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ON MAXIMAL REWARDS AND ¢-OPTIMAL POLICIES IN
CONTINUOUS TIME MARKOV DECISION CHAINS'

By MARkK R. LEMBERSKY
Oregon State University

For continuous time Markov decision chains of finite duration, we
show that the vector of maximal total rewards, less a linear average-return
term, converges as the duration t » co. We then show that there are policies
which are both simultaneously e-optimal for all durations ¢ and are sta-
tionary except possibly for a final, finite segment. Further, the length of
this final segment depends on ¢, but not on ¢ for large enough ¢, while the
initial stationary part of the policy is independent of both ¢ and ¢.

1. Introduction. In this paper we consider continuous time parameter sta-
tionary finite state and action Markov decision chains with finite durations. We
first examine the behavior of the vector of maximal total expected rewards V*
as a function of the process duration z. We show that (Theorem 1) V*, less ¢
times the maximal long-run average return rate U, converges as t — co. Thus,
while it was well known that V* does not generally approach a finite limit, we
establish that V'’ eventually grows essentially linearly in the duration ¢, at the
rate U.

Using the convergence of V* — tU, we then show (Theorem 2) there are policies
which are both simultaneously e-optimal for all process durations and are sta-
tionary except possibly for a final, finite segment. Further, the length of this final
segment depends on ¢ but not on ¢ for large enough ¢, while the initial stationary
part of the policy is independent of both ¢ and t.

Results of this type for discrete time Markov decision chains have been pre-
sented by Brown [3] and Lanery [8]. Instead of convergence and the existence
of initially stationary ¢-optimal policies, their results deal with asymptotic perio-
dicity (i.e., the existence of an integer period p > 1 such that V*?»*™ — (np + m)U
converges as n — oo for each m = 0, 1, - - .) and the existence of initially periodic
(with period p) e-optimal policies. Incidentally, it appears that the proof of the
main lemma in Brown is either incorrect or incomplete. More specifically,
when there are more than two states, the argument of the last paragraph of his
Lemma 4.7 is not valid as given. The periodicity cannot in general be removed
from the discrete time results, as is shown by examples employing stationary
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policies for which the least common multiple of the periods of the recurrent
classes is greater than one. In continuous time, however, under any policy the
probability of being in a state at a time s units beyond ¢, given the system is in
that state at time ¢, is strictly positive for all s > 0. In other words, “periodic
states” do not exist, suggesting the results of this paper described above. We
remark that we will not prove these results by incorporating the “aperiodicity”
into arguments paralleling the discrete time development. We found instead
that, after the preliminaries, different methods were necessary.

1.1. The decision processes. For the most part our formulation of continuous
time Markov decision chains follows Miller [13]. However, unlike Miller, we
find it convenient to use the reversed time orientation common to many dynamic
programming studies. More specifically, we take as our time index set the non-
negative real line [0, co). Then the duration of any particular decision process
can be any ¢t > 0, and we assume that if the duration is ¢, then the process begins
at time ¢, with the time index decreasing as the process evolves, and with the
process terminating at time zero.

We consider a system that is always in one of N states and we let § = {I,
2, ..., N} denote the state space. For each instant that the system is in the state
i, an action a is selected from the finite set 4,, one such set being defined for each
ieS. Note that the action chosen upon entry to a state need not be the one
used for the entire stay in that state. Associated with each action a € 4, is both
a set of state transition rates {q(j|i, a), j € S} and a reward rate r(i, a). The transi-
tion rates are such that ¢(j |7, a) = 0 for all j # i, with }}¥_, q(j|i, a) = 0. For
each j # i, q(j|i, a) can be interpreted as the transition probability ‘rate’ from
state i to state j when the action a € 4; has been chosen. The number r(i, a)
represents the reward earned per unit time whenever the system is in state i and
a is the selected action.

When the process stops at time 0 a terminal reward is received, its value depend-
ing on the final state of the system. In other words, there is an N component
column vector of terminal rewards such that if a process ends in state i, then
the ith component of that vector is the terminal reward earned.

