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ESTIMATION OF DISTRIBUTIONS USING
ORTHOGONAL EXPANSIONS

By BRADFORD R. CRAIN
University of Oklahoma

Let f(x) be a continuous, strictly positive probability density function
over an interval [a, b] and F(x) its associated cdf. Suppose {¢:(x)};2, is a
complete orthonormal basis for Ly[a, b] and that f(x) and log f(x) have or-
thogonal series expansions, in the ¢;’s, over [a, b]. Estimators for f(x)and
F(x) are chosen from the canonical exponential family of distributions
generated by {¢i(x)};Z,, and convergence theorems are presented for these
estimators in the special case of Legendre polynomials over [—1, 1].

1. Introduction. Let f(x) be a continuous, strictly positive density over the
interval [a, b] and F(x) its cdf. We assume f(x) simultaneously has the following
orthogonal series expansions:

(1.1) J(x¥) = X0 0.9.(%) a
(1.2) = exp[ 2L 7, 9.(x) — ¥(7)] a

The general problem is to estimate f(x) and F(x) over the support set [a, 6]
within the assumed model (1.1) and (1.2). The approach is a two-phase process:
1. Weapproximate f(x) and F(x) in a very natural way using the canonical expo-
nential family of distributions. 2. We estimate the approximations by taking
advantage of their “intrinsic estimability.” The approximations are of the form
Pu(x|7) = exp[ T v ¢(x) — Wo(e*)]  and  F5(x) = §ipu(v|c*)dy,
where the vector r* € R™ arises from restricted maximum likelihood considera-
tions and is shown to be the almost sure limit of a sequence {r,*} of vector esti-
mates based on a random sample of size n.

This procedure efficiently reduces an infinite-dimensional problem to one of
finite-dimension, and allows the simultaneous estimation of the distribution over
the entire interval of support, rather than at just a point. This latter property
is due to the one-to-one correspondence between the class of all finite-dimensional
canonical exponential distributions and the set of all finite-dimensional vectors
(equivalently, the set of all finitely nonzero elements of R*). Consequently, cer-
tain parametric procedures can be adapted to attack a basically non-parametric
problem.

Several examples of the approximation method are illustrated in Figures 1-3.
Computations were done for the following densities over [—1, 1]: fi(x) was the
uniform density, f,(x) was a truncated normal density, fy(x) = § — (|x]/2), fi(x)

b
x<b.

A

X

A
A

Received June 1972; revised June 1973.

AMS 1970 subject classifications. Primary 62G05; Secondary 62G99, 41A10, 42A08.

Key words and phrases. Densities, estimation of densities, cumulative distribution functions,
estimation of distributions, restricted maximum likelihood estimation, exponential families.

454

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics. MIKOIS

54
éﬁ' B

A

B

. ®
Www.stor.org



ESTIMATION OF DISTRIBUTIONS 455

was proportional to (.5cos (10x) + 1), and f,(x) was split-uniform, taking
the value 2 over [—1, 0] and § over (0,1]. In each example the interval of
support was [—1, 1] because the computations were done in terms of Legendre
polynomials. Since f,(x) and f,(x) are exactly of the exponential class, they
furnished a convenient computer check and were approximated exactly, hence
the results do not appear in the figures. All five examples are piecewise smooth
and positive so that the model (1.1) and (1.2) will apply at points of continuity.
In every case the approximation procedure worked well, surprisingly even for
f3(x) which is discontinuous at the origin.

