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ASYMPTOTIC PROPERTIES OF ESTIMATORS
OF A LOCATION PARAMETER

By CHARLES J. STONE
University of California, Los Angeles

Consider the problem of estimating the location parameter 6 € R¢ based
on a sample of size n from (6 + X, Y), where X is a d-dimensional random
vector, Y is a random element of some measure space, and (X, Y) has a
known distribution. Let .#~ denote the corresponding inverse Fisher in-
formation matrix. We show that there is always an invariant estimator bn
such that _C,”(ni(ﬁn — 6)) = N(0, #-) as n — co. Let p be a fixed probability
density on Ré, let 6n be any estimator of 6 and set Ru(c) = Sp(ﬁ) dOEy
min (c, 7|0, — 6]2). We show that lim,—.c lim inf,—. Ra(c) = trace #~ and
that if lim—e lim supy—e Ra(c) = trace .#—, then limy—e S 0(0) d0Py(nt |6y, —
fa) = ¢) = 0 for all ¢ > 0. These results are obtained with no regularity
conditions imposed on the distribution of (X, Y).

1. Introduction. In this paper, which is an outgrowth of Port and Stone [9],
we continue the study of estimators of the location parameter 6 € R* based on a
random sample of size n from (¢ + X, Y), where X is a d-dimensional random
vector, Y is a random element of some measure space 2 having distribution s,
and (X, Y) has a known distribution. Our results are obtained with no conditions
whatsoever on the distribution (X, Y).

The Fisher information . = _#(¢ + X, Y) and its inverse .#~ = (0 +
X, Y), defined and studied in [9], play an important role here. Recall that _#~
is a nonnegative definite symmetric linear transformation from R¢ to itself, which
we can think of asa d X d matrix. Inthe special case d = 1 we can think of _*
as a number such that 0 < ¥ < oo and _#~ as the finite nonnegative number
1/-#. If, in addition, Y is degenerate, then _# agrees with the definition of in-
formation given in Huber [4]. There Huber showed that .* = § (f'/f)’fdx if
X has an absolutely continuous density f such that the indicated integral is finite
and ¥ = 4 oo otherwise.

In general, for e € R? set 4 = (e, ), where ( , ) denotes the usual inner pro-
duct on R?. By an estimator T, of  or an estimator 6, of 0 we will always mean
a (possibly randomized) estimator based on a sample of size n from (¢ + X, Y).
We say that T, is invariant if 7, — g is independent of § and that 4, is invariant
if § — @ isindependent of 8. In the remainder of the Introduction we will describe
the results for estimators of . Similar results are obtained for estimators of z.

In Section 2 we define the Pitman estimator 4, of ¢ corresponding to an
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appropriate bounded and continuous loss function L(x), x € R¢, that is asymptotic
to |x|* as x — 0. The Pitman estimator is invariant and minimax with respect
to L. In Theorem 2.1 we show that

(1.1) A(n (@, — 0)) — N0, _» ) as n—» oo .

This result is perhaps best regarded as a constructive proof of the existence in
complete generality of an invariant estimator satisfying (1.1). Observe that this
result is nonvacuous even if _“~ = 0, which is true if and only if .7 is infinite
inall directions. Inthatcase (1.1)shows that there is an invariant estimator @, of
0 such that n(d, — 0) — 0 in probability as n — co. One could attempt to obtain
still stronger results by looking at the asymptotic distribution of g(n)n¥(d, — 0)
where g(n) — oo as n — co. But this direction is not pursued here.

Under the assumption that E|X|° < co for some o > 0, the existence of an
invariant estimator satisfying (1.1) follows from Theorem 5.2 of [9]. Ifd = 1
and . < oo, the existence of a maximum likelihood estimator satisfying (1.1)
probably can be obtained by verifying the conditions of Proposition 6 of LeCam
[8].

Weiss and Wolfowitz in a series of papers[12],[13], and [ 14] discuss “maximum
probability estimators.” If one could show that the conditions they postulate on
an appropriate maximum probability estimator hold in the location parameter
model considered in this paper, then Theorem 2.1 together with the Weiss—
Wolfowitz results would imply that that the maximum probability estimator
satisfies (1.1). It would certainly be worthwhile to show that their postulated
conditions do hold in our model under no further regularity conditions. But it
is not at all clear to this author that this is in fact the case.