We define F = X%, 4, and call fe F a decision rule. Each such decision rule
is a function assigning to each state i an action in the corresponding set 4,. For
each fe F we let Q(f) be the N X N generator matrix whose ijth element is
q(j |, f(i)), and let r(f) be the N component column vector whose ith component
is r(i, f(i)).

A policy 7 : [0, o) — F is any measurable function which specifies for each
t > 0 a decision rule in F. Here = measurable means that for every fe F, the
set {t = 0: m(f) = f} is a Lebesgue measurable subset of [0, co). Using the policy
7 in the system means that if at time ¢ we are in state i and 7n(f) = f, then f{i)
is the action in 4, to be chosen. Notice that for convenience each policy = is
defined on the entire interval [0, co), while in a decision process of duration ¢
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which operates using =z, only the decision rules z(s), 0 < s < t, are used, with
n(t) the first decision rule used and =(0) the last.

If = is such that z(t) = f for all + = 0 for some f € F, then the policy is called
stationary and is denoted f~. We will say =« is initially stationary if there is a
0 < s < o and an fe F for which #(f) = ffor all t = s.

Miller [12], [13] proved that for any policy = the accompanying set of gener-
ators {Q(n(t)), t = 0} determine a continuous time (in general, non-stationary)
Markov chain with piecewise constant sample paths. Let P(., «; 7)bethe N X N
matrix transition function associated with this chain; i.e. for each0 < s < ¢, the
ijth element of P(t, s; «) is the probability that the system is in state j at time s,
given it was in state i at time ¢ and that « is being used. In the sequel we will
abbreviate P(t, 0; 7) to P(¢; ).

For every t = 0 we define V'(x, x) to be the N component column vector of
total expected rewards earned during a process of duration r—or, equivalently,
the total expected remaining rewards in a process ¢ time units from termination—
when the system is operated under the policy = and the terminal reward vector
isx e R¥. The ith component of ¥!(x, x) is thus the total expected reward earned
given that the process starts from state 7 at time ¢. Evidently,

Vir, x) = ¢ P(t, s; m)r(n(s)) ds + P(t; ©)x forall r>=0.

Note that it follows from the Markovian nature of our system that if = and =’
are two policies such that for some r > 0 and all s > 0, #’(s) = =(¢ + s), then
Vit(z, x) = V*(z', V¥(r, x)) for every s = 0.

1.2. Statement of results. For any function ¢ with range in RY, we let
|¢(#)|. = max, s |p,(#)| and we define sup, ¢(x), and similar operations, com-
ponent-wise; e.g. [sup, ¢(#)]; = sup, ¢,(u) for all i e S.

When the terminal reward is x € R”, the policy = is called x-optimal if Vi(x,x) =
Vi(x', x) for all policies z’ and all t = 0. We let =,* denote any such policy.
Observe that such a policy maximizes total expected rewards simultaneously for
every ie Sand t = 0. Also note that V***(x_*, x) = V*(z,*, z) for all ¢, s = 0,
where z = V¥(n,*, x). We denote by v the actual terminal reward vector of our
decision process and call z,* optimal. For convenience, we let #* = x,*. The
policy = is called e-optimal if, for ¢ > 0,

SUpP,zo | Vi(7*, v) — Vi, V)|, S €.

Thus an e-optimal policy must produce total expected rewards within ¢ of the
maximum possible simultaneously for each ie S and every ¢ = 0.

Weset U = limsup, ., t7'V(z*, v). Itis evident that sup, lim sup,_,., tV¥(x,
v) = U, so U is the maximum possible long-run average return rate.

The two main results to be established can now be restated as

THEOREM 1. Vi(z*, v) — tU converges as t — co.

THEOREM 2. There is an f e F such that for every ¢ > 0, there is a t(c) > 0 for
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which the initially stationary policy =°,
() = 7*(t) for t < t(e)
= for 1z 1),
is e-optimal.

