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RATE OF CONVERGENCE IN THE SEQUENCE-COMPOUND
SQUARED-DISTANCE LOSS ESTIMATION PROBLEM
FOR A FAMILY OF m-VARIATE
NORMAL DISTRIBUTIONS!

By V. SusArLA
University of Wisconsin-Milwaukee

This paper is concerned with rates of convergence in the sequence-
compound decision problem when the component problem is the squared-
distance loss estimation of the mean of m-variate normal distribution with
covariance matrix I. Section 1 introduces some notation and discusses the
earlier work related to this problem. In Section 2, we prove two lemmas
which are required in later sections. Sections 3, 4 and 5 exhibit sequence-
compound decision procedures whose modified regrets are O(n-1/m+4), near
O(n—t) and near O(n—%) respectively, all the orders being uniform in para-
meter sequences concerned. In Section 6, comparisons have been made
between the procedures given in Sections 3, 4 and 5. We conclude the paper
with a few remarks.

1. Introduction. In order to describe the sequence-compound decision prob-
lem, we have to describe the setup of a statistical decision problem to which
we refer, later on, as the component problem. We follow closely the notation
of [3].

In the component problem there is a family of probability measures & =
{P,|0 € B} defined on a g-field <Z of subsets of .27, an action space 4 and a loss
function L defined on ® x 4. The component problem is to decide about
based on a realization x of a random variable X distributed as P, belonging to
. For any randomized procedure 7, let R(¢, ») denote the risk of using 7 to
decide about ¢ and for any distribution G on O, let R(G) denote the Bayes risk
against G in the component problem.

Suppose we have a sequence of such component problems. Specifically let
X = {X,} be a sequence of independent random variables with, for each n, X,
distributed as P, in & A sequence-compound decision problem is one in which,
for any n, the decision about ¢, is allowed to depend on X, -- ., X, and the loss
at any particular stage n is taken to be the Cesaro sum of the losses in the first
n component problems. For any sequence-compound decision procedure (for
definition, among other references, see [3]) » = {»,}, let R,(8, ) denote the
Cesaro sum of the risks of using the first n components of % to decide about
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SEQUENCE-COMPOUND ESTIMATION 119

the corresponding n components of 8 = {4,} and let

where G, is the empiric distribution of @,, .-, 8,. D, is called the modified
regret of 2.

For any simple symmetric sequence-compound decision procedure (again, for
definition, see [3]) %, it is known that D,(@, ) = 0 for all @ and D (6, ) = ¢ > 0
(¢ is independent of n) for some & whenever inf, sup, {R(0, 1) — inf, R(6, a)} > 0.
However, some non-simple procedures have been exhibited whose D, functions
are bounded by a null sequence (often, this null sequence is independent of @
and converges to zero with certain rate) for special choices of ©, 4, & and L.
(see references [2], [3], [5], [6], [7], [10], [11] and [12].)

Commonly, the idea is to define the procedure 7 is such a way that its nth
component is a natural estimate of ¢,_,(X,), where ¢, is a Bayes response versus
G,, and show that P,[|p, — ¢,_,(X,)|] — O (possibly with certain rate) when O,
A, &, and L satisfy certain conditions. This idea is related to the inequalities
(8.8) and (8.11) of [6] which, in our notation, can be stated as
(1.2) nt 3yt R(O; ¢;) < RG,) = nt Y5 RO ¢;-0)
where ¢, is any arbitrary decision rule. The sequence-compound procedures
exhibited in this paper use this idea.

The result most comparable to the results of this paper appears in [3], where
a sequence-compound decision procedure with modified regret O(n~*) (uniform
in parameter sequences) is exhibited for the case when the component problem
is the squared-distance loss estimation of the mean (lying in a compact set) of a
univariate normal distribution. A generalization of this result is given in Section
3. For other rate results, see [3].

Hereinafter, we specialize the notation to the case of our interest. Let © =
[—a, a]™, P, be the m-variate normal distribution with mean vector ¢ and the
identity matrix as the covariance matrix and L be the squared-distance function.
With p, denoting the multivariate normal density corresponding to P,, we have

_ _ §0py(x)dG,(0) _ 05\ /5
(1.3) 9.0 = EI0] x] = 3P = 5 + ()
= x + (log p)'(x)

with p denoting the mixed density § p, dG,, § and (log p)’ denoting the vectors
of partial derivatives of p and log p respectively. The two alternative forms
given in (1.3) for ¢,, the discussion around (1.2) and Lemma 2.2 of Section 2
of this paper motivated the definitions of the (n + 1)th components of the
sequence-compound procedures exhibited in Sections 3, 4 and 5. Specifically,
the form x + (log p)’(x) for ¢, has been exploited in Section 3 while the other
form has been exploited in Sections 4 and 5.

The following notation, abbreviations, and conventions will be used through-
out the paper:
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Let p denote the Lebesgue measure on (E™, B™). For any two points u =
(4 -+, up)and v = (v, - -+, v,) in E™, let |[u|]? = m, u?, |u| = 5~ 4| and
(#, v) = X, u,v,. The inequalities ||u|| < |u| < m?||u|| will be used without
further comment. A vector in E™ will be denoted by ¢ ) with the general
coordinate of the vector exhibited inside the brackets. ¢,, c,, - -- denote con-
stants depending on m and a.

