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ASYMPTOTIC EQUIVALENCE OF TWO ESTIMATORS
FOR AN EXPONENTIAL FAMILY!

BY DIVAKAR SHARMA

Indian Institute of Technology, Kanpur

It is shown that under certain conditions, the maximum likelihood and
the minimum variance unbiased estimators of a positive integral power of
the natural parameter in an exponential family have the same asymptotic
distribution.

1. Introduction. Let the random variable Z have the probability density
B(p) exp(—pz)r(z) with respect to Lebesgue measure, where r(z) is a probability
density on (a, b). Here a and b are known and may be infinite. We take the
parameter space to be the largest open interval (—p,, p;) included in the natural
parameter space of the density of Z. Whenever a and 4 are finite, p, = p, = oo.

Let Z, ..., Z, be independent and identically distributed as Z, then
X, = 211 Z, is a complete sufficient statistic and has the probability density
B"(p) exp(—px,)r.(x,), where r, is the n-fold convolution of r. For the unbiased
estimator of p™, where m is a positive integer, we have the following theorem.

THEOREM 1.1. Let
(1.1) r(z) be positive on (a, b),
(1.2) the mth derivative r,'™ of r, exist in (na, nb).
Then r,"™(z)[r,(z) is defined for all z in (na, nb).
If we assume also that
(1.3) r,"™ is continuous in (na, nb), and
(1.4) lim,,,, r,'"9(z) exp(—pz) — lim__,, r,'9(z) exp(—pz) = 0, j < m — 1; then
E[r,™(X,)[r(X,)] = p™ -
Proor. The first assertion can be proved by induction and the second by
integration by parts. )

It may be pointed out that a sufficient condition for (1.2) and (1.3) to hold
for a sufficiently large n is that the characteristic function M(iv) of r(z) satisfies

(1.5) M(iv) = O(|v|™?) as |v| > oo, for some positive 4.

This is so because a sufficiently large n implies the integrability of |v|™| M"(iv)]|
which in turn implies that r,(z) possesses continuous derivatives of orders less
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than or equal to m (see, for example, Wintner [4] page 117). It is clear that,
when a and b are finite, (1.5) is sufficient for (1.2), (1.3) and (1.4), for sufficiently
large n.

The condition (1.5), for example, is satisfied by normal and gamma densities
and also by a polynomial probability density when a and b are finite.

The MLE of p™ can be seen to be p" = (A~(Z))™ when A[(—p,, p))] = (4, b),
where A(p) = E(Z). Also,

(P™ — pm)(—nb'(p))}(mp™)~t — . N(O, 1) as n— oo,

where A’(p) is the derivative of A(p) with respect to p, and — . stands for con-
vergence in law. We shall show that the maximum likelihood and the unbiased
estimators of p™ have the same asymptotic distribution. This we do by proving
a stronger result, namely, that for any positive ¢, n'~ times the difference in the
estimators goes to zero with probability one as n tends to infinity. We first take
the case of m equal to one. Section 2 outlines the proof appearing in Section 3.
The extension of the result for a positive integer m and a non-trivial application
of our result are also given in Section 3.

The convergence in probability of n times the difference in the estimators to a
constant would be interesting to investigate.? However, we have not been able
to prove it, though that the difference is O, (n™") (following Pratt’s [3] notation)
is an immediate consequence of (3.14).

2. Outline of the proof. When Z = ¢, the unbiased estimate T',(c) (say) of p is
rn(l)(nc)/rn(nc) = n‘lsn'(c)/sn(c) ’

where s,(Z) is the probability density of Z when Z has probability density r(z)
and s,’ is its derivative. To prove that, for any positive e,

n~<(A~\(Z) — T,(Z))— 0  with probability 1 as n— oo,
it suffices to show that (see Section 3)
(2.1) T,(c) — A} (c) = O(n™Y) as n— oo, uniformlyin ceC,

where C is a compact set contained in (a, b). We get asymptotic expansions for
5,(c) and s,’(c) uniform in ¢ € C to prove (2.1). We shall outline how it is done
for s,(c); the procedure for s,'(c) is similar.
Let
M(u + iv) = § exp((u + iv)z)r(z) dz
= exp(K(u + iv)),

where u and v are real, i = (— 1)}, and K(u + iv) is say the principal branch of
log M(u + iv). If |[M™(u + iv)| is integrable with respect to v, where u belongs
to the interval (—p,, p,), then

(2.2) 5,(¢) = (2m)"'n §=., exp(n[K(u + iv) — (u + iv)c] dv .