For convenience, the series expansions in (1.1) and (1.2) are assumed to
converge uniformly on [a, b] (the principal reason is to ensure the conclusions
of Lemma 2.1). The system of functions {¢,(x)}:2, is any complete orthonormal
basis for the space L,[a, b] such that each ¢,(x) is continuous and ¢,(x) is a con-
stant. For1 < i,j < oo, {® ¢,(x)¢;(x) dx = §,;, where d,; is the Kronecker delta.
The coefficients #, and r; in the model are §¢ ¢,(x)f(x) dx and {} ¢,(x) log f(x) dx
respectively. The normalizing function ¥(z) = W(r,, t,, 75, - - -) is determined
by the condition that {? f(x) dx = 1, thus exp[¥(z)] = (! exp[ X5, 7 ¢i(X)] dx.
Furthermore, we impose a regularity condition on {¢,(x)},:

REGULARITY CONDITION. Assume that every non-degenerate generalized pol-
ynomial 317, ¢; ¢,(x) achieves its supremum over [a, b] at a finite number of
points at most; let ®(m) denote that number of points.

Then for every integer m and ¢ € R™ (¢ = 0),

(1.3) fa [T € 9i(x)] dP(x) < max,., [Z?:l c; P(X)] »
where dP is any probability measure over the Lebesgue subsets of [a, 6] which
has more than ®(m) points of support in [a, b].

REMARK 1.1. The regularity condition on the system {¢,(x)}7,, more specifi-
cally relation (1.3), is needed in the proofs of Theorems 3.1 and 3.3. Since in
this paper we eventually choose {¢,(x)}2, to be the Legendre polynomials over
[—1, 1], we define @(m) to be [(m/2) + 1], the greatest integer less than or equal
to (m/2) + 1.

Now suppose X, X,, - -+, X, is a random sample from f(x).

DerINITION 1.1. Fori = 1,2, 3, ..., the sample mean ¢, of ¢,(x) is defined

to be ¢, = (1/n) 3., $i(X)).
The likelihood function L(X;, X,, - - -, X,; 7) is given by

(1'4) L(Xl’ Xz’ Tt Xn; 7) = 7;=1f(Xj) = exp{n[Z?zl Tiﬂz;i - IIJ.(T)]} N

The method of maximum likelihood is not @dequate to estimate the ¢,’s since
there are too many of them. Alternately, the likelihood function can be made
arbitrarily large by choosing r € R* which concentrates the probability mass of
f(x) about the sample points.

We consider a restricted maximum likelihood approach. Set all but the first
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m of the z;’s equal to zero and consider maximizing over all = € R™ the function
L. (X, Xy -+, X,; 7) given by

(1.5) Lop(Xpy Xy -y X3 1) = T exp[ 0, 7, (X)) — W(0)]
= exp{"[z =1 Tz¢ m(T)]} ’
where ¥, (7) = ¥, (¢), 7y, - -+, 7,) = ¥ty Ty -+, T, 0,0, - - -). It will be shown

that the restricted maximum likelihood problem has a solution (unique) with
probability one whenever n > [(m/2) + 1].

DEeFINITION 1.2. The solution vector to the restricted maximum likelihood
problem, whenever it exists, will be denoted by = (k- h)

REMARK 1.2. 7,* has a number of useful properties to be presented later.
Note that z,* lies in R™ by (1.5). Its components depend on both m and n; this
dependence has been suppressed to ease notation.

2. The canonical exponential family.

DEerINITION 2.1. The family of canonical exponential densities (of size m)
generated by {¢,(x)}™ , is the collection of densities {p,(x|7): v € R™} over [a, b],
where for each r ¢ R™,

2.1 Palx]7) = exp[ T, 7,4, (x) — W, (2)] a<x<b,
The integral exp[W, ()] = (! exp[ 1™, ;¢,(x)] dx possesses derivatives of all
orders with respect to the ¢,’s which may be passed through the integral sign.
Consequently, by differentiating exp[¥,(r)], and a little manipulation, one
obtains

(2.2) oW, (9))07, = E[¢(X)],  W,(c)/0r,07; = Cov [4(X), ¢,(X)],

where expectation is taken with respect to p,(x|7) in (2.1). The function ¥ (7)
is well-defined, analytic and strictly convex throughout R™ (see Barndorff-Nielsen
(1)

LEMMA 2.1. Let f(x) = exp[2 2,7, ¢,(x) — W(r)], where the series converges
uniformly on [a, b]. Then

(i) exp[m, 7, 9,(x)] > exp[2, ,¢ (x)], uniformly in x, as m — co.