Throughout the paper, ® and ¢ denote the standard normal distribution
function and its density respectively. We suppress the arguments of functions
whenever it is convenient to do so and use sets to denote their own indicator
functions. Ratios of the form 0/0 are taken to be equal to unity. For any
measure v, the notation y[f] or vf will often be used for § fdv. P,, p, and P,
abbreviate P, , p, and the product measure P, x p, x --- x P, respectively. 3
stands for summation over j from 1 through n. In Sections 3 through 6 X,,,
has been abbreviated to X = (Xys - -+, X,). ¢, has been abbreviated to ¢ =
{¢;> in Sections 3, 4, and 5.

The orders stated are uniform in the parameter sequences @ in X, [ —a, a]™,
and as such, the range of the parameter sequence @ is to be taken as
X.[—a, a]™ in the results of the paper.

The main results of Sections 3, 5, and 6 use the following lemma which is a
consequence of the Berry-Esséen Theorem (see [9], page 288.)

Lemma 1.1. If <, ..., 7, are independent random variables with |t,| < d for all
i, then

|PLZ 70 2 0] — ©(E(X =o)/(Var (T w))h)| < edf(Var (T 7))}
where c is the Berry—Esséen constant.

2. A bound for the modified regret D (0, 7). We state and prove two lemmas
which are higher dimensional generalizations of Proposition 1 and Corollary 1
of Chapter I of [2] for the case of the family of normal distributions =

{Py|0 e[—a, al™}.
LemMma 2.1. P[4, — ¢, 4|] < n72ma exp 4ma® for n > 1.

Proor. From ¢, = G,[0p,]/G,[p,], the triangle inequality and Jensen’s in-
equality, it follows that

(2.1) [P0 — Pucal = P25 P)N(Z PN Z0S 0 — 0.)pi
< 2map, (X p;)7t £ n2map, (3 p;7Y) -

Since P,[p,p;7'] = exp(]|0, — 0,|]) < exp 4ma?, the proof of the lemma is com-
plete in view of (2.1). [

Lemma 2.2. If g isin X,[—a, a]™, then
D8, )| < dan™ T P [|n; — ¢;_(X,)]] + O(n log n)

where ¢, is an arbitrary decision rule taking values in [—a, a]™.
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Proor. From (1.2) we have
(2.2) n BP{lIg; — 0ilP1 = R(G,) = n7* K Plllg50 — 6,1°] -

For i=j—1 and j, we have [|p; — 0, — ||¢; — 0,||" = (9; + ¢: — 20,
n; — ¢;) < 4alp; — ¢, since 7;, 6;, the supports of G; and G,_;, and hence ¢;
and ¢,_, are all in [ —a, a]™; hence (2.2) and (1.1) yield

(2.3) —4an™ 2 Pl|n; — ¢, (X))l]
< D,(0,7) < 4an™ T Pf|n; — ¢(X))|]-

The triangle inequality applied to the rhs of (2.3) and Lemma 2.1 complete
the proof of the lemma. (]

Lemma 2.2 motivated all the sequence-compound procedures of this paper,
since it shows that by taking 7, to be an estimate of Bayes estimate versus G,_,
in the component problem, one might be able to obtain a rate for D,(8, ) —0
by first obtaining a rate for P[|y, — ¢,_(X;)]]— 0 as i ] co. The next three
sections deal with the rate of convergence of P[|p, — ¢,_,(X;)]] — O for three
choices of 7, and use Lemma 2.2 to obtain a rate of convergence for the modi-
fied regrets of the corresponding sequence-compound procedures.

3. A rate of convergence for D,(@, ¢**) with ¢** based on a divided differ-
ence estimator for the log of a density. In this section, we define the sequence-
compound decision procedure ¢** whose (n + 1)th component is a divided
difference estimator for X, ,, + (log p)’(X,.,), and show that its modified regret
is O(n~V™*%). This result generalizes the result stated in Chapter III of [2] for
the m = 1 case. Some notation, which is similar to that of [2] for the m =1
case, is required to define ¢**. The functions, introduced below for each n,
are abbreviated by omission of their dependency on n.

Let F denote the average of the distributions of X, ---, X,. For each x in
E™ with coordinates x,, ---, x,,, let R = X7, I, where I, = [x;, x; + k] for
j=1,---,mwithh >0and for/ =1, ..., m, R, = X™, I with I/ = I, for

JELL =1L +k=[x;+k,x; +k+hland 0 < kA < k.

For any distribution F on E™, let #(F) denote the vector-valued function
{k=*log (FR,/FR)) from E™ to E™ where FR and FR, represent measures of R
and R, under F.

