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TWO CHARACTERIZATIONS OF THE DIRICHLET
DISTRIBUTION

By J. FaBius
University of Leiden

Let X = (X, ---, Xx) be a random vector with all X; = 0and J X; < 1.
Let £ = 2, and suppose that none of the X;, nor 1 — ¥} X; vanishes almost
surely. Without any further regularity assumptions, each of two conditions
is shown to be necessary and sufficient for X to be distributed according to
a Dirichlet distribution or a limit of such distributions. Either condition
requires that certain proportions between components of X be independent
of one or more other components of X.

1. Summary. Let X = (X, ---, X,) be a random vector with nonnegative
components adding up to at most one. Let k > 2, and suppose that none of
the X;, nor 1 — 3} X; vanishes almost surely.

DEeFINITION 1. X is (CM);-neutral for a given i € {1, ..., k} iff, for any inte-
gers r; = 0, j + i, there is a constant ¢, such that

E(IL;w X773 X) = (1 — X%%73 as,

DEFINITION 2. X is (DR);-neutral for a given ie {1, ..., k} iff, for any inte-
ger r = 0, there is a constant ¢, such that

E(XS | X j#0) = (1 — L0 X;) as.
THEOREM. The following assertions are equivalent:

(i) X is (CM);-neutral for all i;
(i) X is (DR);-neutral for all i
(iii) The distribution of X is a Dirichlet distribution or a limit of Dirichlet
distributions.

2. Discussion. Both (CM);-neutrality and (DR);-neutrality are independence
properties: the first means that the fractions X,/(1 — X;) with j = i are inde-
pendent of X;, while the latter requires that X;/(1 — }},.; X;) be independent
of the X; with j = i. Nevertheless we prefer the less intuitive formulation of
the definitions in terms of conditional moments as given above, because this
does not involve any possibly undefined quantities. These and similar inde-
pendence properties arise naturally in certain statistical problems in biology,
chemistry and geology. For this reason they have been studied under various
names by a number of authors, including in particular Connor and Mosimann
(1969), and Darroch and Ratcliff (1971).
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On the other hand, Fabius (1972) characterized (CM),-neutrality in terms of
the posterior distributions one obtains when using the distribution of X as a
prior distribution for the unknown probability vector of a multinomial distri-
bution. (DR);-neutrality can be characterized in a similar manner. Moreover,
Doksum (1971), (1972) and Fabius (1972) pointed out that there is an intimate
connection between various notions of neutrality and various kinds of tailfree
random distribution functions. Thus theorems to the effect that X must have a
Dirichlet distribution if there is “enough” neutrality lead to theorems asserting
that any random distribution function, which is tailfree in a sufficiently strong
sense, is a Dirichlet process as defined by Ferguson (1972).

The present theorem is not at all new. In fact, Darroch and Ratcliff (1971)
proved the equivalence of (ii) and (iii) under certain regularity conditions in-
volving continuous densities. Moreover, Theorem 2 of Fabius (1972) asserts
that (iii) is equivalent to a condition which is quite similar to (i), but slightly
more restrictive. The difference stems from the fact that in the earlier paper
the components of X were assumed to add up to exactly one. Thus, whereas (i)
consists of k neutrality conditions, the earlier theorem, reformulated to fit the
present terminology, imposes k 4 1 such conditions. In consequence the proof
(Lemma 3 below) has become somewhat more involved.

To conclude this section we note that (iii) is just a conveniently short way
of saying that the distribution of X is either a Dirichlet distribution, or discrete
and concentrated in the vertices of the simplex in which X takes its values, or

degenerate.

3. Proof of the theorem. The implications (iii) = (i) and (iii) = (ii) are easy
consequences of well-known properties of Dirichlet distributions as described by
Wilks (1962). The converse implications follow from Lemmas 2 and 3 below.
To simplify the notation we write

Y«; = Zj*i Xj s YI = ZjeIXj

for any
ief{l, -, k}, Ic{l, ..., k}.

Lemma 1. (ii) implies, for any proper subset I of {1, - .-, k}, any i€, and any
integer r = 0, the existence of a constant c, such that

EX7|X;jel)=c1 —Y,) as.

ProoF. We proceed by induction with respect to both |/|, i.e. the number of
elements of /, and r. Let H,, be the induction hypothesis that the assertion
holds for any set 7 with |/| < m and any r < 5. Note that H,, and H,, , are
trivially true for any » > 0 and any me {1, --., k — 1}. Thus we only need to
show that H,, ., and H,,,, , together imply H,,,, ,,, forany r > 0, me{l, - - -,
k — 2}. To do this, we must fix a set / with |/| = m 4 1 and i ¢ /. However,
without loss of generality we may set i = 1, I = {1, ..., m 4 1}. Because of
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H, .., we know there is a constant c,, such that

() EXr|Xpjel) = EEXG X, ) > m)| X, je )
= QE[(1 — Y, — Xpy | Xy jel} as.