(il) W, () =W(r, 7 ++ 3T 0,0, ) > W(r) = W(r), 7y, ---) as m — oo.

(iii) exp[Xm™, 7, ¢,(x) — W, (7)] — exp[ X2 v, ¢,(x) — W(r)], uniformly in x,
as m— oco.

(iv) §2exp[S7, 7, 6.(x) — Wo(0)] dx — YL exp[ T, 7, g (x) — W(e)] dx, uni-
formly in y, asm — oo (a < vy < b).

(V) §2, () exXpl D117, 0h(x) — Wo(0)]dx — §1 b, (x) eXp[ T2, 7, (x) — W(z)] dx
uniformly in j, as m — oo.

Proor. The uniform limit of a sequence of continuous functions on [a, 6] is
continuous, and hence 7, 7, ¢,(x) is uniformly continuous over [a, b]. The
remainder of the proof follows standard lines and is omitted.



ESTIMATION OF DISTRIBUTIONS 457

By Lemma 2.1, the canonical exponential family provides distributions which
uniformly approximate f(x) and F(x) over [a, b].

3. Existence of the restricted maximum likelihood estimator. By (1.5) the
restricted MLE 7, * exists iff 0,"(z) = ™, t,¢, — W,(r) achieves its supremum
over R™. The function W, (r) is strictly convex so that Q,™(z) is strictly concave
on R™ (see Barndorff-Nielsen [1]) and z,* will be unique when it exists (Zangwill
[11]).

Let A(z) be a class C* function from R™ to R™. The Hessian matrix for #(z)
evaluated at ¢ is defined to be the m x m matrix H,(r) whose ijth element is
0*h(z)/ot, 0t

Now with probability one, ¢, — 0, (0, = (! ¢,(x)f(x) dx) as n — co (n = sample
size), so that corresponding to an infinite sample, the function Q,"(r) =

m, 7,0, — W, (r) is introduced. Q,™(r) is a strictly concave function of z, since
its Hessian matrix is the negative of the Hessian matrix for ¥ (), and is thus
negative definite (a condition sufficient for strict concavity, Zangwill [11]).

The next theorem is a result which can be found in Barndorff-Nielsen. An
independent proof is given which is of interest by itself.

THEOREM 3.1. The function Q,(t) achieves its supremum over R™ for every
positive integer m.

Proor. Q,™(t) is continuous, strictly concave and Q,™(0) is finite. Choose an
integer n such that Q,”(0) = —n. The set §," = {re R™|Q,"(r) = —n}is a
closed, convex set containing the origin. We show §,™ is bounded, hence com-
pact, and thus Q,”(z) achieves its supremum on §,™.

By aray in R™ we mean the point set {y + oc|o = 0} where |[c|| = 1, y, ce R™,
p real. A closed, convex subset of R™ is bounded iff it contains no rays
(Rockafellar [7]). Thus we show that an arbitrary ray {y + oc|p = 0} cannot
lie entirely in §,™. Define ¢: R' — R' by ¢(p) = Q,"(y + pc). Then ¢(p) is
strictly concave, hence ¢'(p) is strictly decreasing. If p, is a number such that
¢'(p,) < 0, then by the Taylor’s series expansion of ¢(p) for o > p,,

(3.1 B(0) = P(0,) + ¢"(E)(0 — 0,)
for some & ¢ (o,, p), and
(3-2) B(0) < P(po) + ¢'(0o)(0 — 05) 0> 0.

This would imply that ¢(0) — — oo as 0 — oo and S,™ could not contain the ray
{v + oclo = 0}.
To finish the theorem we show ¢’(p) < 0 for all large p. With y = (v, v,,- - -, v,)

¢ = (¢ Cy -5 ¢, Bp) = 2my (v, + oc)0, — W, (v + pc), by the chain rule
we have
(3.3) F(0) = Trac 0, — Ty ¢, d¥, (v + 00z, .