Using a generalization of a particular case of Cauchy’s mean value theorem
(Lemma 3.3), we can show that #(F) — (log p)’ —0asn? oo and k | 0 (Lemma
3.4). Hence, in view of (1.3) and Lemma 2.2, it suffices to define ¢}, the
(n + 1)th component of ¢**, such that P, [|¢¥x(X,, - -, X,p) — (Xo +
#(F)(X,41)|]] —0 as n1 oo and k | 0. This last convergence is achievable by
taking ¢*¥ to be a natural estimate of X,,, + #(F)(X,,,). Therefore, let

(3.1 i =t (X, + (F*)(X,,)  and
i =t (X, + ((F*)(X,11))
where F* is the empirical distribution of X;, ---, X, and tr and tr’ stand for
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coordinatewise retraction to [—a, a] and [—a’, @'], with &' =a + k + A,
respectively.

In this section, ¢,, ¢¥¥, ¢*,,, t(F), and 1(F*) are abbreviated to ¢, ¢**, ¢*, ¢
and r* respectively.

Since ¢ is in [—a, a]™ and ¢** = tr (¢*), |[¢** — ¢| < |[¢* — ¢| and, there-
fore, by the triangle inequality,
(3.2) Poallg** — ¢(X)]] = Polld* — (X + #(X))[]

+ Po[lX 4 #(X) — $(X)]] .

Now we prove some lemmas which are required to prove the main result of

this section.

LemmA 3.1. For x in E™,

() x4+ ((x)e[—a — b — k[2, a]™,

(2) FR Z h"pexp — [{(k + )(|x| + ma + mh)[2}]
where p is the density of F at x and

(3) KFR/ < (k + K)FR, exp (k + h)(|x| + a + k + k)
for I=1,...,m where R’ = X" I with I/'=1; for j#1 and I =
[x1, x, + k + A].

Proor. Since the proofs of the three results are similar, we prove only the
first result. For the proofs of other results, see Lemma 3, Section 1.2 of [12].
In the proof, let F; denote the distribution of X; and 6, - --, 6;, denote the
coordinates of §;. Letle{l, ..., m}.

ProoF oF (1). Since the coordinates of X are independent,

FiR, _ ®(x, —0; + k + h) — P(x, — b0, + k) .
F,R Ox, — 0, + h) — O(x, — )
An application of Cauchy’s mean value theorem (see [4], page 81) to the rhs
gives the existence of  in (0, 1) such that
F.R
F—:Ig = exp — k(x, — 0; + wh + k/2).

i

Hence, since |0,,| < @, exp — k(x, + a + wh + k[2) < F;R,/F,R < exp k(a — x;).
These bounds are independent of j and hence equivalent to the result in (1) since
kt = (log (FR,/FR)). []

Now we bound the integrals appearing on the rhs of (3.2). The method of
bounding the first integral is essentially a generalization of that given in Chapter
III of [2] while a different method leads to a simpler bound on the second
integral.

LEMMA 3.2. For 0 < 2k < (a + 3)7%,

(3.3) Pl — X+ 0] S 6 (A2 o ()

nk*p™+1 nh™
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Proor. Let ¢,*, ¢,* and ¢, denote the /th coordinates of ¢*, r* and ¢ respec-
tively. We will prove that P, ,[|¢,* — X, — 1,|]] £ m~!(rhs (3.3)). Throughout
the proof, 1 = #(X).

From (1) of Lemma 3.1 and since ¢,* ¢ [—a’, a’], we obtain that

P [lg* — X, — )] = G P[l¢* — X, — 1| > u]du
(3-4) < §i Pln* — 1] > u]du
= (2 P[t,* — 1, > uldu
+ So—za' P,,[t,* - tt < u] du .
We now bound P,[7,* — 1, > u]. Fix X and let

Y,y =1 X, eR,
3.5) = —exp k(t, + u) X,eR
=0 otherwise.

With 82 = Var (3 Y,), we first prove the following required sublemma.

SUBLEMMA. For |u] < 2a’,

_ 1 exp k(a + 2a’ 4 |X}])
(3.6) |PTY; 20— O L PY) e, .

PRrROOF OF THE SUBLEMMA. Since [4| < 2a’ and X, + t;, < a by (1) of Lemma
3.1,
3.7) max{|Y,]|1 £j< n} < expk(a + 22" + |X}]).
Therefore, by Lemma 1.1, the lhs of (3.6) < ¢, exp k(a + 2a’ + |X,|). The
proof is completed by showing that $* > ¢nFR, for some ¢ In view of
(3.5), Var(Y;) = Var (Y;*) = F,R(1 — F,R)) = ¢’F,R, since F,R, < (D(h/2) —
O(—h/2))" and h < k < {2(a + 3)}~*. Hence
(3.8) B2 =Var (3 Y;) = X Var(Y;) = ¢;/nFR, .

Returning to the lemma, we have, using (3.5) and (3.7),
(3.9) B =Var(L Y;) < 3 P, Y < nFR/ exp 2k(a + 2a' + |X)|) .