Let p be a probability density on R?. Then any estimator §, satisfying (1.1),
in particular the Pitman estimator, satisfies

(1.2) lim,_, lim,__, § o(8) dOE, min (c, n|f, — 6]*) = trace.” - .
In Theorem 3.1 we show that if 4, is any estimator of 4, then
(1.3)  lim_, liminf,__ § o(f) dOE, min (c, n|f, — 6]*) = trace .~ .
In Theorem 3.2 we show that if
(1.4  lim__limsup,_, § p(d) dOE, min (c, n|f, — 0]) = trace .,
then
(1.5) lim,_., § o(0) dOP,(nt|f, — 6, = ¢) =0, 0<c< oo,
A sufficient condition for (1.4) to hold is that .~ (n}@, — 0)) — N(0, .# ) for
almost all §. If we think of p as a prior density for the random variable @, then
(1.5) states that n¥(f, — 6,) — 0 in probability as n — co.
Given the prior density p, we say that 6, is an asymprotically optimal estimator

of ¢ if (1.4) holds. We say that such an estimator is the essentially unique asymp-
totically optimal estimator of ¢ if whenever 6,’ is any asymptotically optimal
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estimator of #, then n}(@,’ — 6,) — 0 in probability as n — co. Then Theorem
2.1, Theorem 3.1, and Theorem 3.2 together imply the following result.

THEOREM 1.1. Forevery prior density p, the Pitman estimator 0, is the essentially
unique asymptotically optimal estimator of 6.

In [9] we showed that for any estimator 4,
(1.6) nsup, E,|0, — 6|* = trace ./~ forall n>1.

This is close to (1.3), but actually neither result implies the other. Theorem
3.1 was motivated by LeCam [7]. Presumably this result follows from [7] under
strong enough regularity conditions.

Hajek in Theorem 4.2 of [3] has a result which is closely related to Theorem
3.1 but does not directly contain it. His results do imply that under his LAN
(local asymptotic normality) conditions

lim,_, lim,_, lim inf,_, sup,_, ., E,(min (¢, n(T, — (e, 0))*) = (e, S "e),

where e € R and T, is any estimator of (e, #). It should be possible by modifying
the proof of Hajek’s result to show that under the same conditions for any prob-
ability density o on R*

lim _, liminf,_ § o(¢) dOE,(min (¢, n(T, — (e, 0))* = (e, .7 ~e) .

The conclusion (1.3) of Theorem 3.1 would follow easily from this result.
Hijek’s LAN conditions do not hold if .#"~ is singular, i.e. if ./ is infinite in
one or more directions. If 7~ is nonsingular they can probably be verified by
using the arguments in the Appendix to Hajek’s paper. (This would show that
when the information _# defined in [9] is finite, it agrees with the matrix I,
defined in Hajek’s LAN conditions.) If _#~ is zero, i.e. if .~ is infinite in all
directions, the conclusion of Theorem 3.1 is trivial. In the mixed case, when
.. is infinite in some but not all directions, one can probably use Theorem 2.1
and the properties of .7 obtained in [9] to reduce this case to the nonsingular
case. This method of obtaining Theorem 3.1 would be worthwhile, but would
be no shorter than the direct proof given in Section 3.

In the preceding discussion it was tacitly assumed that the distribution of
(X, Y) is known. We now consider the important situation wherein this distri-
bution is unknown. Theorem 3.1 is obviously still directly applicable. Theorem
2.1 is not directly applicable since we cannot implement the Pitman estimator
without knowing the distribution of (X, Y). This result, however, is strongly
suggestive of what should be true, as we now indicate.

If the distribution of (X, Y) is totally unknown it does not make any sense to
talk about estimation of 4. It is well known, however, that if the distribution
of (X, Y) satisfies appropriate symmetry conditions, then estimation of @ is
possible. Stein [10] has shown “formally” that in such cases one should be able
to do as well asymptotically, without knowing the distribution of (X, Y), as
one could do knowing this distribution. Stein’s result together with Theorem
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2.1 strongly suggests that there should be an invariant estimator 6, which is
independent of the distribution of (X, Y) and which satisfies (1.1) whenever the
distribution of (X, Y) satisfies appropriate symmetry conditions. Such an esti-
mator would presumably be of the “adaptive” type. In Stone [11] it is shown
that if 4 = 1 and Y is degenerate, then such an adaptive estimator does indeed
exist.

It would be worthwhile to extend the results of [9] and the present paper to
more general models, e.g. those involving both location and scale parameters.
Similarly it would be worthwhile to extend the results of [11] in this direction.