Using (2.1) and (2.2) and interchanging summation and integration, we get
(34) =1 €, amm(,y —+ pc)/(?rl = E[Zﬁ—z c, ¢z(/\/)]
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where the expectation is taken with respect to p,(x|y + oc). As p — co, the
probability distribution p,(x|y + pc) becomes more and more peaked or con-
centrated about the points x € [a, b] for which 3™, ¢, ¢,(x) is maximum, and so

i=1"1
(3.5) 2, amm(y + pc)/oT; — SUPugasp 2are1 € Pil(X) as p—oo.

Inview of (1.3), (3.4) and the observation that 3™ ¢, 0, = (5[ 1™, ¢, ¢,(x)]f(x) dx,
it follows that ¢’(p) < 0 for p large.

DEeFINITION 3.1. For each m, the unique vector in R™at which Q,™(z) achieves
its supremum will be denoted by r*.

The dimension and components of ¢* all depend on m.

The vector r* maximizes Q,™(t) over R™ iff

(3.6) VO,"(z) =0 (Zangwill [11]), or
(3.7) VU (c*) =0,

where V¥ (7) = (0¥ ,(7)/d7y, - - -, 0¥, (7)/d7,) is the gradient mapping and 6 =
0y, 055 - -+, 0,). When the restricted MLE z,* exists, it must satisfy

(3.8) vVo,™(z,*) =0, or
(3.9) ¢ =V (z.%), where ¢ = (¢, by, -+, &) -

DEerINITION 3.2, The symbol 22(VW ) represents the range of the gradient
mapping V¥, (7), that is, <2(V¥,) = (VU (7) |7 € R"}.

REMARK 3.1. Leta = (a,,a,, ---,a,) € R™. Thefunction Q,(¢) = Y™, r,a,—
W,.(r)achieves its supremum over R™iff VQ,(z) = 0 has asolutioniff a € =2(V¥ ).
By Theorem 3.1 we alwayshave @ = (6, 0,, ---,0,) € Z2(V¥,). Also, z,* will

exist iff ¢ € .2(VU ).
The following results can be found in Barndorff-Nielsen [1]:

Lemma 3.1. 22(VW,) is an open, bounded, convex set.

LeEMMA 3.2. The gradient mapping V¥, . R™ — (VW) is 1-1 and has a con-
tinuously differentiable inverse on <2 (VW ).

DEFINITION 3.3. Theinverse mapping (V¥,)~'isdenoted by ¢,,: 22(V¥ )—R™.

THEOREM 3.2. For each m and for all sufficiently large n, v * exists and v, * — t*
almost surely as n — oo.

Proor. .<2(V¥,) is open and contains ¢. Since ¢ — # a.s. as n — oo, with
probability one we have ¢ ¢ ~(V¥,) foralllarge n. Butz, *existsiff e ~(VE,),
so that for n sufficiently large, V¥ ,(r,*) = ¢, and by Lemma 3.2,

which implies
(3.11) lim,  r,* = lim,__, ¢.(4) = ¢,.(0) (as.)

= (VI ,(c%)) = %
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DEerFINITION 3.4. @, is the set of vectors v € R™ with v, = (! ¢,(x) dP(x), 1 <
i < m, where dP(x) is any probability measure on the Lebesgue subsets of [a, b]
having [m/2] + 2 or more points of support.

THEOREM 3.3. For each m the sets S2(V¥ ) and ©,, are identical.

Proor. Suppose v e 22(V¥,). Then v = V¥, (7) for some r € R™. By (2.2),
v, = \’ ¢,(x) dP(x) where dP(x) = p,(x|7)dx and hence ve ©,,.

Next suppose v € ©,,. The function Q,(r) = X, 7,0, — ¥,(r) can be shown
toachieve its supremum over R™ by using (1.3) and the identical proof of Theorem
3.1. Hence ve #2(V¥,,), and so O, = 2 (V¥ ,).