From FRexpkt, = FR,we have (a) 3, P, Y, = nFR,(1 — expku) < —nkFRu,
so that ®(8~! 3] P, Y;) < O(—(nk*h™)tuf) where

(3.10) f= FR(K"FR/)* exp —k(a + 2’ + |X}|);

and we have also, using the definitions of #,* and Y,
(b) [1* — 4, >u] <[22 Y; = 0], so that, by (3.6), for 0 < u < 24/,

(3.11) P [t* —t, > u] < OB 3] P;Y,) + bound in the sublemma.
Hence, for0 < u < 2a',
(3.12) P [n* — 1, > u] < O(—(nk’h™)tuf) + bound in the sublemma.
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A similar argument gives that, for —2a’' <u# <0, P,J[t,* — 1 <u] =
®(2-Y(nk*h™)tuf) + bound in the sublemma. Since §2* ®(—au)du < a=* for
a > 0, we obtain from (3.4) that

3
Pllg* — X, — 1] <

= W + 4a’ (bound in the sublemma) .

Hence, the proof is completed by showing that the P, -integrals of m(h(k +
k)~1tf~1 and m(nk™)* (bound in the sublemma) are uniformly bounded in n with
the help of Lemma 3.1.

By (2) and (3) of Lemma 3.1, the assumption 0 < # < k < § and (3.11), we
obtain that [A(k + k)] < o[ (X))t exp {(3]X,| + |X|/2} for some c,. Since
exp — (lul| + mia) < 22)"pi(w) < exp — (Ju|f* — 2{ju||mia), the P, -integral
of the above upper bound for (A(k + k)~*)}~* is uniformly bounded in n. Similar
treatment for the other integral completes the proof of the lemma. []

Lemma 3.4, which bounds the second integral of the rhs of (3.2), uses the
following lemma, which is proved in Chapter I of [12].

LemMa 3.3. Foreachj=1, ...,n, i =1, ..., m, let the functions f;, g;, be
real-valued, continuous on [a;, b, and differentiable on (a,, b,) and let the derivatives
of g;; be in (0, 0o). Then there exist (¢, - - -, ¢,) in X7, (a;, b;) such that

X fi Z; _ 2rfule)
21 79 lat © X ngje)
where © stands for the product over i from 1 through m and f’;, g’ are the derivatives
of fii» 9
LemMMA 3.4. | X, + t(X) — ¢,(X)| £ k(1 + @®) + h(1 + ma®) forl =1, ..., m.
ProoF. In the proof, let 1, = t,(X), ¢, = ¢,(X); H abbreviate ~~"FR and e,
denote the unit vector in the /th direction. Since t, = k~[log H(X + ke;) —

log H(X)], by the mean value theorem, #, = d log H/0X,(X + kee,) for some ¢ in
(0, 1). Since ¢, — X, = dlog p/0X, by (1.3), the triangle inequality yields

(3.13) X, + 6o — ¢ < || + |4

where

(3.14) I, = 0 log p/oX |5k

and

(3.15) I, = 0log H/0X (X + cke)) — 0log p/oX,(X + cke,) .

By the mean value theorem, I, = ¢k 9*log p/0X,*(X + e*ke,) for.some e* in
(0,¢). With 4, ---, d,, denoting the coordinates of 4, for any j, we have
1+ *logp _ 2 (Xi —03)°p; _ (Z (X, — 9;0p; >2.
Xy 2 P; 2P
The rhs of this equality can be recognized as the conditional variance of the /th
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coordinate of Y — 6 given Y when the joint distribution of the pair (Y, #) has
the distribution resulting from G, on # and P, on Y for given #. Hence, since
the support of G, lies in [—a, a]™, |0 log p/0X?| < 1 + a*. Hence, since we
have seen above that 7, is ¢k(0” log p/0X,*) evaluated at X + c*ke,,

(3.16) L] < k(1 + o).

We complete the proof of the lemma by showing that |I,| < A(1 + ma®) with
the help of Lemma 3.3. The definition of H and R give that

H _ S 1g(X, — 0, + by — §(X, — 0,)]

0X,
X [Liw@X; — 0, + B) — (X, — 6,)] .

Now we apply Lemma 3.3 to the ratio dH/0X,/H with the following identifi-
cation. For j=1,..-,n, f;; =g, =®( —0;) for i £1, f; = (- —0,),
9, = O+ —0,,)and (a;, b)) = (X,, X, + h)fori =1, ..., m. Then, by Lemma
3.3, dlog H/oX, = dlog p/oX,(X + hd) for some 6 in (0, 1)™. Subtracting
0 log p/oX, from both sides of the last equality followed by an application of
the mean value theorem to the rhs of the resulting equality as a function of A
gives

dlogH dlogp n s 0°logp ,
3.17 - =hy™, 6, X + Ko
(-17) X, X, L ' oX, ax,( + )

nh™

for some 4’ in (0, #). Since, it can be shown that, for i # I, 9*log p/0X, 0X, is
the 7, /th element in the covariance matrix of § — Y conditional on Y where Y
and 6 are as described earlier and since it is already shown that |9* log p/0X}| <
1 + o, the fact that the support of G, lies in [—a, a]™, (3.15) and (3.17) imply
that |I,| < A(1 + ma®). This inequality together with (3.13) through (3.16) gives
the result. []

The choices of 4 and k given in the following main result of the section are
optimal for the rate of convergence to zero of the expression obtained by adding
the right-hand sides of the results of Lemmas 3.2 and 3.4.

