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THE JOINT PROBABILITY GENERATING FUNCTION
FOR RUN-LENGTHS IN REGENERATIVE BINARY
MARKOV CHAINS, WITH APPLICATIONS!

By I. J. Goop
Virginia Polytechnic Institute and State University

Gontcharov obtained the joint probability generating function for the
numbers of runs of all lengths, both of successes and failures, in a Bernoulli
sequence. This is here generalized to a class of regenerative binary Markov
processes. For an allied class of Markov processes, the probability generat-
ing function is obtained for a “‘total score’’ defined in terms of runs of
successes only, and asymptotic formulas are derived for the expectation
and variance of the score.

1. Bernoulli and other runs. Gontcharov (1943, 1944) obtained numerous
properties of the distribution of the numbers of runs of various lengths in a
sequence of Bernoulli trials. All his results depended on his showing first that
the joint or multivariate PGF (probability generating function) for runs of 1’s
and 0’s, of various lengths, is

n (1 + T px)d + gy
1 — 2 px 29

where the summations are for r, s = 1, 2, .. -; the probability of a “success” (a
1) on one trial is p = 1 — ¢, and the coefficient of [[ x,™ry,™ is the joint prob-
ability of m, runs of successes of length r, and n, runs of failures of length
s(r,s =1,2,...) when the Bernoulli sequence is known to be of length
> r(m, + n,). The constant term in (1) is 1 and corresponds to a sequence of
~ length zero. In the terminology of Good (1961), (1) is a “universal” PGF in the
sense that it covers sequences of all lengths simultaneously. My purpose is to
generalize (1) to some Markov chains, “‘regenerative” in a sense to be defined,
and to draw some deductions. Any application of the results for Bernoulli trials,
such as to quality control, is also a potential application for the more general
models of the present work.

We consider two classes of chains. The first class is regenerative at the end of
each run of “successes” and of “failures”; the second class is regenerative after
each failure. The asymptotic moments of an arbitrary “score”, or linear function
of the numbers of runs of each length, can be deduced from the universal PGF
for both classes. But for the sake of simplicity this deduction is carried out
explicitly only for the mean and variance of the score for the second class of
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934 1. J. GOOD

chains, where here the score is defined in terms of the frequencies of runs of
successes alone.

2. The PGF for a regenerative chain. We first generalize the joint PGF (1) to
a regenerative binary Markov chain defined in the following manner. The condi-
tional probability of a run of r 1’s, following the end of a run of zeros, is «,,
and the conditional probability of a run of s 0’s, following the end of a run of
I’'s is A,(r,s =1,2,3,...). This defines a process having two regenerative
conditions, namely the right-hand ends of runs of 1’s and 0’s. (Perhaps the
process should be called “biregenerative”. Note that the process is not necessarily
an ordinary binary Markov chain of finite order.) We shall consider a segment of
such a process, of length L, and we shall refer to this segment as the sequence.
We shall first find a formula for the probability that the sequence, assumed to
be ergodic and in the stationary part of the process, will contain m, runs of 1’s
of length r, and n, runs of 0’s of length s(r, s = 1,2, 3, ...). The formula is
basically a multinomial expression, but with modifications related to the begin-
ning and end of the sequence. If the sequence begins (or ends) with precisely
a 1’s or 0’s we shall count this as a run of length a although its probability is
not equal o k, or 4,. _

Let us begin at the beginning. The probability that the first element of the
sequence, which we regard as a randomly selected trial, being a success is equal
to £/(£ + A), where £ = 3] rx, is the average length of a success run in an
infinite chain, and similarly for 1. Therefore the probability that the first ele-
ment is within a success run of length r (in the infinite chain) is

o & K _ I,
TN, B4+ A R4 A
Therefore the probability that the sequence starts with exactly r consecutive 1’s
(which we are going to count as a run of length r) is

T K
2 o M T s
) Tt =
and similarly for s 0’s, it is
A
3 i B
&) | =
where
(4) Kr = Z/Dto=r K’r ’ As - ?:s 'zy *

The end of the sequence is easier to deal with. If a run of 0’s ends on the
(L — r)th element of the sequence, where r < L, then the probability that the
sequence ends with a run of r 1’s is

(5) K.,

with an obvious modification corresponding to the interchange of 0’s and 1’s.