2. Preliminaries. We first summarize some useful results on stationary policies
and the decision rules they are constructed from. When the stationary policy
f= is used, the resultant process is the continuous time, stationary Markov chain
generated by the matrix Q(f), with P(z, s; f=) = e~/ forall t > s = 0 (where
e = [ 4 = (u[n!)Q"(+)). It follows that P(¢, 5; f=) = P(t — s; f=) for all
t = 5 = 0. Further, for each fe F there is an N X N stochastic matrix P*(f)
such that lim,_,, P(t; f*) = P*(f); Doob ([4] page 236). Additionally, P*(f) is
such that P*(f) = P*(f)P*(f) = P(t; f=)P*(f) = P*(f)P(t; f~) for allt = 0, so
Q(NPH(f) = PH(NHQ(Sf) = 0.

Foreach fe F, let y(f) = e [P(t; f~) — P*(f)]r(f)dt, which is known to exist
([14] page 561) and be the unique solution of

1) Pr(f(f) =0,

) o w(f) = P*(NHr(f) — r(f) -
Lemma 1. For fe F and x € R”,

(@) V(f= %) = x + T3 () HNr(Sf) -+ Q(f)x], for all t = 0.

(ii) (d/d)Vi(f=, x) = r(f) + QU IV'(f=, x) forall t 2 0.

(iii) VA(f=, x) = tPX(H)r(f) = y(f) + P*(f)x ast — co.

Proor. Parts (i) and (ii) are proved in [13], page 271, for the time orientation
opposite to ours. We prove part (iii). Since P(t, 5; f~) = P(t — s; f), it follows
that for all + > 0, V(f*~, x) = {t P(u; f<)r(f) du + P(t; f=)x = s [P(u; [~) —
P*()Ir(f) du + P(t; f=)x + tP*(f)r(f). The result follows by letting t — co and
noting the definition of y(f) and P*(f).

From part (iii) of this lemma it follows that lim,_, t='V'(f>, v) = P*(f)r(f)-
We define F’ = {f: fe F, P*(f)r(f) = U}. Thusif fe F’, then f~ maximizes the
long-run average return rate over all policies z. It is known ([14] Section 5)
that F’ is not empty.

We say a policy = is piecewise constant and right continuous if the function
(1) is piecewise constant in ¢ and if z(¢) = lim, ,7(¢t 4 s5) for all t > 0. An
easy extension of a main result of Miller, proven only for x = 0 in [13], is that
for any terminal reward vector x € R”, there exists a piecewise constant, right
continuous, x-optimal policy. (Actually, the decision rules could be selected
arbitrarily at the discontinuity points of the policy, but we find it convenient
to specify right continuity.) Therefore, without loss of generality, we refine
our definition of optimality so that every x-optimal policy is piecewise constant
and right continuous. We can then infer from [13] the following result.

LEMMA 2. When the terminal reward is x ¢ R”,
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(i) a necessary and sufficient condition for the piecewise constant, right continuous
policy w to be x-optimal is that

r(@(1) + Q@(O)Vi(z, x) 2 r(f) + AN)V(=, x)
forall feF and t=0.

(ii) For any x-optimal policy = *, Vi(x *, x) is continuously differentiable in t and
di Vix,*, x) = r(m, (1) + Q@ () Vi(x,* x)  forall t=0.
t

The remainder of this section is in the same spirit as parts of Brown [3]. The
required proofs are provided in Lembersky [10]. The first result insures the
existence of a limit point of {V*(z*, v) — tU, t = 0}.

LemMMA 3. Vi(n*, v) — tU is bounded in t.

Next we introduce a convenient ‘condensed’ decision process system. Every
action, decision rule, and policy of this new system is also a part of our origi-
nal system, but not conversely. We define for each i€ S, A4, = {a:ae A4,

¥ 1 q(j|i,a)U; = 0}. Thus the reduced set of decision rulesis F = X, 4, =
{f: feF, Q(f)U = 0}. Also, #(i,a) = r(i,a) — U, forallic Sand a € 4,. Thus
#(f) = r(f) — U for each fe F. We let V!(#, x) be the total expected reward
earned in the condensed system during a process of duration ¢, when operating
under the policy # and when the terminal reward is x. We make the obvious
definitions for #,*, y(f), F', etc.