THEOREM 3.1. If h™** = n7!, k™™ = a n™! for a in [1, co) and ¢** = {¢,**}
where

(3.18) O** = 0 and ¥k = ¢** (** is defined by (3.2)) for n = 2, then
Poallgit — ¢uXa)l]l = O™ and  D,(8, ¢**) = O(n~Vm+).

Proor. The first result of the theorem is a direct consequence of (3.2),
Lemmas 3.2 and 3.3 and the definitions of k and 4. Since, every component of
¢** lies in [—a, a]™ due to (3.18), the second result follows from the first result
and Lemma 2.2. []

4. Rates near O(n~%) for D, (8, ) with ¢ based on kernel estimators for a
density and its derivative. In this section, we exhibit a sequence-compound
procedure ¢ = {¢,} belonging to a class of procedures whose modified regret is
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near O(n~*). To motivate the definition of ¢,,,, we recall that a rate of con-
vergence for D, (@, &) — 0 would be achieved by first obtaining a rate for
P, [|¢ni1 — ¢.(X)]] — 0. Thus we require ¢,,, to be an estimate of ¢,(X) =
X + §(X)/p(X) where p and g are as in (1.3). Hence, ¢, can be estimated by
first estimating p and § by the estimates p and § (defined below by (4.4) and
(4.5)) and then plugging in these estimates in the form for ¢, given above. The
resulting estimator, X 4 §(X)/p(X), after proper truncation, is the estimator
$nyr defined in (4.10). The estimates § and p depend on real-valued functions
K, - -+, K, on E™ which are similar to those introduced by Johns and Van
Ryzin [8] in the context of an empirical Bayes two-action problem in univariate
exponential families. In order to achieve certain rates of convergence for
P,[|§ — §|]] — 0 and P,[|p — p|] — O (and hence for P, [|,,1 — ¢u(X)|]] — 0),

we impose certain orthogonality conditions on K, ---, K,,, again similar to
those given in Theorems 3 and 4 of Johns and Van Ryzin [8].

For I =0,1, ..., m, let K, be bounded on E™ with g[||z||’K,] = s! ¢;, < o0
and, for all nonnegative integers ¢,, -- -, ¢,
4.1) UK, T~ z5%] =1 or 0 according as nt=0
orin{l, ..., s — 1} and, for 1 <! < m, z,K, satisfies (4.1) with s replaced by
s — 1. Functions K,, - - -, K,, satisfying these conditions and an additional con-
dition (5.3) have been given at the end of Section 5.

The intent and result of these conditions on K, ---, K,, is that, if f is a

function on E™ with partials of order s uniformly bounded by M, then the
substitution of the sth order Taylor expansion with Lagrange’s form of remain-
der shows

4.2) |l fKo] — f(0)] = Mc,,
and if, in addition, f and all its partials not involving the /th variable vanish at
zero,

(4.3) |HfK] = £i0)] = Mc,
where f, stands for the first partial of f wrt the ith variable.
For ¢, 6 > 0, define
44 X)) =KX — X)), mp =T p;,  and =G
where
(4.5)  nd, = X4, with 5"g, = JK,(L07(X; — X)) — K,(07(X; — X))

where [, is the m X m matrix reduced by } at the /th diagonal element.

Now we state and prove some lemmas concerning the estimates p and § of p
and §. We do not require the condition that ;e [—a, a]™ for all j to prove
the following lemma.

Lemma 4.1. () P,[|f — p(X)[] S e + (ne™))
(6) P17 — G| < (@ + (nom+2)) .
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Proor. Since the proofs of these two results are similar, except that proof
of (b) uses (4.3) while that of (a) uses (4.2), we prove (b) only. For details of
proof of (a), see Lemma 7 of [12]. Let §, denote the I/th coordinate of §. We
obtain by (4.5) and the change of variables that

#lpidul = 6= § pi([3K(107(u — X)) — Ki(07(u — X))] dps(u)
= 07 § K, (0)(p(X + 1,700) — pAX + 0v)) dp(v) .
Since p;(X + 1,7'6v) — p(X + dv) and its partials not involving the /th variable

vanish at » = 0, (4.3) implies that the rhs of the above equality differs from
the /th partial of p; by at most ¢,d°~* for some ¢,. Hence,

(4.6) P[] — 4| < me,6°* .

Let V,(4,) denote the conditional variance of §, given X. By the inequality
(a + b)* < 2(a® + b*) and change of variables, we have

#lpigal = (0m) 7 § KAu){27p (X + 1,710u) + 2p (X 4 du)} dpe(u) .
Since p; < 1 and y[K;’] < oo by assumptions on K|,
4.7 V(@) = n7 T plpigul < e(nam*) .
Since P,[[§ — 4] < [P.[7] — 4l + 7w Vi*(@). (b) follows from (4.6) and
4.7). 0
Since X + §/p is in [—a, a]™ and since 6,,, in [ —a, a]™ implies that P, ,[|X|]

is uniformly bounded, the following inequality is a consequence of (a) of Lemma
4.1.