RUNS IN REGENERATIVE MARKOV CHAINS 935

By using (2) and (5) we see that the probability that the sequence begins with
a run of a 1’s, ends with & 1’s, and contains m, runs of 1’s of length r, and n,

runs of 0’s of length s(r, s = 1,2, --+; 33 r(m, 4+ n,) = L), is
(6) _—1—2—‘ « »(xmyn)(z £y xr)M_ZKaxa Kb xb(Z 'l'ry'r)M_l
I3
wherea>1,b=1,a+ b <L, X" = x™x,™ ..,y = p"1y,"2 ..., Z(Xmy")

means “the coefficient of xmy» in”, M = > m,, and the summations run from
r =1to co. If aand b are unspecified, the probability is therefore

% _b < xmyn) (3, X)TAE Ka XA X A p,)"

where we can allow the middle summations to run froma = 1 to co if M > 1.
We shall deduce that if the initial and final elements of the sequence are unspeci-
fied the PGF is

1 K*Y 4+ A*X 4 2KA
8 1o {K* A g ]
(8) R e 1~ Xy }

where

X = Z’Crxr’ Y:Z’zr.yr
K: Zer'r’ A: ZAr.yr
K*ZZ(Kr+Kr+1+"')xr’ A*:Z(Ar+Ar+l+)yr

In (8), the first term 1 corresponds to L = 1, the terms K* and A* within the
braces correspond to the cases m, = 1 and n, = 1, and the other terms are
obtained by summing expressions like (7) from M = 2 to co. The expression
for K* is easily proved to be appropriate by writing it in the form

2k, + 26,0 + 3K, + )X,

Gontcharov’s PGF (1) can be deduced from (8) by writing &, = p'q,
A, =q7p, K, =p A, =g and & + 4= 1/(pg).

3. Scoring. If scores of s, and s, are associated with runs of length r of 1’s
and 0’s, and the total score is S = }; (s,m, + s,/n,), then the PGF of S is
obtainable from (8) by replacing x, by x*rz, y, by x*~'z and then extracting the
coefficient of z" to allow for the constraint }; r(m, + n,) = L.

It would be possible to obtain the moments of the total score S from the
generating function, but the calculations would be very heavy in the general
case. Instead I shall exemplify the methods by means of a slightly different
problem which is almost a special case of the above one.

4. Runs of successes. In the present section we shall be concerned with runs
of ones only, but we shall include runs of zero length. We shall abbreviate the
expression “run of success” simply to “run”. Our model will be of the “second
class” (see Section 1).
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Let p, and p,’ be the probabilities that respectively true and apparent runs of
length n occur at a specified place in the (infinitely long) chain, where a true run
is a run of precisely n successes (preceded and followed by a failure) and an ap-
parent run is one that may or may not be preceded and followed by failures. A
true run is regarded as “occurring” at its first success, and a true run of length n
contains n — m - 1 apparent runs of length m(m < n). The distinction between
true and apparent runs (and half-true ones: see Section 5) and formulas (10) to
(13) were drawn to my attention in 1940 by A. M. Turing, who invented the
regenerative model of the second class for the analysis of certain binary pro-
cesses. We adopt the natural convention that

©) ol =1.
The following identities are easy to prove once they are pointed out:
(10) o, =0, = p,) — 20, + pna = V0l

(11) On + Past + Ouiz+ 0 =0 — O

(12) oot o+t =1—pf

(13) On + 20041 + 3002+ -0 = 0

(14) On F 30n1s + 600sa + 100,45 + -+ =0,/ + O + -+
(15) Ziaa(n+ Do, =142(0) + o) + 0/ + --) -

These formulas depend on the assumption of stationarity. They reduce to simple
algebraic identities for the case of a random sequence (Bernoulli trials), for
which p,’ = p*, p, = (1 — p)*p", p being the probability of a success.

We shall assume further that the Markov chain is regenerative after each failure,
and we shall think of the whole chain as starting with a failure. This model is
almost a special case of the model of the first class considered in Section 2, and
may be regarded as a compromise between that model and a Bernoulli process.
But we are now further assuming that the sequence starts with a failure so as to
avoid “initial end effects”. This will not affect the asymptotic results. The
probability of any specified sequence, of length N, can be readily expressed in
terms of the p,’s.

