The Annals of Statistics
1973, Vol. 1, No. 6, 1139-1148

THE ASYMPTOTIC MINIMAX CHARACTER OF
SEQUENTIAL BINOMIAL AND SIGN TESTS

By STURE HoLM

Chalmers University of Technology and
The University of Goteborg
Let p be the probability of any event in repeated independent trials.
Sequential tests of the composite hypothesis p < po against the composite
hypothesis p > po are proposed, which asymtotically minimize the maximum
risk when the cost of experimentation tends to zero, if the loss depends only

on p and satisfies some natural regularity conditions. Asymptotic power,
expected sample size and risk of the tests are also given.

1. Introduction and summary. In this paper is studied the problem of se-
quentially testing the hypothesis p < p, against p > p, for the probability p of
an event in an infinite series of independent trials of the same kind. A decision-
theoretic approach is considered where the cost of experimentation is a constant
¢ times the number of trials performed and the losses L(p; a,) and L(p; a,) of
making the two possible actions g, and g, satisfy the conditions

(A) L(p;a,) and L(p;a,) are nonnegative continuous functions of p for
0<p=1,

(B) L(P; ao) =0 forp =P and L(p; al) =0 fOI‘p = Pos

(C) lim,,, L(p; a))/(p — po) = lim,;, L(p; a)/(po — p) =k
where 0 < k < co. When the loss depends only on p and a = a, or a,, and
satisfies the conditions (A), (B) and (C), we say that the decision problem has
local linear loss structure in p. (Compare to Raiffa and Schlaifer [6] page 96.)

Let P denote the probability measure of the infinite series of trials, and let
the risk of a (sequential) decision rule 6 when the cost of experimentation is ¢
units per trial be denoted by R, (P; d). A set {d,°: 0 < ¢ < oo} of decision rules
d,° is said to be asymptotically minimax in a set <7 of decision rules and a set .~
of probability measures if

0L e for 0<c<

and
SUpPp. . R(P; 0,°)

lim N =
“inf,. sup,... R.(P; )

This definition seems to be mentioned first by Chung [1]. It is a minimax
analogy to the better known definition of asymptotically Bayes decision rule. See

Zacks [8] page 311 and page 483, where references are given to papers treating
this subject.
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1140 STURE HOLM

The main theorem (Theorem 4, Section 4) of the present paper states that a
certain set of SPR-tests is asymptotically minimax for the Bernoulli problem
with local linear loss structure, in the set <~ of all decision rules, and it is fol-
lowed by an extension to a more general nonparametric problem. There are
also given asymptotic formulas for the power, expected sample size and risk of
these tests (Theorems 1, 2 and 3, Section 3). The minimax problem of testing
positive drift against negative drift in Brownian motion with linear loss structure
was solved by De Groot [2]. Since this problem serves as a limiting case of
ours, we rely much on his results.

2. Preliminaries. In this section we give some notation and state some lemmas
which will be used to prove the theorems in Sections 3 and 4.

Let X, X;, - - be independent random variables taking the values 0 and 1
with probabilities | — p and p. 1In the tests of the hypothesis p < p, against
p > p» which we are going to study, the stopping rule and the final decision
rule are both based on the outcomes of the sequence of random variables Z, =

o1 (Xy — po) forn = 1,2, ..., For0 < ¢ < oo we define 4, as the sequential
test such that experimentation stops as soon as |Z,| = p,, action a, is chosen if
Z, < —p, and action a, is chosen if Z, > o, where p, is a constant determined
by the equations

0. = 3kipi(1 — po)lyet,
n = (V*/(v + sinh v))} ,
(I 4+ e™")(v + sinh v) = 2vsinh v .

The uniqueness of the solution of the third equation follows as a special case of
the motivations done by De Groot [2].

The first four lemmas are not proved here, since they are fairly standard and
straightforward.

LeEmMmA 1. Let X be a random variable, taking the values O and 1 with probabilities
I — pandp, andlet ® (1) = E[e'*~*0"] be the moment generating function of X — p,,
where 0 < p, < 1.

A. Then the equation ®© (t) = 1 has

(i) one and only one nonzero root if p + p,,
(if) no nonzero root if p = p,.