2 Suggested to the author by Peter J. Bickel.




ASYMPTOTIC EQUIVALENCE OF ESTIMATORS 975

To get an asymptotic expansion of s,(c), we must choose a proper u in (2.2).
The choice of u involves the saddle-point method. We take u equal to u,, a
saddle-point of K(u 4 iv) — (u + iv)c. Assumption B (Section 3) ensures the
existence of such a u,, u, € (—p,, p,). This is how Daniels [1] has expressed s,(c)
as an integral with u = u; in (2.2). To get the asymptotic power series of s,(c),
which is uniform in ¢ € C, we use Lemma 3.2. Our method is the same as that
given in Gnedenko and Kolmogorov ([2], page 228). Gnedenko and Kolmogorov
show that it suffices to consider a small neighborhood of v = 0 in the integral
(2.2). More explicitly, using the fact that

(2.3) the characteristic function of an absolutely continuous distri-

bution is less than a number less than one, in |[v| > v,, with

v, positive,
they show that the contribution of the remaining path is exponentially small
relative to that of the neighborhood. For our problem, where we want the
asymptotic power series to be uniform in ce C, we choose a neighborhood of
v = 0 which is independent of ¢ € C. To apply the argument of Gnedenko and
Kolmogorov, we need an analogue of (2.3) involving a family of distributions,
in fact, we need uniform (in ¢ € C) convergence to zero of the characteristic func-
tion as [v| goes to infinity. Assumption A (Section 3) ensures this convergence.

3. Proof of asymptotic equivalence and an application. We state and prove the
result in the following theorem.

THEOREM 3.1. Let the random variable Z have the probability density
B(p) exp(—pz)r(z) with respect to Lebesgue measure, where r(z) is positive on (a, b),
with a and b possibly infinite. Let the parameter space of B(p)exp(—pz)r(z) be a
non-degenerate interval (—p,, p,), the largest open interval contained in the natural
parameter space. Let

A(p) = B(p) § z exp(—p2)r(2) dz
and M(u + iv) = § exp((u + iv)z)r(z) dz, where u and v are real and i = (—1).
Also let the following assumptions hold.

ASSUMPTION A. For any compact set U contained in (—p,, p,), there exist 6 > 0,
A and v, (0, A, v, may depend on U), such that

|v| > v, implies sup,.,|M(u + iv)] < Ajy|[7?¢.
ASSUMPTION B.
lim,__, A(p) = b, lim,_, A(p) =a.
Then, for any positive ¢ and any p € (—p,, p,),
3.1) n=(p —p)—0 with probability 1 as n— oo,

where p and p are the MLE and the minimum variance unbiased estimator of p re-
spectively, based on a sample of size n.
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PrOOF. Let ¢ belong to (a, b) and C be any compact set in (a, b) containing
c. Because of the continuity of A=*, A='C is compact. With an obvious meaning
for —A-'C = U, U is also compact. From Assumption A, |M"(u + iv)] is inte-
grable with respect to v for a sufficiently large n, and the choice of n is independ-
entof ue U. So,

(3.2) 5.(¢) = §% (2m)"'n exp (n[K(u 4 iv) — (u + iv)c]) dv
for any u € U, where K(u + iv) is the principal branch of log M(u + iv). From
Assumption B, there exists a u, in U such that K'(u)) = A(—u,) = ¢, where K’ is
the derivative of K. Thus when Z = ¢, the negative of the saddle-point #, is the
MLE of p.
In (3.2), we take u = u, to get
h_l(Sn(C + h) - Sn(c))
(3.3) ' = (27)7*n §=., exp(n[K(uy + iv) — (4, + iv)c])h™?
X [exp(—n(uy + iv)h) — 1]dv.
For a sufficiently large n, using Assumption A we apply the Lebesgue Dominated
Convergence Theorem to get

5,/(¢) = (2m)7'n §=., exp(n[K(u, + iv) — (uy + iv)c)[—n(uy + iv)] dv .
so that the unbiased estimate is
i % exp (n[K(u, + iv) — (u, + i)c])v dv
§=. exp(n[K(u, + iv) — (4 + iv)c]) dv
We shall develop asymptotic power series for the integrals in (3.4), which in

turn will give the asymptotic power series for 7,,(c).
Let 5,'(¢) be the density

3.5) B(—uy) exp (uy(c + §))si(c + €)

and g,(v) be its characteristic function. Denoting the second derivative of K by
K", we have the denominator of (3.4) equal to

exp (n[K(uy) — uy€])[nK" ()17 § 20 9."(v[nK" ()] ) dv
= exp(n[K(u) — uoc])[nK" (u)]"#25,(0) ,

3.4) —Uy —

where s, is the normalized n-fold convolution of s, |g,"(v)| being integrable
because of Assumption A. We shall show that the asymptotic power series we
obtain is uniform in ¢ e C, a compact set contained in (a, b). The argument is
the same as that given in Gnedenko and Kolmogorov ([2], page 228). We first
state a lemma (Gnedenko and Kolmogorov [2], page 204).