(4-8) P, .[lgll(Blp) — 1] < efe + (ne™)7H).
LemMmA 4.2. Foranyain (0,1)and 8 >0, P, ,[p < B] < ¢ 8.
Proor. With Z = X — 6, ,, and therefore |X — 0,| < |Z| 4 2ma
(4.9) Pi(X) = (2m)"*exp — (||X — 0,{[*/2)
> (27) ™ exp {— (mi| Z|| + 2ma)[2} .
Let M be the minimum value of ||Z|| for which the rhs of (4.9) < 8. Since
PIIZIP > 21] < e {5 e-t-wym=9 du2mAT (m[2) < e™¥(1 — b)=™"
for all + > 0 and b4 in (0, 1), we get from (4.9) that
BPnlp < Bl = poPulllZ]| > M]
< (1 — b))y ™2 exp[{a(M 4 2ma)* — bM?}/2]
where the rhs expression is bounded in Mfor0 < a < b < 1. ]
CoROLLARY 4.2. For any a in (0, 1) and § > 0,
P, [(14p)[p < BIl < coB* -
Proor. Since |g|/p < ma + |X| and, therefore, has uniformly bounded
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moments of any order, Holder’s inequality yields for » > 1 the bound

(Paal(191/p) 72D VM (Pual p < BDY”

for the lhs of the result of the corollary. By Lemma 4.2, P, ,[p < B] < ¢,8°
for in (0, 1). Choosing r such that ar = b, we get the result of the corollary. ]
Now we define the procedure ¢ as follows. Let

(4.10) =0 and §,,, =tr(X + (§/p)) for n>1

where tr, as in Section 3, stands for coordinatewise retraction to [—a, a] and
for yin R, let y’ = y vV 8 where 8§ > 0.

In the following lemma, d is chosen to minimize the bound in (b) of Lemma
4.1, ¢ is chosen in such a way that the bound in (a) of Lemma 4.1 is smaller
than the optimal bound in (b) of Lemma 4.1 and 8 is chosen to balance the
bound on |§ — ¢|(¢ is an abbreviation for ¢, ,,) occurring in the proof of the
following lemma.

LemMA 4.3. For each positive integer s and a in (0, 1), there exists c, such that
if o%t™ = nt, 0T/ < e < 0“7V and B = 6°7Y, then

p”“[kz,‘ _ ¢'(X)|] < c7n—(3—l)a/(2s+m)(l+a) .

PrOOF. Since ¢ lies in [—a, a]™ and since ¢ is the retraction of X 4 §/p to
[—a, a]™, we have, by the inequality §’ > j, that

I$ — o1 < 1@IP) — @/p) = B~ — gl + (41/p)lp — P} -
Since |p — p'| < |p — P T B[p < B], by (b) of Lemma 4.1, (4.8) and Corollary
4.2, it follows that

P lld — ¢] < 70" + (nom**)~F + & + (ne™)7H] + B¢}

for some constant ¢,. This inequality together with assumptions on ¢, 6 and 3
completes the proof of the lemma. []

THEOREM 4.1. If the hypothesis of Lemma 4.3 is satisfied and ¢ is defined by
(4.10), then

D,(8, ¢A) = O(n—t-be/tmate)

Proor. Since, by definition, every component of J) lies in [—a, a]™, the
theorem is a consequence of the above lemma and Lemma 2.2 of Section 2. []

5. Rates near O(n~t) for D, (@, 0;7:) with ., a particular . For a fixed posi-
tive integer s(>1), letting « denote a specialization, less a retraction to [$, o),
of ¢ defined by (4.10), with an additional assumption (5.3) on K,, - - -, K,,, we
show that D, (8, (@) = O(n~#-b/2e+m+1)  The proof of this result, to some ex-
tent, goes along the lines of proof of Lemma 3.2; but additionally uses the rates
at which |P,[ 5] — p(X)| — 0 and |P,[§] — g(X)| > O asn T co.

After specializing p and § defined by (4.4) and (4.5) respectively by setting
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¢ = 0 = h(>0) in their definitions, let
(5-1) b = tr (X + @IP)B > 0]

where tr stands for coordinatewise retraction to [—a, a]. With Z;, =
Y (X; — X) for j=1,...,n, and V(u) = hu + {G(X)/p(X)}], let Y,;(u) =
(Y;()y with

(5.2) Yy(u) = k™§, — iV (0)p; = 3K, o I, — K, — Vi(u)K,) o Z;
forj=1, ..., n where o denotes composition of functions.