We now define the total score as

(16) S = somy + symy + S;my A -

where s, is a score arising from each true run of length n. The advantage of
considering total scores with the generality of S is that it includes various special
cases of some interest. For example, the following formulas can be readily

obtained from the subsequent formulas (20) and (21).
Let r, and r, be the numbers of failures and successes in the segment. Then,

for large N,
(17) E(r,)) = NA + (A + B)(1 — $A4) + o(1)
(18) Varr, = Varr, ~ N(B — A* — 24B + A* + A’B),
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where
A= np,, B=xnp,.

The variance of the number of runs of length v is asymptotically
(19)  N{o, + 20l + 0lys + -+ +) — (25 + 1)p,”

=40/ (00 Oln + - 0) + 20" + 0 + -0
More generally, under assumptions (38),
(20) ES) =NXiota+ X (n+ D, — 26, Zoa e + o(1)
(21)  Var($) =N st — %@+, 5o,

+ 20/ + 0 4 - N )Y+ O(1)

where
(22) tn = p'IL S'IL M

5. A generating function for the score. We can regard “the sequence” as com-
posed entirely of subsequences (“half-true runs”) all of the form 0111 ... 1,

juxtaposed, where each subsequence ends with a run of 1’s but this run can be
of zero length. By virtue of the regenerative assumption, this way of regarding
the sequence reduces it to a random sequence, not of course to be confused with
the Bernoulli sequence that we mentioned before as a special case. (Our
“alphabet” is countably infinite.)

Let «, be the probability of the selection of a subsequence with n 1’s on it.
Then

(23) £, = pa/(1 — 0)

(24) Ko 4Ky byt =1

(25) £y + 26, 4 36y + -0 = p//(1 — p))
(26) my + 2m; + 3my 4+ ... = N,

provided we count the right-most subsequence as a “true” run (but we shall
allow for its correct probability). Let

(27) my+m +m+ .. =M,

but we regard N as given, rather than M.
The probability of our sequence, if it ends with just ¢ 1’s, is

(28) B0 K™« e KRR RO e (K A Ky A )
The PGF (probability generating function) of (m,, m,, m,, - - .) is therefore
(M — 1)!

mlm! -..m_! (m,— Dlm_ !

(’Cc—l xc——l)mc—l{(lccxc)mc_l(lcc+1xc+1)mv+l ce (Icc + ,Cc+1 + ° ')xc} .

(29) Zm0+2m1+-n=N ;o=0

mysMysece

(’Co xo)mo e
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If N = 1, the PGF is the coefficient of y¥ in the expression obtained from (29)
by replacing x, by x, y*** (n = 0, 1, 2, .. .), and where the condition
my+2m + ... =N
is no longer required. Hence the PGF equals
FNG (X, X15 X5 <25 ) 5

where <(y") means “the coefficient of y” in” and

S KX n+1
30 G s s ...; — Z'ﬂ«=0 n n,y
( ) (xl) xl y) 1 _ Z;‘;g Icnxnyn+1
where .
(31) Kn=ﬁn+xn+1+--.:m,
1_401,
From (24) we have
(32) (y_l__y2+y3_|_ ...)(I_Zlcnyn+1):ZKnyn+l,
so that
(33) G(l’l’l"“§y)=y+y2+y3+~~-,

which is a check of (30).
If we replace x, by x*» we deduce that the PGF of S is <(y")F(x, y) where

_ Dno K xtmymt

(34) Fx y) =15 Sy

6. The moments of S: outline of derivations. The moment generating function
of S is &(y")F(e*, y) where u is the dummy variable. The derivation of the
moments involves some points of mathematical rigor, but we give only an out-
line because the kinds of mathematics required are already in the literature (see,
for example, Smith (1957)) and because the full details are decidedly intricate.
We first mention the easily proved lemma that if

f() = Zieo(an 4 B+ e)y"
where ¢, — 0 as n — oo, then & = lim,_, (1 — »)’/(y). Now we can show, by
means of (32), that

(35) iF(e", ) _ STK, s, Yt 4 (p + ) _|_n1 N3k, s,y .
o = I — e,y

Hence, assuming E(S) is of the form
(36) E(S) = aN + 8 + o(1),

we can deduce a = ] ¢, from the lemma. By a more lengthy but similar argu-
ment we can show that

(37) p=20m+ Dt — Xt X5
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By means of an even more lengthy argument (which makes use of Abel’s
theorem for power series), we can derive formula (21) for Var (S) under the
assumptions

(38) £, = O(2") for some 1<1
ls,| < ne for some c.
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