2. Asymptotic properties of an invariant estimator. We begin this section by
giving a lower bound to the asymptotic mean square error of an invariant esti-
mator. This result will be extended to noninvariant estimators in Theorem 3.1.

ProrosiTioN 2.1. (i) If T, is an invariant estimator of n = (e, 0), then
(2.1) lim,_,, liminf,_, Emin (c, n(T, — p#)*) = (e, F~e).

(ii) If 0, is an invariant estimator of 0, then
(2.2) lim,_,, lim inf,__ E min (c, n|f, — 6]?) > trace ./~ .

Proor. We will prove (i), from which (ii) follows immediately. Set U, =
T, — p and let ® denote the left side of (2.1). We can suppose that a* < oo.
Then there is a sequence {n,} such that n, 7 co as k — oo and a random variable
U such that ~#(nU, ) — .~ (U) and E min (k, n, Us,)—a® as k—oo. Itis
easily seen that

(2.3) o = EU* =z Var U .
It follows from Theorems 2.4 and 3.4 and Corollary 3.1 all of [9] that
(e + U) z limsup,_, “ (1 + n*U,))
= limsup, ., n, . (¢ + U,,).
Now n.”~(pr + U,) = (e, # (0 + X, Y)e) by Theorem 3.5 of [9], so that
(2.4) e+ U) = (e, (0 + X, Y)e).
According to Theorem 5.1 of [9]
(2.5) VarUz 7~ (p+ U).
From (2.3)—(2.5) we conclude that a* = (e, .7 (6 + X, Y)e) as desired.

CoroLLARY 2.1. (i) If T, is an invariant estimator of pu = (e, 0) such that
AT, — p)) — N(0, 0%) as n — oo, then d* = (e, ./ ~e).

(ii) If 6, is an invariant estimator of 0 such that . (n}(@, — 6)) — N(0, X) as
n— oo, then L = F~.

We will now define the loss function L and the Pitman estimator 4, referred
to in the Introduction.
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For 1 < k < d, let L,(x), x€ R, be a real-valued function satisfying the fol-
lowing properties:

(i) L, is bounded and continuous;
(ii) Ly(x) ~ x*as x — 0;
(iii) Ly(x) > 0 for x # 0;
(iv) limy . L,(x) = sup,L,(x).
Examples of functions that satisfy (i)—(iv) are min (c, x*) and x*/(1 + ¢x®) for ¢
a positive constant. The “loss function” L(x), x € R?, is defined by setting

L(x) = X3¢, Li(x) X = (Xp, vy Xg) -
We use this loss function instead of the usual quadratic loss in order to avoid
having to make the assumption E|X|’ < oo for some 6 > 0 that was required
for some of the results in [9].
We now define the Pitman estimator 8, of 8 corresponding to the loss function
L and based on the sample

0+X1’Y1"",0+Xn’yn

of size n from (6 + X, Y). Fixk, 1 < k < d, and let ¢, and X, denote respec-

tively the kth coordinates of # and X;. Set Z = (Y,, X; — X, Y,,---, X, — X, Y,)

and let ¢ be a real-valued measurable function on the range of Z such that
E[L(Xy — ¢(Z))| Z] = inf, E[L (X, — V)| Z] .

It follows from (i)—(iv) that such a function ¢ does indeed exist. (It can be
defined as a lower semicontinuous function of the regular conditional distribution
of X, given Z—this guarantees measurability.) The Pitman estimator é,,of 6,
is given as 6, + X, — ¢(Z), so that

b=0,+Xp — oYy, X; — X3, Yoy -, X, — X, Y,) .

It is clearly invariant and is well known to be minimax with respect to the loss
function L,. That is, if 6,, is any, possibly randomized, estimator of ¢, based
on the same sample, then

supy E, L8, — 0,) = EL,(0,, — 0,) .

The Pitman estimator 8, of @ is given by 6,=(., -, 9,,d). It is invariant and
minimax with respect to the loss function L. For discussions of Pitman estimators
and their minimax properties in various levels of generality see Girshick and
Savage [2], Blackwell and Girshick [1], Kudo [6], and Kiefer [5].

Let P, be the estimator of 1 = (e, ) given by P, = (e, 4,).

THEOREM 2.1. (i) A(n¥(P, — 1)) — N(0, (e, "¢)) as n— co and forallc > 0
lim, ., nE min (¢, (P, — p#)’) = (e, Fe).
(il) A(n@, — 0)) — N0, #~) as n — oo and
(2.6) lim,__ nEL(@, — 6) = trace 7~ .



