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THE ASYMPTOTIC SUFFICIENCY OF A RELATIVELY
SMALL NUMBER OF ORDER STATISTICS
IN TESTS OF FIT!

By LioNEL WEISS
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For each n, Xu(1), - -+, Xu(n) are independent and identically distri-
buted continuous random variables over (0, 1), with common density func-
tion equal to 1 4 r(x)/nt, r(x) unknown but satisfying certain regularity
conditions. The problem is to test the hypothesis that r(x) = 0 for all x in
0, 1). Yu(l) < +-+ < Yn(n)are the ordered values of Xu(1), - -+, Xu(n). disa
fixed value in the open interval (3, 1). It isshown that Yu([n?]), Yn(2[n?]), - -
are asymptotically sufficient, and can be assumed to have a joint normal
distribution for all asymptotic purposes. Using these facts, a test of the
hypothesis is constructed with a good asymptotic power curve.

1. Introduction. For each positive integer n, X, (1), - - -, X, (n) are independent
and identically distributed random variables, with an unknown continuous cumu-
lative distribution function F,(x). The problem is to test the hypothesis that
F,(x) = G(x), where G(x) is a completely specified continuous cumulative distri-
bution function. By replacing X, (1), -- -, X,(n) by G(X,(1)), ---, G(X,(n)) re-
spectively, we transform to independent and identically distributed random
variables over the interval (0, 1), and the hypothesis is that the common distri-
bution is the uniform distribution over (0, 1). From now on we assume that
this has been done.

We are usually interested in the asymptotic power against alternatives which
approach the hypothesis at a rate just rapid enough to keep the asymptotic power
in the open interval (a, 1), where a is the asymptotic level of significance. In
the present case, letting f,(x) denote the probability density function for X, (i),
we will be interested in alternatives such that n? max,.,., |f,(x) — 1| remains
positive and bounded as n increases.

Let Y, (1), - - -, Y, (n) denote the ordered values of X, (1), - - ., X, (n), in increas-
ing order. Since we are assuming that X, (i) is a continuous random variable
over (0, 1), the inequalities 0 < Y, (1) < --- < Y,(n) < 1hold with probability
one. For typographical simplicity, if 7 is any positive value, n’ is to be under-
stood to mean the largest integer no greater than n’; and if 7 is a negative value,
n' is to be written as 1/n~7, and n~7 is to be understood as the largest integer no
greater than n~7.

Let ¢, 0 be fixed values satisfying the conditions 0 < ¢ < 3,3 <9< 1,30 <
2 46,20 < 1 4 2¢. For example, ¢ could be slightly above 4 and « slightly
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below 4. Let k(n) denote the largest integer such that k(n)n’ < n. In Section 2
we show that if
lim,_, n* max g, |fo(x) — 1| =0 and

lim,_, n° SUPg<z<a

—dif,,(x)lzo for r=1,2,3,
dx"

then {Y,(n%), Y,(2n%), - - -, Y,(k(n)n?)} are asymptotically sufficient for all pur-
poses of statistical inference. In Section 3 we show that for all asymptotic
purposes we can assume that {Y, (%), Y, (2n°), - - -, Y, (k(n)n’)} have a joint nor-
mal distribution. In Section 4 we use these facts to construct a test based on a
quadratic function of {Y,(n%), Y,(2n%), - - -, Y (k(n)n’)} which has good asymp-
totic power.

2. The asymptotic sufficiency of Y,(n°), - -, Y, (k(n)n®). We assume f,(x)
satisfies the assumptions of the last paragraph of Section 1. The joint probability
density function for {Y,(1), - - -, Y,(n)} is n! T2, fu(ya(D) if 0 < yu(1) < -+ - <
yu(n) < 1 and is zero otherwise. We denote this joint density function by
By (y.(1), - - -, ya(n)), and the corresponding probability measure by H,.