The link between the two systems is provided by

LEMMA 4. There exists t* > 0 such that n*(t) € F for all t > t*.
We set w = V*(z*, v) and specify that w is to be the terminal reward of the
condensed system. We also define #* = 7,*. We then can show using Lemma 4
that

3) Vi#*, w) = V{(x,*,w) —tU  forall +>=0.

This follows since whenever = is piecewise constant and =() e F for all + > 0
then V(z, x) = V'(r, x) — tU for all ¢+ > 0, and further, if z,*(t)e F for all
¢ >0 then #,* = x,*.

Note that since U = lim sup,_,, t*V4(#*, w), it follows from (3) that U = 0.

3. Proof of Theorem 1. Since V(z, *, w) — tU — t*U = V**¥(x,*, v) —
(t + t*)U for all + = 0, we have by (3) that to prove Theorem 1 it is sufficient
to show that 17‘(7%*, w) converges as t — oo, which is what we do in this section.
Therefore, throughout this section we will consider only the condensed system.
For convenience, we drop the tilde notation.

We start with two results giving some conditions for convergence. We omit
the proofs, which use standard methods and are in Lembersky [10].

LEMMA 5. Suppose {f™(x, z),n = 1,2, ...} is a family of functions from X x Z
into RY and g(x, z) is a function from X x Z into RY for which
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(i) f™(x, z) — g(x, 2) uniformly in x and z as n — oo, and
(i) for each x € X there exists z2(x) € Z such that sup, g(x, z) = g(x, z(x)).
Then

sup, f™(x, z) — sup, g(x, z) uniformly in  x as n— oo.

LemMA 6. Suppose {f™™, n,m =1,2, ...} and {g", m =1, 2, ...} are collec-
tions of elements of R" and h is an element of RY for which

(i) fm™ — g™ uniformly in m as n — oo, and
(i) f™~™ —>hasm — oo.

Then g™ — h as m — oo.

There will be several key applications of the following result.

LeEMMA 7. Suppose there is a set {t,,n=1,2, ...} and a We R for which
t,— oo and V'n(n,*, x) — Wasn— oco. Then

Viats(z *, x) — Ve(my*, W) uniformly in s =0 as n—co.

ProOF. Let ¢ > 0 and set V'» = Vin(z *, x). Then there is an n(¢) such that
n = n(e) implies |V» — W], < e. Thus, for n = n(e), |P(s; 7)(Vis — W)|,, < ¢

for all s>0 and policies =. However, since V(m, V') — V(r, W) =
P(s; m)(V'» — W), if follows that for all n > n(e), s = 0, and policies =

|Vi(z, Vi) — Ve(z, W)l < e

Consequently, if we now identify the set {s: s = 0} with X, the set of policies
with Z, V*(z, V's) with f*(x, z), and V*(z, W) with g(x, z), we have that (i) of
Lemma 5 is satisfied. Clearly (ii) also is satisfied. Therefore we can conclude
that V*(z%,,, V') — V*(z,*, W) uniformly in s > 0 as n — oo, from which the
desired result follows.

Let 2/ be the set of limit points of {V*(z*, w), t = 0}. We now establish some
properties of 2/ and its members. \

LEMMA 8. The set Z/ is not empty. Suppose Y € Z/. Then

(i) (Vzy*, Y), 12 0) C 7.
(ii) {V¥my*, Y), t = 0} is a bounded set.
(iii) Y is a limit point of {Vi(x,*, Y), t = 0}.

Proor. By Lemma 3 and (3), it follows that V*(z*, w) is bounded in 7. There-
fore, 7/ is not empty.

Let Ye?Z. Then there is a set {t,,n=1,2, ...} such that 7, —» co and
V‘n(ﬂ*, w) — Y as n — oo.

By Lemma 7 it follows that for any ¢t > 0, Vist(z*, w) — Vi(z,*, Y) as
n — oo, establishing (i).

