.

Proor. It suffices to show every infinite sequence {~,) of elements in 4 has
a convergent subsequence (s.s.) (Royden (1963), page 142, Corollary 14).

Let N, be the number of cells in «,, (Z,;, T\, H,1)s -+, (Z,5,» T,n,» H,y,) the
sequence of N, triplets, as defined in Section 2, corresponding to ,.

Consider the sequence of varying length vectors {((N,, H,,, - - -, H, )>. Since
I1<N,<nand H,e{l,...,m}p=1, ..., N, for all v, there are only a finite
number of values which (N,, H,,, - - -, H,, ) can assume. Hence there must be
at least one value, say (N, Hy, -+, Hy) which occurs infinitely often. Let
{1=;y be an infinite s.s. of {=,) such that (N;, Hy, - -, \H; y,) = (Noy Hyy, + -+
H,y,) for all i.

Next consider the sequence of 2N-tuples ({,> where ,{; = (,Z;, Ty> -+
Ziwg 1Tin,)- Since ,{; € C*o (the 2V, dimensional unit cube) for all i and C*"o
is compact, there exists a 2N-tuple, say { = (Zy, Tyy5 - - - Zoyy TONO), and an
infinite s.s. {y=;» of (i=;,» such that ,{; converges to {, where ,{; = (;,Z;;,
T s oZing 2Tin,) (ROyden (1963), page 142, Corollary 14).

By construction it is clear that

(2Zj1’ 2Tj1’ aflj1s * " 2Zj21vj’ 2Tj21vj’ 2HjZNJ~)
converges to

. (Zow> Toys Hyyy -+ s ZONO’ TONO’ HONO) =7,
however, ¢ need not correspond to an element in 4. (Suppose m = n = 4.
Consider the sequence {(~,», where N, =4, H, =1, H,=2,H;=3,H,=4
forallvand 2, =0, T, =Z2,=1—-1/4, T,=2,=3T,=2, = i+
1/4v, T,, = 1. In this case (Z£,,T,, H,, ---,Z,, T,,, H,,) converges to (0, 3,
1,1,%4,2,4,1,3,%,1,4) which cannot correspond to any element of A4.)

Now let 0 = a, < --- < @, = 1 denote the distinct elements among Z,,
Tos -+ Zoyy Toy, Instead of writinglz(x) = k,, we now write =(x) = i, the
index of the color of x in . Consider the sequence {(;=;(a), - - 5 3= ;(@)))-
Again, since there are only finitely many values which (,=;(ay), - - -, 32;(@,)) can
assume, there must be one, say (4, - - -, ), which occurs infinitely often. Let
{32y be an infinite s.s. of {,=,) such that (=, (a;), - - -, 32(ay)) = (4, - - -, &) for
all k.

Define the integers 7, - - -, 7, by 7, = the largest integer j such that Z,; = «,,
and define

L, = (Zu,; Toy,)

(note that Z,, = a; and T, = a,,,).
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Let ~, € A be defined by
o(X) = H%_
=/ if x=a,.
Finally, define functions f; f;, f,, - - - from [0, 1] to [0, 1] by
f(x)=0 for all x,
[i) =0 if gey(x) = «o(x)
=1 if geh(X) # ao(x) .

if xe]vi,

By construction, it is clear that
lim,_,, fi(x) = f(x) for all x.
fi—f ae. (W)
for each We 277; then by the Lebesgue convergence theorem

lim,_, Wiz, A =) = lim_, §§fi(x)dW(x) = 0. g

Hence,

DEFINITION. A sequence {d,» of R.R. converges, in the regular sense, to the

R.R. 9, if
lim; ., G;3(C) = G (C)

for each Ye Q' and for each open (T,) subset C of 4 whose boundary has
probability zero according to G,,; let G,,(G,,) denote the probability measure
associated with Y by d,(d,).

In the present context Wald’s sixth assumption may be formulated in the
following way: ‘“The set D’ of R.R. is such that:

(1) for each 9,, d, € D’ and each 0 < a < 1 there is an element d; € D’ such
that G,,(C) = aG,,(C) + (1 — a) G,,(C) for each C € ¢ and each Ye (Y,
(2) D’ is closed in the sense of the regular convergence given above.”

It is easy to see that the first part is satisfied.
PROPOSITION 4.3. D’ is closed in the sense of regular convergence.

Proor. Let (9,) be a sequence of R.R. which converges in the regular sense
to d,. It will be proved that for each Ye ', G,, is a probability measure on
(4, ¢), i.e. g, D'.