Lemma 5.1, If K,, - -, K,, satisfy conditions involving (4.1) and, additionally,
are such that for 0 < u < 2a, h < 1,

Var (Y;(£u)), Var (K, o Z;) < c el
hm (|1 X 1)) n
forl=1,...,m, then P, [|sf — $(X)|] £ c{(nh™+?)"% 4 (nhe+m)}},

(5.3) c,eal¥ll <

Proor. (Outline only. For details, see Section 4 of [12].) Let (&, ¢, §, and
g, denote the Ith coordinates of b, ¢, § and § respectively.
By definition of ., and the fact that ¢, lies in [—a, ],

e — 401 < (G — @X)[BX)| A 20)[f > 0] + o[ p < 0] .
Therefore, the definition of Y, in (5.2) and the equalities }; §, = ng, and
> p; = np imply that

P[lf — () < P[> 0; T Yu(w) >0 or
(54 — X Yu(—u4) > 0]du + aP,[p < 0]
= 50" (P[0 Yu() > 0]
+ Po[— 2 Y(—u) > 0]) du + aP,[p < O] .
We first bound the integrand of the first term. Since ¢,(X) = X, 4+
{7.(X)/p(X)} < a, we have for 0 < u < 2a
(:3)  W(xwl = (X +3«)  and  |Yy(xu) = el + X))
Also by (5.3),
(5-6) B = eynhmemMig(|| X)) < BY(u) = Var (T Yi(w)
< conhmed g (||X ) = f
(5.5) and (5.6) together with an application of Lemma 1.1 to the two sets of
random variables Y,,(u), - - -, Y, (¥) and —Y,(—u), - -+, — Y, (—u) followed by
a few manipulations involving a triangle inequality, (4.4), and (3.6) of [12] give
the inequality
(G-7)  max{P,[3 Y;(4) > 0], P,[— X Y;(—u) > O]}
< O(—nh™+up(X)[B) + ¢of7(1 4 nkt*m)(1 + |Xi]) .
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Similarly, one can show that
(5.8) P[5 < 0] < B/nk"p(X) + ¢,87(1 + nk+=)
by using normal tail bound (see [1], page 166). Therefore, by (5.4), (5.7) and
(5.8), . i
Pl — ¢u(X)[] = 2§ 5 @(—nh™*up(X)/F) du

5.9 B c(1 4 nhm+)(1 + | X))
(5.9) + R (X) + F

< 3ﬁ(nhm+lp(X))_1 + C7(1 + nh"”‘*")(l + lel) .
B E

Now we show that the P,_, integral of the rhs of the above inequality leads
to the rhs of the result. Since (nh™)~f* = ¢, é(||X||) exp (¢,||X]]) by (5.6) and
since exp — (|[u]] + mia)* < (2m)"p(u) < exp — ([ul* — 2mialu]]), the P,,.-
integral of the first term of the rhs of (5.9) is bounded by c,(nA™**)~* for some
¢;. Similar treatment of the second term of the rhs of (5.9) results in
cy(nh* ™)t ]

Now we define the procedure (¢ as follows. Let

(5.10) o$r =0 and Pnrr = of for n= 1
where f is defined by (5.1).

THeEOREM S5.1. If K,, ---, K, satisfy the conditions of Lemma 5.1, h =

an—l/(x+m+l)f0" ae (0, o) and 052' is defined by (5.10), then
D,(0, 092') = O(n~t-DAGEtmID)

Proor. Since, by definition, every component of o lies in [—a, a]™, the
result of the theorem is a direct consequence of the hypothesis on A, Lemma
5.1 and Lemma 2.2. []

Now we exhibit kernel functions K, ..., K,, satisfying the conditions of
Lemma 5.1 (and hence of Theorem 5.1). We develop these kernels in m = 2
case for the sake of the simplicity of the notation.

Let [c;;] be an co X oo matrix whose ijth element is ¢;;. For each pair of
positive integers /, j, let R“7 denote the indicator function of the southwest
quadrant of (i, j) intersected with the northeast quadrant of (0, 0). We will
determine [a,,], [b,;] and [b,;,] with finitely many coordinates different from
zero such that

(5.11)  K,=X,;a,;R", K =3,,b,R3 and K,=3,,b,R"

i,5 Yiqn
satisfy the conditions of Lemma 5.1.
For any two positive integers S, T, let [a,,]s , denote the modification of [a,;]
obtained by replacing a,; by zero if i > Sor j > T. We now note that for any
two sets of distinct positive integers k,, - - -, kgand [,, - - -, [, the vectors

(5.12) [#1j4)s s « « -, [i*sj'T]5,, are a basis for EST .
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(For X, .c.[i*jt]s» = [0] iff X3, .c,i*j't =0 has the roots {1, ...,S} x
{1, ---, T}, which by iterative application of Descarte’s rule of signs (see [13],
page 121) requires c,, to vanish.) We use this fact to show that certain norms
are different from zero and to show that a certain coefficient is different from
zero. The kernel conditions (4.1) on K, and K, specialize to the following re-

quirements on the inner products,
([a;;], [y = 1 for I =10L=1

=0 for 1<l,l,3<L+L<s+1
and
([b:n]s [1j1]) = 1 for 1 =21=1

=0 for 4<L,+L,<s+1.

We choose [a,;] for simplicity to be the projection of

(13)  [jl., on L{i"],1=hb3sh+hL=ss+1}
divided by its squared norm,

and in order to satisfy the variance requirements (5.3), we take [b,,,] to be the
projection of

(-14)  [Yl. on L[5l b)) # (2, 1), 1 =4, <5}
divided by its squared norm.