LEMMA 3.2. Let{,i= 1,2, ..., bei.i.d. with mean zero and variance o, and
9(v) be the characteristic function of {,. Also, let p; be the jth absolute moment of
1, 7, be the jth cumulant of C;, 2; = 7, 679, p; = B;077, and ©; denote a quantity
bounded by a constant dependent on j only. Suppose C, has a finite kth moment
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(k = 3), then for |v| < n}(8k)~Y(0,)%* = V,,, we have

|97([ont]™") — exp(—2*/2)[1 + 3 %23 P(iv)n—i7]|
< 0,0 MVt (v + [u=) exp(—17J4)

where ©,(k) depends on k only, ©,(n) depends on n only and tends to zero as n tends
to infinity, P(iv) = }}3,_; ¢, (iv)?**™ is a polynomial in (iv) (i = (—1)t) of degree
3j, the coefficient c,,; is a polynomial in 2y, - - -, 2;_,, ., With numerical coefficients and

— (j+2m)/k
Cpi = 0,0, .

We shall indicate the dependence on ¢ of the cumulants, moments, the poly-
nomial P(iv) and other characteristics of the density s,({) by using the notations
7i(¢), B;(c), P, (iv), etc. Itis clear that moment of any order of s5,({) exists, also

SUpP,c¢ ‘Bj(c) = ﬁjo (saY) < oo,
inf,., 0(c) = inf,.o [K"(u)]t = 0, > 0,

and

because K”(u,) is a continuous function of ¢. Thus,

infcec‘ an(c) g Vl?n (saY) > O ’

Supce(} Zj(c) é Zjo (Sa}’) < o, and
SUp,co 0;(¢) < p,° (say) < oo .
Let
h(v) = exp(—v*[2)[1 + X421 P, (iv)n=97] and
2ap,) = § exp(—*[2)P,(iv) v,
then

[§ 7w 9.%(0[nK" ()] 7F) dv — §2., h(v) dv]
(3.6) = 2a)s,9(0) — [(2n)F + Szt p, |
— 27)s,4(0) — [(20)F + D& pign~]| .
The last equality in (3.6) follows from that P;(iv) is a polynomial in (iv)
involving only odd powers of v or only even powers of v according as j is odd or

even, so that p, is zero for odd j; [(k — 2)/2] involved is the greatest integer
contained in (k — 2)/2. Now

(3.6) = §'by 102 OIK @)D — ) d0 + §org, IR0 do
(37 £ g, 107 OIK @] ) do
= 1(©) + H©) + 5(0)

where I,(c), I,(c), and I;(c), are the integrals involved on the right side of (3.7)
in that order. From Lemma 3.2,

(3.8) sup, ¢ I(c) = o(n=*=27) as n tends to infinity.
Next, since sup, .. |[¢,;] < <o,

(39)  SuP.co (€) = SUP.eg Sy, XP(—V*/2)[1 + 5P, ()nm*] dv

kn
=o(n ™) for any positive m, as n tends to infinity.
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Also,
(3.10) I(c) < a1 §,5120000, SUPecc 19.7(V)] dV
where b,nt = V},, and o, = sup, . [K”(u,)]}.
From Assumption A, we can choose a v, greater than v, such that
SUP, ¢ SUPyyi>s, [96(V)] = SUP 15, SUPse . [M(#s + i0)/ M(uy)]
< exp(—d) (say) with d positive.
Also, by the continuity of |M(u, + iv)/M(uO)[ in cand v,
SUP, e ¢ SUPsy/o,siviso, | M(Uo + 0)[M(u5)] < exp(—f) (say)
with f positive. Thus :
SUP, ¢ ¢ SUPjy 12 4/0, 19.(v)] £ exp(—d) (say) with d positive,
which implies that
§ o120, SUPzec [9."(V)| dv = const. n? exp(—(n — my)d) ,
where m, is large enough to make §,,., [v[~*"0 dv finite.
Hence from (3.10), we get
(3.11) SUp,.o Ij(c) = o(n™™) forany m >0, as n-— oo .
The relations (3.7)—(3.9) and (3.11) imply that
(3.12) 5,(0) = 2x)~t o JLEPA plon=i  o(n~*=72) as n— oo,
the order being uniform in c € C.