Now we construct a different joint probability density function for {Y, (1), - - -,
Y,(n)}. This second density function is constructed by assuming that the joint
marginal density for {Y,(n%), Y,(2r%), - - -, Y,(k(n)n’)} is what would be given by
h,(y.(1), - -+, yu(n)), and that the joint conditional distribution of the other
{Y.(i)} is given as follows. The n’ — 1 random variables in the open interval
(0, Y, (n%)) are distributed as the ordered values of n* — 1 independent and iden-
tically distributed random variables, each with a uniform distribution over
(0, Y,(n%). For j =1, ..., k(n) — 1, the n’ — 1 random variables in the open
interval (Y, (jn%), Y,((j + 1)n*)) are distributed as the ordered values of n’ — 1
independent and identically distributed random variables, each with a uniform
distribution over (Y,(jn’), Y,((j + 1)n’)). The n — k(n)n’ random variables in
the open interval (Y, (k(n)n’), 1) are distributed as the ordered values of n — k(n)n’
independent and identically distributed random variables, each with a uniform
distribution over (Y, (k(n)n’), 1). We denote the resulting joint probability den-
sity function for {Y,(1), - - -, Y,(n)} by g,(y.(1) - - -5 ya(n)), and the correspond-
ing probability measure by G,.

We now show that if g,(y.(1), - -+, y.(n)) is actually the joint density for
{Ya(1), -+, Yy(m)}, then 10g [A(Y,(1), - - -, Yo(m)/gu(Yo(1), - - - Y, (m)] converges
stochastically to zero as n increases. For typographical simplicity, let m,(j) de-
note n* — 1 forj =1, ..., k(n), and let m,(k(n) + 1) denote n — k(n)n’. Also,
let Y,(On’) denote zero, and Y, ((k(n) + 1)n’) denote unity, Then F,(Y,(0n’)) = 0
and F,(Y,((k(n) + 1)n’)) = 1. Outside the region where both £,(Y,(1),- - -, Y,(n))
and g,(Y,(1), - - -, Y,(n)) are zero, log [4,(Y,(1), - - -, Y,u(1))/9.(Y (1), - - -, Yo(n))]
is equal to

ot s 10 [1YaU1) = Yl = DWL(Ya(( — D 4+ B)
2.1)  mEmw e 1og[ YT o) — FuAAG ) ]
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For j =1, ..., k(n) 4 1, define D,(j — 1) by the equation F,(Y,(j — 1)n’) =
n(j — n’ + n~iD,(j — 1). By the Kolmogorov-Smirnov theorem on the
deviation between the empirical and cumulative distribution functions, and the
definition of Y,(0n’), it follows that maxX, ;w41 |D.(j — 1)| is bounded with
probability one. Writing Y,((j — 1)n’) = F,~Y(n"(j — 1)n® + n=iD,(j — 1)),
expanding F,~}( ) around n~'(j — 1)n’, and using the easily verified fact that
lim, ., n* max,,s, |F,”(#) — u| = 0, we find that with probability approaching
one as n increases,

2.2) Y, (jn*) — Yo((j — Dynd)] < % for =1, kn)+ 1,

where the result for j = k(n) 4+ 1 comes directly from the definitions of k(n) and
Y,((k(n) + D)n?). Define 7,(j) as 3[Y,(jn®) + Y,((j — Dn®)] for j=1, ---,
k(n) + 1, and UG, j)as[Y,((j — D + i) — Z()DIIY.(jn®) — Yo((j — D)l
The joint conditional distribution of {U,/(1, j), .-, U,/ (m,(j), j)} given
Y.((j — 1)n’) and Y,(jn’) is that of m,(j) ordered uniform variables over
—4,%). Let {U,(i, ):i=1,.---,m(j);j=1, .-, k(n) + 1} denote random
variables whose joint conditional distribution given {Y,(n%), - - -, Y,(k(n)n%)} is
that of independent random variables, each uniform over (—%, 4). Then (2.1)
has exactly the same distribution as

(2.3) D BT log[({Y.(jn)) — Y.((j — D)}
X fulXu(J) + [Ya(jm’) = Yo((j — D)1V, )
+ (Fu(Y,(jn%)) — F(Yo((j — Dro))] -

F (Y (jn") = Fu(Yu()) + (Ya(jr’) — T.())f (X))
+ HY.(r’) — VL(DPL (X))
+ 3Y.0n) — )P (X))
+ ALY (1) — LL(DIL(0.())) »
FuTa() + [Ya(jn?) — Yo((j — D)0 )
=[u(Ta() + [Ya(i’) = Yo((j — DP)]ULG DS (Fa())
+ 3Y.(n’) — Yu((J — DmFURGE DS (X))
+ 3Y.(r°) = Yu((G — DnO)PURG D0 ) »
where 0,(j), 8,(i, j) are in (0, 1). Substituting these expansions into (2.3) and
simplifying, we find that (2.3) can be written as