The second result follows from (i) and the fact that, since V(z*, w) is bounded
in 7, it must be that the set Z/ is bounded.
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Since ¢, — oo as n — oo, we can find a subsequence {t,/,n =1, 2, ...} such
that t,' > co and (#,,, — t,)) >0 asn—oo0. Form=1,2, ..., we let s, =
thion — tn, = 0. Obviously Vi *m(z*, w) = Vim+i(n*, w), O Vin'*m(z*, w) —> Y
as m — oco. Also, by Lemma 7, Via'**m(x*, w) — Vem(z,*, Y) uniformly in m as
n — co. Thus, with the proper identification, (iii) follows by Lemma 6, since
Sy —> 00 aS m — oo.

For fe F, let C(f) be the set of recurrent states in the Markov chain associated
with the policy f~. Also, define C = U ., C(f).

For x ¢ R¥ we let D(x) be the set of decision rules g for which g € F’ and for
which for all fe F, whenever [P*(f)r(f)]; = O for some ie S, then [y(9) +
P¥(g)x], = [y(f) + P*(f)x],. For ge D(x), let x* = y(g) + P*(g)x, which is
clearly well defined.

LeEmMMA 9. For x e RY, D(x) is not empty. Further,

(i) r(f) + Q(f)x* = 0 for fe F.

(i) r(g) + Q(g)x* = 0 for g € D(x).

A more general version (U = 0) of this result is given in Lembersky ([10]
pages 12-13). The discrete time decision process analog of that result is in
Veinott [22] for x = 0 and is extended to x 0 in Lanery [8]. The argument
of Veinott ([23] Section 5), which establishes that the discrete time result for
x = 0 also holds in continuous time, can be used to provide a proof of the result
in [10].

For the balance of this section we set V! = Vi(x,*, Y) forall + = 0, where Y
is chosen from Z/.

LemMa 10. Suppose Y e 2/ and fe F'. Then

(i) Y= Y*=y(f) + P(NY.

(i) Y, = [y(f) + PX(f)Y]; for all i€ C(f).

(iii) Y, = Y;* forallie C.

Proor. By Lemma 8 (iii) there is a set {s,,, m = 1, 2, - ..} such that 5, — oo
and V*» — Yasm — oo. Letge D(Y). Then P*(g)r(9) = 0 and so by Lemma 1
(iii), as m — oo, V*m(9=, Y) — y(9) + P*(g)Y = Y*. Since V' = Vi(g~, Y) for
all = 0, it follows that Y = Y*. But Y* = y(f) + P*(f)Y for fe F’; there-
fore, (i) is established.

Leto = Y — y(f) — P*(f)Y. Then by (1), P*(f)0 = 0. However, if i ¢ C(f),
then P}(f) is strictly positive whenever j is in the same communicating class as
i, and is zero otherwise. Therefore, since § > 0, it follows that d, = 0 for all
i€ C(f). This immediately establishes (ii) and implies Y, = Y,* for all i e C(f)
whenever fe F’, from which (iii) follows.

LemMMA 11. Suppose Y € Z/. Then

() 0K Vit —Y* S P(t + s, t; mp*) (VP — Y*) forall t, s = 0.
In fact,
(ii) there exists a« = 0 such that max, ¢ [V' — Y*], = « for all t = 0.
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Proof. Let g€ D(Y). Then it follows from Lemma 1 (i) and Lemma 9 (ii)
that V¥(g=, Y*) = Y* for all t > 0. Consequently, by Lemma 9 (i) and (ii) we
have that for every fe F, r(f) + Q(f)Vi(g=, Y*) < r(g) + Q(g)V' (g, Y*) for
all t > 0. This implies, by Lemma 2 (i), that g= is Y*-optimal.

Therefore, for ¢, s = 0,

Vite = (e P(t + s, u; w ¥)r(wy*(w)) du + P(t + s, t; w5V
( r(my*(u) (
=\t P(t + s, u; T ¥)r(mp ¥ (W) du + P(t + s, t; T, *¥)Y*
( y*)r(my* (1)) (
4+ P(t + s, t; T XNV — Y*)
S Vig=, Y*) + P(t + s, t; wp* )WV — Y*)
=Y* + Pt + s, t; wF)N(VE — Y*).