Moreover, taking expectations, we see that 0 < ¢, < 1. Expanding the binomium
(1 = Y,) — X,,,,)r** in (1) and using H,,,,,, We obtain

Q) EXH X jel) = (=P BXuy | X, jel) + el — Y+ as.

where ¢, is a constant. In the same way we can show the existence of constants
¢,/ and ¢, with 0 < ¢,/ < 1, such that

(B)  EXyh| X jel) = (= 1)yHeEX X, je ) + e/(1 = Y,y as.
Substitution of (3) in (2) yields

r+1 ’
B X jeh) = ARG 1 e as
- Y1t

and the lemma is proved.

LEMMA 2. (ii) implies, for any proper subset I of {1, .-, k} and any integers
r, = 0, i ¢ I, the existence of a constant ¢, such that

B(ITee, X6 | X j@ 1) = (1 = YpSerm ass.
Thus in particular (ii) implies (1).

Proor. We again use induction on ||, the assertion being trivially true for
sets 7 with |I] = 1. Hence we start out from the assumption that the assertion
holds for all sets 7 with |/| < m for a given m < k — 2, and we fix a set / with
|I| = m + 1. As before we put I={l, ..., m+ 1} without loss of generality.

Our assumption guarantees the existence, for any integers r; = 0, iel, of a
constant ¢, such that

E(ILier X7i| Xjo j & 1) = EQXRPE(1 X5 | X ] > m) | X j € 1}
— B (1 = ¥, — X, )5 | X, je ]} as.

Expanding ((1 — Y,) — X,,,,)*" and applying Lemma 1 we obtain the desired
result.

LeMMA 3. (i) implies (iii).

Proor. For arbitrary distinct i, je {1, - - -, k} and any integers r, s = 0, the
(CM);-and (CM);-neutrality implies
EX;Xp _ EXr(1 — Xy _ EX7(1 — X))

4 = = .
) EX7EX; EX7E(l — X,y EX;E(1— Xy

In particular it follows that ¢ = EX;(1 — X;)/EX;E(1 — X,) does not depend on
i. If either ¢ = 0 or g = 1, one easily verifies that the distribution of X is a
limit of Dirichlet distributions. In all other cases 0 < ¢ < 1. We then define
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a,ay, -, a,, >0, putting ¢ =af(a + 1), a, = aEX; for i=1, ..., k, and
> #*t'a; = a. It now turns out that the distribution of X is the Dirichlet dis-
tribution D(ay, - - -, a;; a,,,) in the notation of Wilks (1962). We prove this
by showing that the moments of X coincide with the corresponding ones of
D(ay, - - -, a;; @p4q)-

We first show that all mixed moments can be expressed in terms of marginal
moments, or, more precisely, that for any / any mixed moment of X, ---, X;
can be expressed in terms of marginal moments of these same random varia-
bles. This follows by induction on i: It is trivially true for i = 1, and for any
i <k — 1 we have

E it Xy = Sl X7

= BT Xy A = KB
— Qi+

by the (CM),,,-neutrality.

It remains to be shown that the marginal moments of the X; have the right
values. This is in fact true for the first moments by the definition of the a;.
Supposing it to be true for all moments of order not exceeding a given r > 1,
we may use (4) to obtain

EX7E(l — X))
5 EX (1l — X)) =242 7 4 FX(1 — X,)
5 =X = e Ty T = X
and

(6) E/Y{'l(l _ Xi)z — EX;."‘IE(I - X;)z EX~3(1 _ Xj)f—l

EX?E(l — X,y ?

for arbitrary distinct i and j. Adding (5) and (6) we obtain an expression for
EX;7 (1 — X;) involving EX,; +' and moments of order not exceeding r. Up to
its sign the coefficient of EX,;7+! in this expression is given by

EX;E(1 — X _ EX;E(l — X))
EX?E(l — X,  EX,E(1 — X,y

afa;, +1)---(a; + r — 2)(a — a,)
afa—a;a—a;+1)...(a—a; +r—2)

a—a;+1  a+r—1 } 0
X{ a; + 1 a—a; +r—1 >

and hence does not vanish. Thus we can solve for EX, ;7t!, expressing it in terms
of moments of lower order. Without further computation we may conclude
that all moments of order r 4 1 coincide with those of D(a,, - - -, a;; a,,,), and
thus the proof is complete.
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