T km+ Z"an log[l + [Ya(jr®) — Yo ((j — D)n)] fn( (])) U, (i )

Write

LX)
Y (in®) — Y. ((7 lazfn( () 172
+ 3HY.(jr) — Y.((J — Dn?)] 7000 Ui, J)

@4 + G D vy — v, = yer |
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k(n)+1 '”"11(-7) 1 ind) __ P ] 2fn (Y (]))
— B i log | 1+ (YY) — V(U — v LI

+ 10 [y ) — 1, — ]

where max, ; |r,(i, j)| and max; |7,(j)| converge stochastically to zero as n in-
creases. Expanding the logarithms in (2.4), we find that (2.4) can be written as
the sum of the following three expressions:

@5)  zims mmme LDty Gy — v — )06, )

AT
2.6) 3 e v L) [y iny — V(= DU, J) — )
@6) 4 xsmn 5 LGS vty — v — )G ) — 1)
syn mom? (BED 2B (v, nt) — V() — Dy
L Sram+ M (9) _1
e (R N
[y = ¥ = yen D,
@.7) 407Gy = Yol = D L) U
+ LDy nt) — v, — oeP |
Zk(mu Zmnm 1

(I + 8.()

LIY (in®) — Y (i — Dn? Zf'n”( (/)
x [adrm) = v = v Gl

f’n(]) ind i )13
+ DDy, gy — v = vy

where max, ; |3,(i, j)| and max; |8,(j)| converge stochastically to zero as n in-
creases. Using (2.2) and the assumptions about f,(x), ¢, and 4, it is easily seen
that (2.7) converges stochastically to zero as n increases. The conditional mean
and variance (given {Y,(n°), - --, Y, (k(n)n’)}) of (2.5) are 0, &5 > 5"+ m,(j) X
L (O (TaGDTLY.(jn%) — Y,((j — )n*)F. Using (2.2)and the assumptions
about f,(x), ¢, and d, it is easily shown that this conditional variance converges
stochastically to zero as n increases, and this clearly implies that (2.5) converges
stochastically to zero as n increases. A similar argument shows that (2.6)
converges stochastically to zero as n increases. This completes the proof that
log [A, (Y. (1), -+, You(n)/9,(Y,(L), - - -, Y,(n))] converges stochastically to zero
as n increases.

It now follows from the argument on pages 261-262 of [3] that if B, is any
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measurable region in (y(1), - - -, y(n))-space, then
lim,_., |G,(B,) — H,(B,)| =0.

Suppose, for each n, that X, (1), - - ., X, (n) are independent and identically distri-
buted random variables, each with density function f,(x), where the sequence
{fa(x)} satisfies the assumptions of Section 1. Let Y, (1) < ... < Y,(n) denote
the ordered values of X, (1), ---, X, (n). Suppose there are two statisticians,
named A and B respectively. Neither one knows f,(x), except that each knows
that the sequence {f,(x)} satisfies the assumptions of Section 1. Statistician A
knows the values of Y,(1), ---,Y,(n), which have joint density function
b, (yu(1),- -+, y,(n)). Statistician B knows only the values of Y,,(n%), - - -, Y, (k(n)n’).
Even though he does not know f,(x), by the use of a table of random numbers
statistician B is able to generate n — k(n) additional random variables so that the
joint density function of his full set of n random variables is g,(y,(1), - - -, y.(n)).
Statistician B is able to do this because under g, the joint conditional distribution
of all {Y,(i)} not among {Y,(n%), ..., Y,(k(n)n®)} does not depend on f,(x), but
only on {Y,(n?), - - -, Y, (k(n)n®)}.

Suppose statistician A uses a region A(n) in (Y,(1), - - -, Y, (n))-space for statis-
tical inference. Knowing only {Y,(n,), - - -, Y, (k(n)n,)}, statistician B can con-
struct a region with the same asymptotic probability as the region A4(n). In this
sense, {Y,(n’), - - -, Y, (k(n)n’)} are asymptotically sufficient. Before applying this
asymptotic sufficiency, in the next section we show that for all asymptotic pur-
poses, {Y,(n%), - - -, Y,(k(n)n’)} can be considered as jointly normally distributed.