1132 CHARLES J. STONE

Proor. We will prove (ii), from which (i) follows immediately. Let W be
independent of (X, Y) and have the standard normal distribution on R?. We
know from [9] that

(2.7) lim,_, =0+ X+ oW, Y)=.7(0 + X, Y).

a—0
In [9] we verified the existence of estimators 5n(a, v), o >0,andv=1,2, ...,
based on a sample of size n from (¢ + X + oW, Y) which satisfy the following
properties:
(i) 6,(s,v) is an invariant estimator of 4;

(i) lim,_. .2}, (o, v) — 0)) = N0, (a, v));

(iii) lim,_., nE min (c, |6,(a, v) — 0]?) = trace (g, v) for all ¢ > 0;

@iv) lim,_, Z(o,v) = 7740 + X + oW, Y).

Set a,}(a,v) = (X(0,v)),, and o, = (F (0 + X, Y)),,. Then

(2.8) lim,__ nEL,(0,,(, v) — 0,) = a,X(a, v)
and, by (2.7) and (iv),
(2.9) lim,_, (lim,__, a,%(0, v)) = a,?.

LemMa 2.1. lim,__ nEL,,, — 6,) = a,>.

Proor. It follows easily from Proposition 2.1 that

(2.10) liminf,__ nEL,0,, — 0,) = a,?.

On the other hand, since f,, is a minimax estimator of 0., it is clear that
(2.11) EL(0,, — 0,) < EL(0,.(0,v) — 0,).

By (2.%), (2.5), and (2.11)

(2.12) limsup,_., nEL,(0,, — 0,) < a,’.

The lemma follows from (2.10) and (2.12).
Observe that (2.6) is an immediate consequence of Lemma 2.1.

LeMMa 2.2, For0 < b <

limsup,_,., E min <b, n <M‘”"2);énk>2> < alzw .

Proor. We can assume that # = 0. Then
(2.13) lim,_, lim,_., E min (c, nf%,(0, v)) = a0, v)
and by the previous lemma
(2.14) lim,_,, lim sup,_., E min (c, nf2,) < a,?.
It follows from (2.13) and (2.14) that

@’ + a,%(g,v)

2

(2.15)  lim,_ lim sup, .., E min <c, n <"3k + ‘;3»"("’ v) >2>

IA
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and hence

(2.16) lim, ., lim sup, ... P <n fikﬂ”’;_f@ﬁ‘.’;”l > c> —0.

By Proposition 2.1
(2.17)  lim__ liminf, . E min <c, n (Mﬁl>z) > ar.

c—00 n—00 2
We conclude from (2.16) and (2.17) that

(2.18) - lim,__ liminf, E|:n <0nk + ";nk("’ V) )2; n Ot ?k("’ Y) < c]

2
= a,’.

Now )
2.19)  n <M)2 _ Ot Oy <0n,,(o, v) + 0, )2.
2 , 2 2

It follows from (2.15), (2.18), and (2.19) that
(2.20)  lim,_, limsup, ., E|:n (M)z ‘n fﬁi;w@_’l)_ < c]
a(d,v) — a;’

5 .

Lemma 2.2 follows from (2.16) and (2.20).
It follows from properties (ii) and (iv) of 4,(s, v), (2.9) and Lemma 2.2 that
An¥(@, — 0)) — N(0, #~) as n— oo. This completes the proof of the theorem.

=

ProrosITION 2.2. (i) If T, is an invariant estimator of p = (e, ) such that
(2.21) lim,_,, lim sup,_., E min (¢, n(T, — p)*) = (e, S~ "e),

then n¥(T, — P,) — 0 in probability as n — oo.
(ii) Ifén is an invariant estimator of 0 such that

(2.22) lim,_,, lim sup,_,, £ min (c, n)d, — 0]*) = trace .# -,
then ni(6, — 6,) — 0 in probability as n — oo.

Proor. If (2.21) holds we can argue as in the proof of Lemma 2.2 to conclude
that
lim,_., Emin (b, (T, — P,)’) =0, 0<b< o,
and hence that n}(T, — P,) — 0 in probability as n — co. This proves (i). State-
ment (ii) follows immediately from (i) and the first part of Proposition 2.1.
Proposition 2.2 will be extended to noninvariant estimators in Theorem 3.2.

3. Asymptotic properties of any estimator. In this section we extend Propo-
sitions 2.1 and 2.2 to estimators which are not necessarily invariant.