Let X, X,, - -+, X, be a random sample with common marginal density f(x) as
given in (1.1) and (1.2). If F,(x) is the empirical cdf and n > [m/2] 4 1 then
dF,(x) a.s. has at least [m/2] + 2 points of support in [a, b]. Since ¢, =
{2 (x)dF,(x), 1 <i < m, by Theorem 3.3 we have ¢ = (¢,, ¢,, ---, 4,) €
A(V¥ ) a.s. whenever n > [m/2] + 1. But ¢ e 22(V¥,) iff 7,* exists, so the
next result is proven.

THEOREM 3.4. The restricted maximum likelihood estimate t * exists almost surely
whenever n > [m[2] + 1.

The next theorem gives an appealing property of z*.

THEOREM 3.5. Suppose that f(x) is of the canonical exponential family of densities,
i.e., f(x) = exp[ i, 7, (x) — W,(r)] for some positive integers. Then p,(x|t*) =
f(x) on [a, b] whenever m = s.

Proor. For m = s we have § = VW (c*) by (3.7), where # e R*. Set r =
(T4, Tgs =+ +» Tp) Where t, = 0 for s + 1 < i < m. Then V¥ _(7) = 0 by (2.2), so
V¥, (r) = V¥ ,(c*). Lemma 3.2 then implies ¢,(V¥, (7)) = ¢,(V¥,(c*)) or
T = 7¥.

4. Estimation. The system of normalized Legendre polynomials is a complete
orthonormal basis for L,[—1, 1] and satisfies all previous assumptions on the
system {¢,(x)}Z,, including (1.3). Throughout this section we take {¢,(x)};z, to
be the normalized Legendre polynomials and [a, 6] = [—1, 1]. Theset {¢,(x)}~,
is an orthonormal basis for the vector space .., of polynomials with real co-
efficients and of degree < m.

Now for f(x) given by (1.1) and F(x) its cdf, we have, by (3.7)

0; = {11 ¢u(x)f(x) dx = {1, gy(x)pm(x|7*) dx, 0si<m.
LemMma 4.1. If 0 < k < m then
(4.1) §L, X5f(x) dx = L, x4p, (x| ) dx .

Proor. For0 < k < m, write the monomial x* = 3 ¥, a,*¢,(x). Interchanging
summation and integration,

§LixMf(x) dx = Tt a §Ly u(x)f(x) dx
= Dl §L gu(X)pa(x | 7¥) dx = §L, xipy (x| c*) dx .



460 BRADFORD R. CRAIN

DEFINITION 4.1. F,_*(x) is the cdf corresponding to p,(x|7*).
THEOREM 4.1..F *(x) — F(x) uniformly as m — oo.

Proor. By Lemma 4.1, lim__ §!, x* dF, *(x) = {1, x* dF(x) for all positive
integers s. By the Weierstrass Approximation Theorem it follows that
lim,,_. {1, 9(x) dF,*(x) = §., g(x) dF(x) for all continuous functions g(x). The
sequence of probability measures {dF,*} then converges both weakly and vaguely
to dF, and so F,(x) converges everywhere on R' to F(x). The proof of uniform
convergence is straightforward.

DEFINITION 4.2. F_ (x) is the cdf corresponding to p,.(x|z,*).

COROLLARY 4.1. With probability one,
(4.2) lim,_ lim,_ F,.(x) = F(x), uniformly in  x .

PROOF. 7,* — t* as n — co implies F,,(x) — F, *(x) as n — oo by the Domi-
nated Convergence Theorem, and F_*(x) — F(x) as m — oo by Theorem 4.1.
The uniform part is straightforward.