3. The asymptotic normality of Y, (n%), - .., Y, (k(n)n®). Forj =1, ..., k(n),
define Z,(j) as n¥(Y,(jn’) — F,7%(jn’[n)). Let r,(z,(1), - - -, z,(k(n)) denote the
* joint probability function for Z,(1), ---, Z,(k(n)) and let R, denote the cor-
responding probability measure. Let 3,(z(1), - - -, z(k(n)) denote the following
k(n)-variate normal probability density function:

< 1 k(n)/2 < n Q n(n6 — 1) k(n)/2
E) F) ( n* )

x exp| = 202D () + 2km) + Zh @) — 2 — DY) |-

2 n26

Again let S, denote the corresponding probability measure.
Let s,(z(1), - - -, z(k(n)) denote the k(n)-variate normal density function defined
by the equation

su(z(1), - - -, 2(k(n)) = &, (f,, (F,,‘-l (”;".» «1), -,
o (B () iy £ (R (),

and denote by S, the corresponding probability measure.
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In this section we show that if B, is any measurable region in (z(1), - - -, z(k(n))-
space, then
(3.1) lim,_,, |R,(B,) — S.(B,)| =0.

In [3] it was shown that

lim,_, |[R,(B,) — S.(B,)| =0,

50 (3.1) will be proved if we can show
3.2) lim,_, |S.(B,) — S.(B,)| =0.
Using the argument on pages 261-262 of [3], (3.2) will be proved if we can show
that if §,(z,(1), - - -, z,(k(n))) is the actual joint density for Z,(1), - .-, Z,(k(n)),
then log[s,(Z,(1), - - -, Z,(k(n)))[5,(Z.(1), - - -, Z,(k(n)))] converges stochastically
to zero as n increases. But this last statement is very simply proved, using the
easily verified fact that under §,, the covariance between Z,(n) and Z,(n), where
i <], is n®n~*(n® — 1)7%(nn=° — j). Thus (3.1) is true.

In concluding this section, we note that if §, is the joint density for Z,(1), - - -,
Z,(k(n)), and if we define

= (2 [0~ (L 0) 2

W) = (M) [ 2.0 - 20 = 1 - (FEEE )2 ki |

for j=2,...,k(n),

then W, (1), - .., W,(k(n)) are independent standard normal random variables.

4. Application to tests of fit. Throughout this section, we assume that
X,(1), - - -, X,(k(n)) are independent and identically distributed random variables,
with common density f,(x) = 1 + n~#r(x), where §{ r(x) dx = 0, and sup,,, |F'"(x)|
is bounded. Then f,(x) satisfies all the assumptions of Section 1, and Y, (n?), - - .,
Y,(k(n)n®) are asymptotically sufficient. Define Z,'(j) as n¥(Y,(jn’) — jn’/n),
and define W,/(j) to be the same function of {Z,'(1), - - -, Z,'(k(n))} as W ,(j) is
of {Z,(1), ---, Z,(k(n))}. We note that {W,/(1), - .., W,'(k(n))} are observable,
even if r(x) is unknown, and there is a one-one correspondence between
(Yo (1), - - -, Yo (k(n)n®) and W,’(1), - - -, W,/(k(n))}. Thus {W,’(1), - - -, W, (k(n))}
are asymptotically sufficient, and by the last paragraph of Section 3, for all
asymptotic purposes we can assume that the joint distribution for {W,'(1), - - -,
W,!(k(n))} is that of independent normal random variables, each with variance
one, and with E{W,/(j)} given by

(MDY () e (U0

n% n n n

- (e o)
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Denote the resulting joint density by 7,(w,’(1), - - -, w,’(k(n))), and the probability
measure by T,. Denote by #,(w,’(1), - - -, w,’(k(n))) the joint density given by
assuming W,'(1), - - -, W,'(k(n)) are independent normal random variables, each

with variance one and with E{W,'(j)} = —(n’[n)tr(jn’/n). Again denote the
corresponding probability measure by T,. It is easily shown that if B, is any
measurable region in (w,’(1), - - -, w,’(k(n))-space, then

im,_,,, |T,(B,) — T.(B,)| = 0.

For the rest of this paper we make the following “Normality Assumption”:
for each n, W,'(1), - --, W,/(k(n)) are independent normal random variables,
each with variance one, and E{W,'(j)} = —(n’/n)tr(jn’/n). Of course, this Nor-
mality Assumption is not true, but the results of the preceding paragraph show
that this assumption gives the correct results for all asymptotic purposes, and
we are only interested in asymptotic theory in this paper. Making the assump-
tion avoids some circumlocutions below.