THEOREM 3.1. Let p be a probability density on R?. (i) If T, is any estimator
of 1 = (e, ), then

3.hH lim__, liminf,_, § o(0) dOE, min (¢, n(T, — p)*) = (e, S~ "e€).
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(ii) If 8, is any estimator of 0, then
(3.2)  lim,_, liminf,_, § o(d) d0E, min (c, n|f, — 6]*) > trace .#~ .
Proor. We first prove (ii). Let a? denote the left side of (3.2). Let 4§, denote

the Pitman estimator of § corresponding to the loss function L. For & > 0 define
the estimator 6,* of 6 by setting

0k = O, if ni|f,, — 0,| < 26,

b,, if nif,, — 8, > 2bt.

Then

(3.3) n|0,* — 6" < 2n|f, — 6 + 8bd

and

(3.4) n0,* — 0P <nlf, —6P if nf,—0P<b.

We conclude from (3.3) and Theorem 2.1 that
(3.5) lim,_,, lim sup,_,., sup, E, min (¢, n|0,* — 6|*) < oo .
It follows from (3.3) and (3.4) that
liminf, ., § o(6) dOE, min (c, n|6,* — 0%
< liminf,_,, § p(d) d6E, min (c, n|f, — 0]?)

+ 2lim,_, E[min (c, n|0, — 6]); n|f, — 6]* > b]

+ 8bd lim,__, P(n|f, — 6> > b).
Choose ¢ > 0. It now follows from Theorem 2.1 that we can choose b such that
(3.6) lim__, lim inf, ., § o(6) dOE, min (¢, n|0,* — 0*) < a® + ¢.

From (3.5) we see that in (3.6) p can be chosen to be a continuously differen-
tiable function having compact support, since the collection of such functions
is dense in .~ (R?).
Write the estimator 4,* as
0,*=9,0+X,Y,---,0+X,,7,).
For any e R¢ let 6,*(¢) be the estimator of ¢ defined as

0,5(0) = 00 + t + Xy, Yy o, 0+t + X,, ¥,) — 1.

Then

3.7 Lp(0,*(t) — 0) = L5060, — 60 — 1), te R,
Since 6, is invariant, it follows from (3.3) that

(3.8) n|0,*(t) — 0]* < 2n|0, — 0 + 8bd , teR?.

Define the estimator 8, of 6 as

6, = § p(t)dt0,*(t — 8,) .
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Since 4, is invariant, so is G,. Let Cbea compact subset of R? whose interior
contains the support of p. Then

6, —0=75p(+0, —0)dns,*(t — 6) — 6)
= § p(1) dH(8,*(t — 8) — 0) + O,(1)[f, — 0]) §10,*(t — 0) — 0] dr.
From (3.8) and Theorem 2.1 we conclude that

(3.9) B, — 0= § (1) di(0,(t = 0) — ) + - O,(1)..

Using (3.7), (3.8), and Schwarz’s inequality, we see that
E,[min (c, n|§ p(1) d1(6,*(t — 6) — O)[); nlf, — O < a]

< E,[§ (1) din|o,*(t — 6) — 6] nlf, — 0 < a]
=< § o(?) dtE, min (2a + 8bd, n|0,*(t — ) — 0]*)
= § o(t) dtE, min (2a + 8bd, n|6,* — 1|*).

Thus by (3.6)

lim inf, ., E,[min (c, n|§ p(f) dt(0,*(t — 0) — O); n|f, — 0P < a] < a® + .

Since n|, — 6> = 0,(1) it follows that

(3.10) lim,_ liminf, ., E, min (¢, n|§ p(t) dt(8,*(t — 0) — O))) < @® + ¢.

We conclude (3.9) and (3.10) that

lim,_,, lim inf, , Emin (¢, n|f, — 0]*) < a® + ¢.

Since 8, is invariant, Proposition 2.1 implies that a® 4 ¢ > trace _#~. By letting
¢ — 0 we see that (3.2) holds.

In proving (i) we can assume by Corollary 3.1 of [9] that e = (1,0, ..., 0).
We have to show that if 4, is any estimator of 6,, then

(3.11)  lim,__liminf,_. § o(6) d9E, min (c, n(f,; — 0,) = (_"),, .

But (3.11) follows by applying Theorem 3.1 (ii) to the estimator 4, = (4,,,
0,0 -+, 5,,,,) and using Theorem 2.1.

CoROLLARY 3.1. Let A be a Borel set in R* having positive measure. (i) If T,
is any estimator of 1 = (e, 0), then

lim,_,, lim inf,__, sup,., E, min (¢, (T, — p)* = (e, F~e).
(ii) If 8, is any estimator of 0, then
lim,_, lim inf,__, sup,., E, min (c, n|f, — 0]*) = trace .~ - .