The squared norms are different from zero by the aforenoted linear inde-
pendence for (S, T) = (s, 5). Moreover b,;, # 0 for some j in {I, ..., s} for
otherwise [b,,,] defined by (5.14) will lie in R“~"* and is orthogonal to a basis
in Re~V*, hence is zero. Let M = max {j|b,;, + 0}.

With A4 denoting the bound on K|, K, and K,, we have by the definition of
Y, in (5.2) and the definitions of K, and K, in (5.11) that

(5.15)  Var(Y;) < A1 - 5 + V)P, [Z;€ (0, 5) x (0, 5)]
= A1 .5+ V)P[X,e (X, X + sh) x (X, X + sh)]

for fixed X. By the mean value theorem, the probability appearing on the rhs
of (5.15) is s*h’p,(X + &sh) for some £ in the unit square. Hence, factoring out
k¢(]| X||) from s*h’p (X + &sh) we obtain from the restriction # < 1 and the in-
equality (5.5) that the rhs of (5.15) (and hence Var (Y},)) is bounded by the rhs
of (5.3) specialized to m = 2 case for suitable ¢, and c,.

Now we show that when the kernel functions involved in the definition of
Y, are given by (5.11), the lower bound requirement for Var (Y},) is also satisfi-
ed when m = 2. We observe that Y, defined by (5.2) and (5.11) takes a finite
number of values including zero and 2-'b,,,. The probability that it takes the
value zero is P,[Z;¢ (0, 25) x (0, 5)] and that it takes the value 2-'b,,, is
PlZ;e (2(s — 1),2s5) x (M — 1, M)]. Since the variance of any random varia-
ble is bounded below by the expectation of the conditional (conditioned on
Z;¢(0,2s5) x (0,5) or Z;e(2(s —1),25) x (M — 1, M)) variance, we obtain
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that Var (Y},) is bounded below by
(5.16) 474, P[Z;e(2(s — 1),25) x (M — 1, M)]

% { P,[Z;¢ (0, 25) x (0, 5)] }
PJlZ;¢(0,25) x (0, 5)] + P,[Z; € (2(s — 1), 25) x (M — 1), M)] )

Since the expression in the curly brackets can be bounded by a constant c,,
and since PJ[Z;e (2(s — 1),25) x (M — 1, M)] = k*p,(X + &h) for some & (in
(2(s — 1), 25) x (M — 1, M)), the lower bound in (5.3) specialized to m = 2 case
for Var (Y},) follows from (5.16) since b,,, = 0 by our previous observation.
Similarly, by following the arguments given above, we can show that Var (Y},)
and Var (3] K, o Z;) also satisfy (5.3).

6. A lower bound for D,(0, ¢**). In this section we compare the rate of
convergence of the regret of ¢o** to those of ¢ and ¢ using the following result.
With k and /2 (e (0, k]) > 0 as n — oo and

B = nk’h™
by using Lemmas 1.1 and 3.1, we prove
THEOREM 6.1. If B(h + k/2) — a (€ (0, o)), then
D, (0, p**) = c,’3* forlarge n.

Proor. Recall that ¢**(={¢,**)), the (n 4+ 1)th component of ¢**, is given
by (3.21). Since nD, (0, ¢**) = 3 P [||¢,**||*] by (1.1), R(G,) = O for degener-
ate G,, and since P,_[||¢**||*] = P,.[[X, > a]¢,**], the proof of the theorem
is completed by showing that P, [[X;, > a]¢,**] = ¢,87'. (For details, see
Section 5 of [12].) [

ReMARK. For the choice of #and k given in Theorem 3.1, namely, & = n~/m*
and k = an~V/™** with a in [1, c0), we obtain by the theorem proved above that

D,(0, $**) = ¢ nms,

For any a > 0, Theorem 4.1 shows that we can define sequence-compound
decision procedures ¢ such that D (8, ¢) = O(n~"/-»). Hence, for a > 1/36,
m = 5 and sufficiently large n,

sup D, (6, 95) < nm0A-0 < pmUmts < sup D (6, PF*)

where the sup is taken over all parameter sequences 8 in X,[—a, a]™.

For any positive integer s, Theorem 5.1 shows that we can define procedures
of such that D (8, ) = O(n~-ve+m+v)  Hence, if s > 5 + 8/m, the pro-
cedure (¢ is better than ¢** in the sense in which ¢ is better than ¢**.

7. Concluding remarks. The result of Theorem 5.1 is of most interest since
it establishes a rate near O(n~*) which is in line with the results obtained by
Gilliland [2, 3], Hannan [5, 6], and Johns [7].
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The main reason for our not being able to exhibit sequence-compound pro-
cedures whose modified regrets are O(n~*) is that unbiased estimates do not seem
to exist for p, the average of the densities of X, ---, X, and for the vector of
partial derivatives of p.

The author has already obtained results comparable to the results of Section
5 when the component problem is a linear loss two-action problem concerning
the scale parameter of a negative exponential distribution.
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