Since {W,'(1), - - -, W,/(k(n))} are asymptotically sufficient, there must be a
test of the hypothesis r(x) = 0 which is based on {W,'(1), - .., W,'(k(n))} and
has asymptotic power against all r(x) which is at least as good as the asymptotic
power of any given test. For example, a reasonable conjecture would be that the
test which rejects the hypothesis if max,_; i, [W.'(1) + - -+ + W,(i)| > cu(@),
where c,(a) is chosen to give the desired level of significance «, is asymptotically
at least as good as the familiar Kolmogorov-Smirnov test. Even if we knew the
asymptotic power of the proposed test, however, the asymptotic power of the
Kolmogorov-Smirnov test is not known in any form that would allow compari-
son of the asymptotic powers. See [1] for a discussion of the computation of
the asymptotic power of the Kolmogorov-Smirnov test.

Let ¢(7) denote §;° (27)~te~*2dy, and for any a in (0, 1), let z, be defined by
$(z,) = a. It is easily shown that if we test the hypothesis that r(x) = 0 against
one specific alternative, say 7(x), the maximum possible asymptotic power of a
test of level of significance a is ¢(z, — ({} 7(x) dx)t). This means that a “natu-
ral” measure of distance between the uniform density over (0, 1) and the density
fu(x) = 1+ n~tr(x) is §§r’(x) dx. The rest of this paper is devoted to investigating
tests with good asymptotic power with respect to this distance.

Expand r(x) in a Fourier cosine series over (0, 1): r(x) = Y7, 4,2 cos jrx.
There is no constant term, because §; r(x)dx = 0. §Jri(x)dx = 37, A2

Temporarily, we limit the class of alternatives by assuming that 4; = 0 for
all j > T, where T is a fixed and known positive integer. Define S,(j) as
(n*[m)t ZEYW,/(i)2% cos ja(n~'in’). Under our Normality Assumption, {S,(1),- - -,
S.(T)} have a joint normal distribution, with covariance matrix approaching the
identity matrix as n increases, and E{S,()} approaching — 4, as n increases. Using
an a priori distribution which assigns probability & to the point 4, = 4, = ... =
A; = 0, and probability 1 — b spread uniformly over 42 4+ ... 4+ 4,2 =¢ > 0,
it is easily shown that the following test maximizes the minimum asymptotic
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power against alternatives 4,* + ... + 4,* > ¢ among all tests with asymptotic
level of significance a: Reject if 317_, S,%(j) > c(a; T) where ¢(a; T) is chosen
to give asymptotic level of significance a. The asymptotic distribution of
217-15,%(j) is noncentral chi-square, with T degrees of freedom and noncentrality
parameter },7_, 4.2, so ¢(a; T) is found from the central chi-square table. It is
easily verified that for Y}7_, 4, fixed, the asymptotic power of the test approaches
a as T increases. This means that there is no test procedure which has power
staying above a against all alternatives r(x) subject to the sole restriction
§ori(x)dx = ¢ > 0.

In order to keep the asymptotic power above the asymptotic level of sigifi-
cance, we must limit the class of alternatives in some way. One reasonable
way is to assume that if the null hypothesis }}7_, 4> = 0 is not true, then
sri(x)dx = 35,47 = ¢, and 315, (J4,)* < ¢;, where ¢,, ¢, are given positive
values with ¢, < ¢,. (We note that formally, r'(x) = —x 3,7, (j4,)2} sin jzx,
which motivates the restriction on }}7., (j4;)%.) If we use }}7_, S,%(j) as our test
statistic, the minimum possible noncentrality parameter when the null hypothesis
is not true is equal to 0 if ¢, = (T + 1)%c,, and is equal to [¢;(T+ 1)*— ¢, /[[(T+1)*—1]
if ¢, < ¢(T + 1)*. Since we are given ¢, and ¢,, we can use a table of noncentral
chi-square to choose the value of T"to maximize P[ Y7, S,%(j) > c(a; T)], assum-
ing the worst possible noncentrality parameter (that is, the smallest possible
noncentrality parameter computed in the pteceding sentence). This test is similar
to Neyman’s “smooth” test of fit [2]. :
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