On the other hand, using Lemma 10 (i), V* = V*(g~, Y) = V*(g=, Y*) +
P(u; g°)(Y — Y*) = Y* + P(u; g°)(Y — Y*) = Y*forallu = 0. Thusit follows
that 0 < Vit — Y* < P(t + s, t; m,*)(V* — Y*) for all ¢, s = 0, which is (i).

This result implies that [Vt — Y*], < max, ¢ [V* — Y*], for all je S and
t, s = 0. Thus

“4) max, ¢ [V* — Y*], is non-increasingin .
By setting + = 0 we obtain that
) max, s [V' — Y*], < max, ¢ [Y — Y*], forall +>=0.

Further, by (i), max, s [V* — Y*], is bounded below by zero. Therefore, (4)
implies that there exists @ = 0 such that max, ;[V* — Y*], | @ as t — oo. How-
ever, by Lemma 8 (iii), there is a set {s,,, m = 1, 2, - ..} such that 5, — co and
max; s [V*» — Y*], » max,.s[Y — Y*], as m — oo. Therefore it must be that
a = max, s [Y — Y*],. This, with (4) and (5), implies (ii).

LeEMMA 12. Suppose Ye Z/. Then V! = Y,* forallic C, t = 0.

Proor. Let fe F’. The structure of Q(f) is such that Q,;(f) = 0 whenever
ie C(f) and j¢ C(f). Therefore, by Lemma 10 (ii) and (2), [Q(f)Y], =
[QUNHO() + PH(f)Y)], = —r(f) for all ie C(f). It therefore follows that
[max, .. {r(9) + Q(9)Y}]; = O for all ie C. Certainly this argument applies to
every limit point in Z/. Therefore, by Lemma 8 (i) we have that [max,. . {r(9) +
Q9)V'}], =0 for all ieC, t = 0. Application of Lemma 2 (i) and (ii) then
implies that [(d/df)V*], = 0, so V,* is non-decreasing in ¢ for each ie C. Con-
sequently, by Lemma 8 (ii), for each i e C there is a y(i) such that V,;* 1 y(i) as
t — co. But Lemma 8 (iii) implies that y(i) = Y, and thus that V! 1 Y;ast — oo
forall ie C. But V* = Y; from this and Lemma 10 (iii), the theorem follows.

We can now prove the convergence result.

PrRoOF oF THEOREM 1. Let Y e Z and let a be as defined in Lemma 11. We
first show that « = 0. Let f = x,*(0). Then, since = * is piecewise constant
and right continuous, there is a #;, > 0 such that 7, *(r) = fforall 0 < ¢ < ¢,.
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We shall write i — j if state j is accessible from state i when the policy f= is
used. It is well known that i ~ j if and only if P, (s; f=) > 0 for all s > 0.

Select any 0 < ¢ < t,. By Lemma 11 (ii) there is an ie S for which [V* —
Y*], = a. There are two cases to consider.

Case 1. Thereisa 0 < u < tandaje Ssuchthati~ jand [V* — Y*]; < a.

Let s = t — u. Then, with the aid of both parts of Lemma 11, we obtain the
contradiction that a = [V*** — Y*], < [P(s; f<)(V* — Y*)], < Pi(s; fo)NV* —
Y*];, + a(l — P,(s; f~)) < a, the last inequality since P;;(s;f<) >0 and
[V — Y*]; < a.

Case 2. If i~ jthen [V* — Y*], = aforall0 <u <t

Let 8 = {je S:i->j}. S is never empty since i — i. Note that for je S’
there is no k ¢ S’ for which j-— k, for if there were then i~ k. Thus there
exists a nonempty set S” of recurrent states of the Markov chain resulting from
the use of the policy f= which is such that §” c §’. Also, since Q;(f) =0
whenever je ' and k ¢ §, since each row of Q(f) sums to zero, and since

6 Vir=Y* 4+ a forall jeS and 0<u<t,
7 J .]

it follows that [Q(f)V*]; = [Q(f)Y*],; forall 0 < u < tand je S
Then, using (6) and Lemma 1 (ii), we obtain that

0 = [r(f) + Q) Y*]; forall jes§'.
Let g € D(Y). Using Lemma 9 (ii), if we define the decision rule 4 so that
h(k) = f(k) for keS§
= g(k) for kegs’,

then r(k) + Q(h)Y* = 0. Pre-multiplication by P*(k) reveals that ke F’, and
therefore C(h) c C. However, $” C C(k) and so §” c C. Since S” is nonempty,
it follows by (6) and Lemma 12 that « = 0.

