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EXPECTATION OF ELEMENTARY SYMMETRIC FUNCTIONS
OF A WISHART MATRIX

By JoHN G. SAw

University of Florida

Some conjectures made by De Waal [dnn. Math. Statist. 43 (1972) 344~
347] on the expectation of elementary symmetric functions of the roots of
a noncentral Wishart matrix are proved true. The method of proof is
through a simple, though perhaps obscure, property of these elementary
symmetric functions and simple properties of the Wishart distribution.

1. Introduction. If X(p X n) has independently, normally distributed columns
with covariance ¥ and &(X) = M, then 4 = XX’ has the noncentral Wishart
distribution. Write tr; (4) for the jth elementary symmetric function of the
latent roots of 4 and set tr,(4) = 1 for convenience. Put Q = VMM’ and
(@) =a(a—1)a—2)--.-(a—i+1).

De Waal (1972) conjectures that

(1.1) Etr, (4) = &l = |V]| Do (n — )0t (), p=n

and, further, that when V = I,

(1.2) St (A) = Ll (n = P (), isjsp=n.

We will show

(1.3) &t (V) = Zlo(n - ) 20G) (@), isjspsn.
Labelling the claimed identity in (1.3) as C; , (V) it is clear that C, , (V) is

equivalent to (1.1) and that C; , (/) is identical to (1.2). However, choosing K

so that KVK’ = I and transforming X — KX, we see that C; (V) is true if and

only if C; , () is true :1 < j < p. We show first that C, , (/) implies C; ,(I)

and then prove that C, (/) is true thus validating the entire set of De Waal’s

conjectures, more generally expressed in (1.3).

2. C,,(I)implies C; , (I). LetJ = {i}, i,, ---,i;} withi, < iy, ---, < i;bean
ordered subset of the integers 1,2, ..., p. For any matrix B(p X p), define B,
as the j X j matrix formed from B by preserving only those rows and columns
corresponding to elements of J. If 4, 4,, - --, 4, are the latent roots of B then
|B — Al = (4 — A)(4, — 4) - - - (4, — A). Differentiate this equation (p — j) times
with respect to 4 and set 4 = 0 to obtain

2.1 tr; (B) = 2., 1B,]
the summation extending over all possible J. From (2.1)
(2.2) 20 (By) = Dk [(B)xw
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where K(J) is an ordered, size k subset of the elements of J. Clearly (B,) ., = Bx
for some K, an ordered, size k subset of {1, 2, ..., p}. Further all possible such
B, will be included on the right-hand side of (2.2) an equal number of times.
We have therefore

(2.3) 2 Zxw (Brw| = (32F) Zx 1Bkl

the combinational multiplier having been determined by comparing the number
of determinants on the left and right sides of the equation. Use (2.1) on the
right-hand side of (2.3) and then (2.2) to obtain

(2.4) gty (By) = (520) tr, (B) k<j.
Assume C,, (1) to be true, 1 < p < n. Since

(2.5) &tr;(A) = 3, €4,

then

(2.6) Etr;(A) = L Dize(n — )9 91tr,(Q,)

and so, C; , (1) is true :1 < j < p < n after using (2.4) on the right side of (2.6).

3. Validation of C, , (I). Since &'|4] depénds on Q only through the latent
roots of the latter we may assume that Q = diag(®,, ®,, - --, ®,) and corre-
spondingly that X = Y + M wherein Y is a matrix of pn mutually independent
standard normal deviates and M = (m,;) is the matrix m; = o}, 1 < i < p;
m;; = 0 otherwise. Clearly &|4| is a symmetric function of {w}, 0}, - - ., 0,}}
of order at most two in each element. Since the elements of Y have a distri-
bution symmetric about zero, &’|4| is invariant under the transformation ;! —
—w;}. Evidently &|4| must be a symmetric function of {w,, @, ---, ®,} of
order at most one in each element therefore, for some d,, d,, - - -, d,, we may

write
3.1 LA = dy + ditr, (Q) + --- 4+ d,tr, (Q).
We first show

0.9 .., |a=1.

b0, 50, Ga,

(3.2)

The differential of | 4| with respect to w, is the sum of p determinants the ith of
which is |4| with its ith row differentiated with respect to w,, i = 1,2, ..., p.
The differential in (3.2) therefore is the sum of p? determinants. Of these, those
which have any row of 4 differentiated at least twice will be zero due to the
presence of a row of zeros. Of the remaining p! determinants, all but one will
have zero expectation since their expansion will be seen to contain an element
of Y raised to an odd power. The surviving determinant is that in which the
ith row of A4 has been differentiated with respect to w;, i = 1, 2, - - -, p. The pro-
duct of the diagonal elements of this determinant is (1 + o y,,)(1 + whys) - - -
(1 + wt,y,,) which has unit expectation. Every other product occurring in the
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expansion of this determinant has an element of Y raised to an odd power and
has zero expectation.
Now

(3.3) =% 2 9 . 20

IAI when le:sz:-”:w‘,:O.
0w, 0w, dw,

Let A,; be the first i rows of columns of A4; 4,, be the last p — i rows and columns
of 4 and A4,, = A}, be formed from the first i rows and last p — i columns of
A. When o,,, =w,,, = --- =, =0, it is well known that 4,, and 4,, —
AnAit A;, are independent and that the latter, which has a central Wishart
distribution, has expectation (n — i)*=%. Since |4| = |A,||Ay — A5 A7'A4,,| and
applying (3.1) to |4,| we see that d; = (n — i)**=* which proves C,, (1).
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