B. If h(p) is the unique nonzero root of ® (1) = 1 for p + p,and h(p,) = 0, then
h is a continuous decreasing function and

2(p —
Wp) = —2L=P) o(p—p).
Pop = po)
The proof of Lemma 1 follows immediately from Lemma 3.4 in Ghosh [3]
page 102 and an elementary study of the inverse of A(p). The next two Lemmas
(2 and 3) give estimates for the probabilities that the actions a, and a, are taken
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when the test d,° is performed. We use the notations P,°(a,) and P (a,) for those
probabilities.

LEMMA 2. The probability P (a,) has the bounds

explp.(p)] — 1
exp[p.h(p)] — exp[—(o. + DA(p)]

‘ exp[(e. + DA(p)] — 1
= Pp (ao) = CXP[(,OC T l)h(p)] — eXp[—pch(p)] for P < Pos
1 — exp[p.4(p)]
exp[— (o, + DA(p)] — explo.A(p)]
< Pra) < 1 — exp[(p. + DA(p)] for p>pe.

exp[o.A(p)] — exp[(o. + 1A(p)]
LeMMA 3. (Tail estimates). Forp < p,, 1 — P,%(a,) = P,(a,) < exp[—p.h(p)]
and for p > po, 1 — P5(a)) = P,%(a;) = exp[po.h(p)]-
The limits in these two lemmas are readily obtained by Wald methods. They
are also obtained by different methods in Hall [4] (Corollary 7.4 and Lemma 6.2).
The next two lemmas give estimates of the expectation E,‘[N] of the sample
size N for the test d,° and its derivative with respect to p. Lemma 4 may readily
be proved by Wald methods and it is also a special case of Lemma 6.4 in Hall
[4]. The estimates given in this lemma are not good for p in a neighbourhood
of p,, and the estimate of |(d/dp)E [N]| in Lemma 5 is given in order to over-
come this inadequacy in later applications.

LEMMA 4.
lEpc[N] — (1 _ 2Ppc(ao))pc é 1
P = Po |p = pil
LEMMA 5. The derivative (d|dp)E [N] exists for 0 < p < 1 and
d 1 ¢
L p)| s (e + DETV + I = BTV
dp P —=p)

Proor. If N,, denotes the number of possibilities to reach decision with &
successful and / not successful experiments in total then

EJ[N] = Xoon-P(N=n)= Y7 ,n- X Noyp"'(1 — p)t,
and
EfNY ] = Zvoon® - PN =n) = X0 on 0o Ny p" (1 — p)t

Both series converge uniformly for 0 < p < 1. In order to see this we first
observe that the terms in the first series are dominated by the terms in the
second one. Further if we define M by

2
M= 2],
min (py; 1 — py)
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the probability of making a decision during M successive trials is at least p* +
(I — p)" = (3)"", independent of the state at the beginning of the series of
trials, and then

Lz PN = m) < B esm (IM)3H(1 — )i
< L¥1 1M-1\[L/M]-1 2 — %M-I
= ( T2 ) 12m—2
2
This gives the uniform convergence since the estimate is independent of p and
tends to 0 when L tends to co.
Define f,(p) for n = 0, 1, .- by fi(p) = n o Nuyup™'(1 — p)".
Then
ISP = 1 Lo Nuaal (= Dpr= 741 — p)f — Ip™=H(1 — p)'7|
1
S —— XL Nep (1 — p)!
P —=p)

and the series Y 7_, f,/(p) converges uniformly in [a; 1 — a] for any fixed a,
0 <a < §. Thus (d/dp)E[N] = (d)dp)[ X7 fu(P)] = X7-o [.'(p) according to
Rudin [7] Theorem 7.17. Now

| BN = D5 £ S T )
p
where
AP = 1 o Nyap =1 = p)=(n = (1 = p) — Ip

and
|(n — D(1 — p) —Ip| < |(n — (1 — p)) — Ips| + n|p — po -

When decision is reached after n — I successful and / not successful experi-
ments one has

pe = |2, = [(n = DA = po) — Ipo| = p. + 1
and finally we get

d
BN 2 Zaa 1)
P
1 ; -
S gy Znmo t Dieo N p" (1 = p) (o + 1+ nlp — pol)
p(I =p)
1 c c
= — gy (o + DESINT + |p — p| ESIN) -
pd—p)

3. Asymptotic power, expected sample size and risk of the tests. The limiting
behaviour when ¢ — 0 of the power, expected sample size and risk of the tests
0y, 0 < ¢ < oo, described in Section 2 is given by the following Theorems 1, 2
and 3. The properly normalized parameter is m = c¢=3p,4(1 — p,)~tki(p — p,),
and it turns out that the probability P,‘(a,) converges to a function of m; the
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same is the case with the normalized expectation c*E,(N] and the normalized
risk ¢c7¢R (p; 0y°).