The 6,s in (1.1) can be estimated unbiasedly by the ¢,’s where ¢, =
', #(x) dF,(x) and F,(x) is the empirical cdf. If F(x) is expanded as

4.3) F(x) = XL Bigu(x) —l=x=<1,

where 8; = {1, ¢,(x)F(x) dx, then 5, = §L1 ¢:(x)F,(x)dx is an unbiased estimate
of 8, (Kronmal and Tarter [4]).
If the cdf F,*(x) is expanded in an orthogonal series also by

(4.4) For(x) = D Bmoux) —-l=x=s1,
then using Lemma 4.1 and integration by parts it can be shown that

(4.5) B =B, i=0,1,.-.,m—1.
Similarly if we expand p,(x|z*) by

(4.6) Pu(X[7¥) = Lo 0.79(x)

we have by (2.2) and (3.7) that

4.7 0, =06, i=0,1,2,--.,m.

THEOREM 4.2. The function [F, *(x) — F(x)] has at least m — 1 zeroes in the
interval (—1, 1). The function [p,(x|7*) — f(x)] has at least m zeroes in the interval
(=1,1).

Proor. By (4.5), {1, ¢,(x)[F,.*(x) — F(x)]dx =0for0 <i<m — 1. Since
{¢:(x)}' forms an orthonormal basis for the space ., _, of polynomials of degree
=m—1, {1, p(X)[F,*(x) — F(x)]dx = 0 for any p(x) € &, _,, a condition suffi-
cient for the first part of the theorem. Since F,*(x) = F(x)at x = —1, 1, the
second part follows from Rolle’s Theorem.

REMARK 4.1. We see a good approximation to F(x) can be chosen from the
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canonical exponential family, if * is known. The vectors z* (m =1, 2, .. +)
are in general unknown, but are intrinsically estimable by Theorem 3.2.
DEeriNiTION 4.3. The Kullback-Leibler information number /[ f; g] is defined
by
(4.8) 115 91 = § /(x) log [ f(x)/9(x)] dx .
I[f; 9] is nonnegative and equals zero iff f(x) = g(x) a.e.-Lebesgue measure

(Kullback [5]).

THEOREM 4.3. [ f(x); p.(x|t*)] converges to zero as m — co.

Proor. With f(x) given by (1.2) and p,(x|7") = exp[ X", 7,/ (x) — ¥, ()],
where 7’ is an arbitrary vector in R™, we have
0 < §1,f(x) log [f(x)/pn(x | )] dx, e R™
49 0= Sllf(x){[Zl 17 0u(x) — W(o)] — [Z7/dUx) — W, ()]} dx
0=<[Xinl, —¥()] - [Zric/0, — V()]

Now r* maximizes Q,"(c) = 3™, 7,0, — ¥, (r) over R™as was proved in Theorem
3.1, so for any ¢’ € R™,
(4.10) 0= [Zzind — Y@l — [Zhie*0, — V(=)

S [Znnl, =¥l — [Zr/0, — V()]

or equivalently
(4.11) 0 = I[f(x); pu(x[79)] = I[f(x); pul(x|2)] TeR™.
In particular, with ¢/ = = where ¢ = (7}, 7,, - - -, 7,,) and 7, = {1, ¢,(x) log f(x) dx
as in (1.2), we have
(4.12) 0 = I[f(x); pu(x|7¥)] = I[/(x); pulx[7)] -
By assumption, in (1.2) the series )}, 7, ¢,(x) converges uniformly, and using
Lemma 2.1 we have
(4.13) log [ f(x)/p.(x]|7)] — 0, uniformly in  x, as m-— oo .
By (4.12), this proves the theorem.

REMARK 4.2. From (4.11) it is evident that * minimizes I[f(x); p(x|7")]

over all 7’ € R™, thus p, (x| z*) is that density of the canonical exponential family
of size m which most resembles f(x) in the sense of Kullback-Leibler information.

THEOREM 4.4. The sequence p,(x|t*) converges to f(x) in the L,-norm, i.e.,
Sl—l |Pm(x|7*) _f(x)| dx hand 0 asm — oo.

Proor. See Kullback [5], page 390.
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