Let Y be a fixed element of Q' and E be a finite intersection of open spheres
(Ty), such that the boundary of E has probability zero according to G,,. Since
each such set E is open (Ty), lim, ., G,,(E) = Gy (E). Since A is separable
relative to T, the sequence (G,,» converges weakly to G,, (Billingsley (1968),
page 15, Corollary 2). Since A4 is compact relative to T, from the Prohorov
theorem (Billingsley (1968), page 37, Theorem 6.1), the sequence (G, ) forms
a relatively compact family of probability measures on (A, ¢), i.e. there is a
subsequence (G, ;> and a probability measure Q,, on (4, ¢) such that (G, ;>
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converges weakly to Q,,. Then G,, = Q,, and G, is a probability measure on
(4, ¢). This property being true for each Y e Q’, we have d,e D'. []

From the first six assumptions of Wald’s theory, the following results can
be formulated.

THEOREM 4.1. For any a priori distribution A, there is a B.R.R. relative to 2
(Wald (1950), Theorem 3.5).

THEOREM 4.2. There is a minimax R.R., i.e. a R.R. 6, such that sup,, R(=, d,) =
inf, sup,, R(=, 6) (Wald (1950), Theorem 3.7).

DEFINITION. 4, is a B.R.R. in the wide sense if there is a sequence of a priori
distributions {4,) such that

lim,_,, [inf, r(4;, 0) — r(4;,0,)] = 0.

THEOREM 4.3. Any minimax R.R. is a B.R.R. in the wide sense (Wald (1950),
Theorem 3.8).

THEOREM 4.4. The class of all B.R.R. in the wide sense is a complete class
(Wald (1950), Theorem 3.17).

DEFINITION. A sequence of patterns {~,) converges in the regular sense to a

pattern -, if
lim,_.. P, (V) =P, (V)

uniformly in ¥V c Q' where, since the sample points y,, ---,y, are fixed,
P ((kij -+ kir)) equals one if =(y;) = kij for j=1,...,r, and equals zero
otherwise.

Wald’s last assumption is the following: “A is compact in the sense of regular
convergence. If {=;) converges to =, in the regular sense, then

lim,_, Z(=; £) = (24, £)
uniformly in 5.”

This assumption is not always satisfied here, as shown by the following
example. Consider the sequence of 2, 3-patterns () where in =;,

C=[0,%, GC=[%XiaBd), GCG=[2ix3)1],
K(C,) = k,, K(C,) = k,, K(C;) = k,. Suppose that the sample points are fixed
and all in [0, §). Let -, be the 2, 3-pattern where
¢ =1[0,%), GC=I[33, GC=I[3%1],
K(C)) = k,, K(C,) = k,, K(C;) = k,. For each V c ', P,(Vy=P,(V)i= 1,
2, -..; consider the loss function given by Lebesgue measure on [0, 1], then
lim, ., /(e =) = § #+ £ (g @) = 0.

5. Example. In thissection, an example of a B.R.R. for 2, 2-patterns is given.
To specify an a priori probability distribution on that set of patterns, denoted
by A4, it is sufficient to give a probability distribution on the set B of points
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(X1, Y1, K, 1, X, Y, K, S,) in R®, as defined in Section 2. We consider the
probability distribution on B given by the following process:

(1) following the uniform distribution on [0, 1] a point s is chosen; let Y, =
X, = sand §, = 1 with probability one;

(2) with probability 4, K, = 1 (i.e. the color assigned to [0, s] is k,) also with
probability 3, K, = 2.

The process just described corresponds to a distribution 2 which is concentrated
on the patterns with exactly two cells, each of positive length; denote by A4*
that class of patterns. These petterns are well described by pairs (s, k) where s
is the division point of the cells, [0, s], (s, 1] and k is the color of [0, s].

Let0 <y, <y, < :-+ <y, =< 1be rfixed sample points. Consider only the
reconstruction rules which are functions from Q' to 4* and let W be Lebesgue
measure on [0, 1]. In that case

r(4,0) = Lo §5 Tz l(s k); (u, )AL(s, k) | k(3)] ds v(k(y))

where: k(y) = (k(1)), - - -» k(),)), (&, k) is the reconstruction of (s, k) obtained
by the R.R. d,
1[(s, k); (u, k)] = |u — 3| if k==k,
=1—|u—s if k#k;
1 .
(5-1) A, k) k() = kus -5 k() = k] = i 52y,
1 + )’1 - yr
=0 otherwise;
1 .
(3:2)  A(s, k) [k(3) = ks oo k(y) = k] = i s <y,
1 + Y1 —V»
=0 otherwise;