The limiting formulas given in the three theorems are local at p = p,, albeit
uniform in an interval for the normalized parameter m. Since the constant
po~¥(1 — py)~#k? will appear in many contexts in the following we introduce the
notation 9 = p,73(1 — p,)~*ktand A, = ¢tm/9 = p — p,—> 0 asc— 0.

THEOREM 1. The probability P “(a,) satisfies
) limc-vO P;()-FAC(QO) = 1/(em7 + 1) *
The convergence is uniform for —my < m < m, if my is any fixed number.

Proor. The convergence of lim,_, P;, ,, (a,) for m # 0 follows directly from
Lemmas 1 and 2. From Lemma 2 it also follows that upper and lower estimates
of P; ., (a) are obtained by multiplying the terms in the limiting value
(e=™” — 1)/(e=™? — e™”) by factors varying between exp[—|p, /(p) + my| —

|h(p)|] and exp(|o.h(p) + my| + [A(p)[]-
By Lemma 1 there exists for each ¢, > 0 a 9, > 0 such that |a(p)/(p — p,) +

2p, (1 — po)7Y < ¢, for |p — p| < 0,. This implies

lo.h(p) + my| < §lm|py(1 — po)ne,

for 0 < |A,| < 9y, i.e. for 0 < |m| < m, when ¢} < m;='99,.
From Lemma 1 it further follows that there exists a d, such that

Ih(P)| < 3po™ (1 — po)|p — pol = 3po~H(1 — po)~3k~icH|m]|

for |p — p| = |A] £ 8,, i.e. for |m| < m, when ¢} < m,~*94,. It is thus seen
that for each ¢ > 0 there exists a § < 0 such that

lo.h(p) + my| + (P = L |mi

for 0 < |m| < myif ¢ £ 8. For 0 < m < m,and ¢ < é we now have the upper
and lower estimates

(explmn 5| ool —m (15 )
(cxplmn (1= 5) | = exel = (1= ) )
(cxpl —rmr 5 |- ol =i (1= 5))
(explmn (14 5) | = o = (14 5)])

whose limits for m — O are § + ¢/2 and § — ¢/2. The case m; < m < 0 is analo-
gous. Then for each ¢ > 0 there exist 6 > 0 and v > 0 such that

|P20+Ac(ao) — 1 + 1) = e
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forc < dand 0 < |m| < v. But P,(a,) is a continuous function of p, which is
easily seen by using the definition of P °(a,) and Theorem 7.12 in Rudin [7] page
136. Then the point m = 0 may also be included, and the uniform convergence
is established for 0 < |[m| < v. Finally it is trivial that for each ¢ > 0 there
exists a 0’ > 0 such that |P; ., (a) — 1/(e™ + 1)| < ¢ for ¢ < ¢ and v <
|m| < m,, which proves the uniform convergence for 0 < |m| < m,.

THEOREM 2. The expectation E [N] satisfies
. ™ — 1) _
lim,_,, cSE° N:Lk&l,
e wura.(N) 2m(e™ 4 1)
where A, = ctm|9. The convergence is uniform for —m, < m < m, if m, is any
fixed number. ‘
Proor. By Theorem 1 there exists for each ¢, > 0 a d, > 0 such that
(1 —2Pf(ay) — (em” — 1)j(em + 1) = ¢,
for ¢ < 9, and all m in [ —m,, m,], and then by Lemma 4
(B, INT — (k97X (e™ — 1)/@m(e™ + 1))
= (a0, + H)A|T = (ke + kyct)m| ™
where k, and k, are constants, which gives uniform convergence for m; <
|m| < m, with any fixed m, > 0.
For ¢ small enough we get from Lemma 5
2
Po(1 — po)

for |m| < my. If M(c) = [4p.*/(ps(1 — p,))] then by the Berry-Esséen theorem
P(Zy,)| = 20,) = 2(1 — O(1)) — 0.01 > 0, 3 for ¢ small enough which gives
the rough bounds