Using this fact, we now finish the proof. Recall that it suffices to show 2/ =
{Y}. Let Ze Z/. There is a sequence {t,, n = 1,2, ...} such that 7, > oo and
Via(n*, w) — Y as n — co. Additionally, there is a second sequence {,/, n = 1,
2, .. .}such that ¢, — co and V'«'(z*, w) — Z as n — oo, and having the further
property that ¢, > ¢, for all n. Define s, = t,’ — t, = 0 for each m. Lemma
7 implies that Viat'm(z*, w) — V'm uniformly in m as n— co. Certainly
Vim*sm(z*, w) — Z as m — co. Therefore, by Lemma 6, V*m — Z as m — oo.
However, by Lemma 11 (i) and (ii), and since « = 0, V* = Y* for all ¢+ > 0.
Therefore, Z = Y*. But V° =Y, and consequently Z = Y* = Y, completing
the proof.

4. Proof of Theorem 2. We now use Theorem 1 to prove that there are
initially stationary e-optimal policies, with the decision rule of the stationary
part independent of . Recall that properties of such policies are valid simul-
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taneously for every process duration t. We revert to using the tilde notation
when referring to the condensed system.

ProoF oF THEOREM 2. Theorem 1 established that there is a ¥ to which
V4(#*, w) converges and that ¥ = Y*. Thus, for every ¢ > 0 there is an s(¢)
such that t > s(¢) implies |4 #*, w) — Y*|, < ¢/2. If we let x = V*© (2%, w),
then

7 |Ve(z,*, x) — Y*|,<¢2 forall s>0.

Let fe D(Y), then V*(f=, Y*) = Y* for all s > 0. Additionally, since by (7)
with s =0, |x — Y*|,, < ¢/2, and since V*(f=, x) — V*(f=, Y*) = P(s; f=)(x — Y*),
we have that |[V*(f=, x) — V*(f>, Y*)|.. < ¢/2. It thus follows that

(8) |Ve(z,*%, x) — V(f>, x)|s < ¢ forall s=>0.

Now set #(¢) = s(¢) + t*, where ¢* is as in Lemma 4, and define z¢ as in the
statement of the theorem. Let t > #(¢) and s =t — #(¢). Then, using (3),
Viat, v) = VA(f=, VEO(n%, 0)) = V([ x+ s()U) = V(f=, 1)+ s()P(s: f)U.
But since fe Fand P(s; f~) = e, it follows that P(s; f~)U = U, and thus that
Ve(f=, x) = V*(f=, x) 4+ sU. Consequently,

9 Vi, v) = V(f=, x) 4 (s + s(e))U .

Again using (3), we have that Vi(z*, v) = Ve+©(x,*, w) = V*Ho(a*, w) +
(s + s())U = V¥(#,*, x) + (s + s(¢))U. Thus, by (8) and (9), |Vi(z*, v) —
Vi(rnt, v)|, < ¢ for all + = 1(¢). This is certainly also true for ¢+ < #(¢). The
theorem now follows since our choice of f does not depend on e.

5. Remarks. Let F* be the set of decision rules which can be used in forming
the initial stationary segments of the policies described in Theorem 2. From
the nature of that theorem, it appears that determining such a decision rule
would be of interest. We call these decision rules the preferred rules. In [10]
we show, under a variety of hypotheses related to the state recurrence structure
produced by stationary policies, how the policy improvement method of Howard
[5] that computes an fe F’ can be used to find preferred rules. Interestingly,
we also show that the sets of often studied and algorithmically obtainable decision
rules optimal under various criteria in infinite duration processes with discounted
rewards (as in Blackwell [2], Miller [14] and Veinott [22, 23]) can, in general,
be disjoint from F*.

6. Acknowledgment. Iam indebted to Arthur F. Veinott, Jr. for his guidance
and his helpful suggestions.
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