Proceeding for the integral in the numerator of (3.4) in the same way as above,
we get
§=. exp(n[K(uy, + v) — (4, + iv)c])v dv
(3.13) = 22K ()]~ exp (n[K(uy) — uy¢])
X LI gy o o (kb))
as n tends to infinity, the order being uniform in ¢ € C, where [(k — 1)/2] above
is the greatest integer contained in (k — 1)/2, and
27q, = {2, VP;(iv) exp(—v?*[2) dv .
From (3.4), (3.12) and (3.13) it is clear that
(3.14) SUp, . |T,(c) + o] = sup,..|T,(c) — A~'(c)] = O(n™?) as n— oo .
To prove (3.1), we proceed as follows:
Let E(Z) = A(p) = ¢, (say). Now Z tends to ¢, with probability one as n
tends to infinity, that is,
lim, ., P(|Z —¢)| < n forall n>j)=1 forall »>0.

j—oo
Given any 7, > 0, choose 7 such that 0 < » < 5, and [¢, — %, ¢, + 7] is con-
tained in (a, b). Then for sufficiently large j and any positive e,

P(|n*=«(T(Z) — A~Y(Z))| < n, forall n=>j)= P(|Z — ¢,| < forall n=j).
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The above inequality follows from the relationship (3.14) for C = [¢, — 7, ¢, + 7].
Thus the theorem is proved.

In Theorem 3.1, we have considered the case m = 1 only, we indicate below
that Assumptions A and B are sufficient for

n'=¢ (p™ — the minimum variance unbiased estimator of p™)
(3.15) tends to zero with probability one as n tends to infinity for
any positive ¢ and any positive integer m.

To prove (3.15), we note that the unbiased estimator of p™ is T,™(Z) =
n="(s,(Z))~(9™/6Z™)s,(Z), using Assumption A and applying the Lebesgue Domi-
nated Convergence Theorem m times, we get for sufficiently large n,
T,m(c) = § 2w exp(n[K(uy 4 1v) — (4 4 )c])(—(uy + iv))™ dv .
" §=. exp(n[K(uy + iv) — (4, + iv)c]) dv

Expanding (x, 4 iv)™ and then obtaining asymptotic series for

§ 2w exp(n[K(u, + iv) — (u, + w)c])vidv, j=0,1,...,m,
gives us
(3.16) Sup, .. | T, ™ (c) — (—uy)™ = O(n™Y) as n— oo,

where C is a compact set contained in (a, b). We note that (—u,)™ is the MLE
of p™, when Z = ¢. Reasoning as in Theorem 3.1, we conclude (3.15) from
(3.16).

REMARK 1. When @ and b are finite and the density r is a polynomial, As-
sumption A is true. A particular case is the uniform density. The assumption
is also satisfied, for example, for r a normal or a gamma density.

REMARK 2. Assumption B holds when (—p,, p;) is the natural parameter
space of f(p) exp(—pz)r(z) and also when p, = p, = co (Daniels [1]). Particular
cases of the latter are when a and b are finite, while those of the former are r a
normal or a gamma density. So, Assumptions A and B being satisfied, (3.15) is
true when r is normal or gamma. For the normal r, the two estimators are the
same when m = 1 and (3.1) is trivially true, while for a gamma r (3.1) can be
easily seen to hold without making use of our result. We give below a non-
trivial application of our result.

ExAMPLE. Let Z have the probability density

P[l - exp(—p)]‘l exp(—]’z)[(o,l)(z) ’
where 7 is the indicator function, with respect to Lebesgue measure. The MLE
of p™, m a positive integer, is (A=(Z))™ where A(p) = p~* — [exp(p) — 1], and
the minimum variance unbiased estimator of p™ is
am

Sz ru(nZ)jr,(nZ)y, n=2m+ 1,
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where ~ ~
ry(n) = (L'(n)™ 252, (= 1)) (nZ — k)",
ky<nZ <k,+1, k,=0,1,...,n—1.

Since r is here a uniform density, both Assumptions A and B hold, and so ex-
tending Theorem 3.1 implies that both the estimators are asymptotically normal
with mean p™ and variance m*p*™=(—ndA’(p))~*.
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