EAN)| = 20 INT + [p = pIESINY)

‘i
dp

ESINY S M(@) 51 = 150,71 — o)

and

ESIN?] = (M()y*

2-0,3 _ N
o3 = Bekp(l—p)

k]

by use of geometrical estimates. Then for ¢ small enough we have

d ,
b ESIN]| £ 600.p,7(1 — p)™* + S0, p,tp, (1 — p)=* = Ae

for |m| < m,, where 4 is a constant, which implies |ES[N] — E..[N]| <
|P" = plleTt4 = |m' — m"|c89714 and |c!ES[N| — 3ES [N]| < |m' — m"|9-'4
for |m’'|, |m"| < m,. This yields

GEN] — e = 1) ol
? 2m(e™ 4 1) =
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for |m| < m, and ¢ small enough, by first choosing m, to satisfy

((n(e™” — 1))/(2m(e™ + 1)) — 7*[4] = ¢/3
for 0 < m < m, and m, < $97'4e, and then by using the above inequality for
|m| < m, and the earlier mentioned uniform convergence for m;, < |m| < m,.

Note. Lemmas 2, 3, 4 and 5 and Theorems 1 and 2 may be given in more
general settings for tests d¢, ,, which choose action a, if Z, < —ac™* and choose
action q, if Z, = fc~%. The limiting probability P °(a,) for these tests is

1 — e frm

exkm __ e-,9/rm
and the limiting normalized expectation c}E [N] is

g Bl — 1) — a1l — e=bn)

m(eaxm . e—ﬁxm)

where
k£ = 2p, 81 — p) 73kt

THEOREM 3. If the loss is locally linear in p then

i - DSy pO- m| n(em — 1) }
tim,_o Ry + i 00) = kI l{elm'v ST 2me 1

and the convergence is uniform for —m, < m < my where my is any fixed number.
Proor. For p = p, the risk R(p; d,°) is given by
L(p; ai) - P,5(ap) + ¢ - E[N],
and the uniform convergence follows directly from condition

L(psa) _

‘P —Po
and Theorems 1 and 2. The case p < p, is analogous.

(€) lim,

Ip

4. Asymptotic minimax properties. The asymptotic minimax properties of
the studied tests are given in the following theorem.

THEOREM 4. Let .~ be the set of probability measures of a sequence X,, X,, - - -
of independent random variables taking the values 0 and 1 with the probabilities 1 — p
and p, where 0 < p < 1, and suppose the decision problem has local linear loss struc-
ture in p. Then the set {3,': 0 < ¢ < oo} of decision rules 0,° given in Section 2 is
asymptotically minimax in the set " of all decision rules and the set ./ of probability
measures.

Proor. Let
S (m3 ) = |mlf(e™ 4 1) + (g(em — 1)/2m(em + 1))

Then according to De Groot [2] page 1196 there exists a unique m > 0 maximizing
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(m; ) which will be denoted by m*. From Lemma 1 follows the existence of

h, = inf, __Mp) >0

0=p=1ip#p,
P — Po

and Lemmas 3 and 4 now give for the risk R(p; d,°) the rough upper bound

LIA [ exp(—p.ho|A.|) + e(1 + p,)|A ™
= Lt 97 m| exp(—4po(1 — poholm]) + 4ct9|m|™

for small c¢. Choosing m, big enough it is seen that this estimate is smaller than
3k 971 (m*; ) for all m such that |m| > m,. This together with the uniform
convergence in Theorem 3 shows that

SUPos,s R(p5 00°) = kI72(m*; p)(eh + o(ch)) .

Now consider only the alternatives p,’ = p, — c*9~'m* and p,”” = p, + c}9~'m*.
The minimax test with respect to these alternatives is a SPR-test such that ex-
perimentation is continued as long as

ae) < Y(nyln P L=P) nln < B,
p' (1 = p.)
where Y(n) = » 7., X,. This is an immediate consequence of Theorem 8 in
Lehmann [5] and the comments following it.
The steps in the process

Y(n) In {(—l_l + nln l:_l’g'."_
< (1 ) I —p.

are of a magnitude smaller than d(c) = 29*%k~'m*cs. If p, and p, denote the
probabilities of accepting the hypothesis p = p,’ when the parameter is p,’ or
p.” respectively, we get the usual SPR test inequalities