CoRroLLARY 3.2. (i) If T, is any estimator of p = (e, 0) such that & y(n¥(T, —
#)) — N(0, g,%) as n — oo, then o,* = (e, #~e) for almost all 6.

(ii) If G, is any estimator of 8 such that Zy(n*(8, — 6)) — N(0, Z,) as n — oo,
then X, = _#~ for almost all 6.
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CoroLLARY 3.3. (i) Let T, be any estimator of 1t = (e, 0) such that .o~ (n¥(T, —
©)) — N(0, a,?) as n — co, where g, depends continuously on§. Then a,* = (e, . ~€)
forall 6.

(ii) Let 8, be any estimator of 6 such that Ly(n¥, — 6)) — N(O, Z,) asn — oo,
where X, depends continuously on §. Then X, = .*~ forall §.

THEOREM 3.2. Let p be a probability density on R*. (i) If T, is an estimator of
n = (e, 8) such that

(3.12) lim,_,, lim sup,_,, § p(0) d0E, min (c, n(T, — p)*) = (e, ./ "e),

then

(3.13) lim, . § o(8) dOP,(n}|T, — P,| = ¢) =0, 0<c< .
(ii) If 8, is any estimator of 6 such that

(3.14)  lim,__ limsup,_., § o(J) dOE, min (c, n|f, — 0|)* = trace .~ ~,

then

(3.15) lim, .. § o(6) d0P,(n*f, — 0, = c) =0, 0<c< oo,

Proor. Suppose that (3.14) holds. By applying Theorem 3.1 to the estimator
(@, + 8,)/2 of 8, using Theorem 2.1 and arguing as in the proof of Lemma 2.2
we conclude that (3.15) holds. This proves (ii). Statement (i) easily reduces to
(ii) as it did in the proof of Theorem 3.1.

REFERENCES

[1] BLACKWELL, D. and GIrsHICK, M. A. (1954). Theory of Games and Statistical Decisions.
Wiley, New York.
[2] GirsHICK, M. A.and SAVAGE, L. J. (1951). Bayes and minimax estimates for quadratic loss
functions. Proc. Second Berkeley Symp. Math. Statist. Prob. 53-73. Univ. of California
Press.
[3] HAJEK, J. (1972). Local asymptotic minimax and admissibility in estimation. Proc. Sixth
Berkeley Symp. Math. Statist. Prob. 1 175-194. Univ. of California Press.
[4] HuBkr, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35
73-101.
[5] KIEreRr, J. (1957). Invariance, minimax sequential estimation and continuous time pro-
cesses. Ann. Math. Statist. 28 573-601.
[6] Kupo, H. (1955). On minimax invariant estimates of the transformation parameter. Natur.
Sci. Rep. Ochanomizu Univ. 6 31-73.
[7]1 LeCawm, L. (1953). On the asymptotic properties of maximum likelihood estimates and re-
lated Bayes estimates. Univ. Calif. Publ. Statist. 1 277-330.
[8] LECAM, L. (1970). On the assumptions used to prove asymptotic normality of the maximum
likelihood estimates. Ann. Math. Statist. 41 802-828.
[9] Port, S. C. and StoNE, C. J. (1974). Fisher information and the Pitman estimator of a
location parameter. Ann. Statist. 2 225-247.
[10] StEIN, C. (1956). Efficient nonparametric testing and estimation. Proc. Third Berkeley
Symp. Math. Statist. Prob. 1 187-196. Univ. of California Press.
[11] StonE, C. J. (1975). Adaptive maximum likelihood éstimators of a location parameter.
To appear Ann. Statist. 3 No. 2.
[12] WEkiss, L. and WoLrowiTzZ, J. (1967). Maximum probability estimators. Ann. Inst. Statist.
Math. 19 193-206.



ESTIMATORS OF A LOCATION PARAMETER 1137

[13] WErss, L. and WoLFowiTz, J. (1969). Maximum probability estimators with a general loss
function. Probability and Information Theory, Proceedings of the International Sym-
posium at McMaster University, Canada, 1968; Lecture Notes in Mathematics, 89
Springer-Verlag, Berlin.

[14] WErss, L. and WoLFowiTz, J. (1970). Maximum probability estimators and asymptotic
sufficiency. Ann. Inst. Statist. Math. 22 225-244.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA
Los ANGELES, CALIFORNIA 90024