(s, ki) k(1) = ks -+ 5 K(y,) = k] = (5.2)
RI(s, ko) | k(1) = kyy - - -5 k(y,) = k] = (5.1) 5
R(s, k) | k(yy) = kyy - oy k(p) = ko k(D140) = Koy -+ +5 K(),) = k]
= (s, k) | k(1) = Koy -+ 5 k(1) = ko kK(yi4a) = ki -+, K(),) = k]
1

= e if y1§s<}"l+1’
Yisi — Wi

=0 otherwise;
h[(s’ ky) I k()’l) =ky oo, k()’t) = ky, k(yl+1) =ky oo, k(.yr) = kl]
= h[(s, ko) [k(y1) = kys + -5 k(y1) = ki k(Y14n) = Koy -+ -5 K(),) = k]
=0,1<I<r
and v(+) is the distribution on €’.
To find the Bayesian reconstruction of (s, l'c) it is sufficient to minimize

§o Zx l(s: k)s (u, k)JAL(s, k) | k()] ds



1236 MARC MOORE

with respect to (u, k), for each k(y)eQ’. The Bayesian reconstruction is as
follows:

(1) if k(y;) = ky(ky))i =1, -.., rthen

@ if 0<y +y <1, u=yl+++l, k= kyky),
if 1<y 4y, uzy_l_tyir_:,l_, k= kyky);
(2) lf k(yl) = kl(kz)’ MY k(yl) = kl(kZ)
k(.yH—l) = k2(kl)’ Tt k(yr) = kz(kl) ’ l=si<r
u:l‘.j%, ]=(:k1(k2).

It can be proved that, using this rule, the risk will be minimum if the fixed
sample points y,, - - -, y, are such that:

1 2=y =y,=-1,
2y,—)'1—-}’r—1=1 lfr>2’
yl:_yl—l'z}"}’lﬂ ([:2,...,)'_1)
2) Vo=n+43% if r=2,

As a consequence of Theorem 3.1, these fixed sample points give a risk inferior
or equal to the risk corresponding to any random choice of the sample points.

6. Appendix. We give here the proof of Proposition 3.1.

It is sufficient to prove that for each -,€ 4 and each We %77, the function
Z(+, =,) is y-measurable. To prove this, it is sufficient to consider two cases:
first, W purely atomic, second, W has no atoms.

First case. Suppose that W is purely atomic. Since W is finite its set of atoms
is countable; denote by x, x,, - - - the atoms of W. Let k¥ = =((x;), 4, = {=:
«(x;) = k/V} then s(a, =) = 3152, W(x;)xz,(«) where y3 is the characteristic
function of the complement of 4,. It is sufficient to prove that 4, ¢ y for each
i=1,...; we prove that for each x ¢ [0, 1] and each k € K, {=: «(x) = k}e7.
Suppose that 0 < x < 15 {«: «(x) = k} = Uz, UL, 4y, where 4y, = {=: = has
Ncells, xe C;, K(C;) = k}. Foreachl < N<nandeach 1 <i< N, Ay €7,
because to that set of patterns correspond the elements of B* formed by points
in B for which there isa j, i < j < n — (N — i), such that one of the following
possibilities is satisfied:

) X;<x< Y,.,szl:c

Q) X;<Y;=xK; =k, S;,, =1

B) x=X, <Y, K, =k, S; =2

(4) XJ::Yj-—_—x, szk, SjZZ,Xj_1<Yj_1.
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The set of these elements in B* belongs to z. By similar arguments, the same
is proved for x = 0 and x = 1.

Second case. Suppose that W has no atoms. Let
(2 2g) = WI[0, 1] — §§ go(=, X) dW(x)
go(a, X) = 1 if a(x) = zo(x) N
=0 if  2(X) # 2(x) .

For each integer v > 0, consider the points 0, 1/v, ..., (v — 1)/v and the
functions from 4 to {0, 1} given by

cvi(a)’:l iﬁ Z(L>:¢O<L> i:O,---,v—l.

14 14

where

By the considerations made in the first case, for each v > 0 the functions c,;,
i=0,...,v— 1, are y-measurable.
For each fixed » consider the sequence of measurable functions

2% €=z, (¢) v=12,...
from [0, 1] to [0, 1] where E,, = [i/v,(i + 1)Jv) if i<v—1 and E, _, =
[(v — 1)/v, 1]. It can be easily proved that for almost all x[ W] and each -,

go(a, x) = Iirn”_,°° Z:;(} Cw- a)XEyi(x) .
Using the Lebesgue convergence theorem,

§6 9o(+» X) dW(x) = lim,_., §5 [ 230 €.o( )2z, (X)] AW (%) »
= lim, ., 33525 ¢,i(\)W(E,;)
Foreachvandeachi =0, -..,v — 1, ¢, is r-measurable, hence {} g(-, x) dW(x)
is y-measurable. []
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