Pre" = pas (I —plef =1 —p,

pe=ps (L=p)ef =1 —p,.
Let N denote the sample size of the test and S, the value of the variable
Y(ryln 2L =Py L= p”
p/(1 —p) I—p.

at stopping. In the fundamental identity £,[S,] = E[N]E,[W] where

144

w=xn P L=P) gl =p
(1 Pe ) l_pc

we get for p = p,/ and p = p.” the expectations £, |[W] and E, ,,[ W] which are
easily seen to satisfy

lim, L, c3E, [W] = lim,_, — ¢73E, [W] = 29k~ 1(m*)? .
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Further,
lim,_, c73L(p,; a)) = lim,_c¥L(p,"; a;) = 9~ km*

and we introduce

. Lo 2e(m*)* 2c(m*)?

Le) = min| L(p/s @); L(p.": a); ;-
" E, [W] E, [W]

which satisfies lim,_, c73L(c) = 9~'k. Now we get the risk estimates

L(p/'; a))(1 — p) + CEpc’[SN]/Epc’[ W]
= LI — p) — 3m*) (B — p1) + a(€©)p, + 0(c))]
and
L(p."s a))ps + B, [Sy]/E,, [W]
= L(o)[p, + 3(m*)7(B(e)(1 — ps) + a(c)p, — 6(¢))] -

The sum of these lower estimates is

L1 + ps — p1) + 3(m*)(B(e) — a(e))(pr — ps) — o(e)(m*)7*].

Using the four given inequalities for p, and p, we get for p, — p, the inequalities

(1 — e)(e? — Dj(er — e) < py— py = (1 — =) — 1)J(eF*? — en).
Further if fla, 8) = (1 — e*)(e? — 1)/(ef — e), then |f(a, 8)/0a| <1 and
|fla, §)/38] < 1 for @« < 0 and 8 = 0, which implies

(I —e)(e™? — 1)/(e"*" — &™) = fla — 6; f + 0) = fla, f) + 20,

Thus a lower bound of the above sum is

L(c)[1 — fla, p) + #(m*)™ ¥ — a)f(a, ) — (2 + (m*)™*d(c)] .
Elementary calculations show that the minimum of this is attained when
B = —a is the solution of the equation sinh 8 4+ 8 = (m*)®. This is the second
equation (3.10) in De Groot [2] and the solution is 8 = m*y.

A lower bound for the risk sum is then

LT — fl=m*y; m¥y) 4 (m*)=(m*p)f(—m*n; m*n) — (2 4 (m*)~)d(c)]

= L(O)[2(m*) 72 (m*; ) — (2 4 (m*)7)d(€)]
and the minimal maximum risk in the two points can accordingly not fall below
L(c)[(m*)~'x (m*; ) — (1 + $(m*)~%)d(c)]. Finally we have

im___, SUPy<,<1 R(p; 9,%) .
Lie)[(m*)"r (m*5 m) — (1 + 3(m*)~*)d(c)]
k9=1.20(m*; p)(cd + o(ct))
TULEOUm) T (s ) — (1 HmD)e]
which proves the theorem.
The result in Theorem 4 may be extended to a more general case where the
repeated experiment does not need to be a Bernoulli trial but may be any kind

< lim,
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of experiment as soon as the the decision problem has local linear loss structure
in the probability of a fixed event A4 in the experiment. An asymptotic minimax
sequence of tests is then obtained by putting X, equal to the indicator of this
event and using the previously defined tests d,°, which then become sequential
sign tests.

The risks of these tests are the same as in the Bernoulli case. Let p,” and p,”
be the probabilities defined in the proof of Theorem 4, P/’ any probability
measure satisfying P,'(A4) = p,/ and P,” the probability measure defined by

144 1 . '
PI(B) = LT P(B 1 A) + L PUBVA).
c pC
Then P, has the Radon-Nikodym derivative (p,”/p )T, 4+ ((1 — p.”)/(1 — p.))
(1 — T,) with respect to P/, and the test that minimizes the maximum risk for
these two distributions only then is a SPR-test such that experimentation is

continued as long as
a(c) < Y(n) ln&—% +nin L2 )

for suitable a(c) and B(c) where Y(n) = X7, X,. But these tests have risks equal
to the risks of the tests studied at the end of Theorem 4, and the asymptotic
minimax property in the general casc is proved analogous to Theorem 4.
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