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ON FIXED SIZE CONFIDENCE BANDS FOR THE BUNDLE
STRENGTH OF FILAMENTS!

By PRANAB KUMAR SEN
University of North Carolina, Chapel Hill

The present paper deals with the asymptotic theory of sequential con-
fidence intervals of prescribed width 2d (4 > 0) and prescribed coverage
probability I — « (0 < & < 1) for the (unknown, per unit) strength of bundle
of parallel filaments. In this context, certain useful convergence results on
the empirical distribution and on the bundle strength of filaments are es-
tablished and incorporated in the proofs of the main theorems. The results
are the sequential counterparts of some fixed sample size results derived in
a concurrent paper of Sen, Bhattacharyya and Suh'[9].

1. Introduction and summary. For fixed (but large) sample sizes, the distribution
theory of bundle strength of filaments has been studied by Daniels [4], Sen,
Bhattacharyya and Suh [9], and others. The object of the present investigation
is to develop, along the lines of Anscombe [1] and Chow and Robbins [3], the
asymptotic theory of bounded length‘sequential confidence intervals for the

bundle strength of filaments.

Let {X;, i = 1} be a sequence of independent and identically distributed (i.i.d.)
nonnegative random variables (rv) defined on a probability space (2, 7, P). We
assume that X; has an absolutely continuous cumulative distribution function
(cdf) F(x), x € [0, o), with a continuous first derivative (density function) f(x),
such that

(1.1) 0< 2= (px*dF(x) < oo,

and there exists a unique x, (a point of continuity of f(x)), for which

(1.2) 0 =sup,; {x[1 — F(x)]} = x[1 — F(x;)] and O0<m=F(x)<1l.
Note that

(1.3) 0< < §exdF(x)<2; 0<x,< 00,

and the derivative of x[1 — F(x)] vanishes at x = x,, so that f(x,) > 0. Further,
we assume that there exist four positive constants C,, C, and k, (>1), k, (>1),
such that for sufficiently small ¢ (>0),

(1.4) 0 — Cilx — x|t < x[1 — F(x)] £ 0 — Cy|x — x,|*2
forall |x — x| < 0.

In fact, if x[1 — F(x)] is twice differentiable in some neighborhood of x, and the
second derivative does not vanish there, then (1.4) holds with k;, = k, = 2.
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Our parameter of interest is #. For a random sample X;, - - -, X, of size n from
the distribution F(x), we denote the ordered random variablesby X, , < --. <
X, .. Let then
(1.5) D, =max, . [n—i+ DX, ]=0—r,+ I)Xn’,n and

Zn = n‘an s

by virtue of the assumed continuity of F(x) and (1.2), r, (a random variable
assuming only integer values between 1 and n) is unique, with probability one.
It is shown in [9] that Z, converges to 6 almost surely (a.s.) as n — co. When
the X; represent the breaking stresses of filaments, D, is equal to the maximum
stress which a bundle of n parallel filaments of equal length can stand, and is
termed the bundle strength (cf. [4], [9]). We term 6 as the mean (per unit) bundle
strength of filaments. We want to find a confidence interval for 6 of prescribed
width 2d, d > 0, and prescribed confidence coefficient y (0 < 7 < 1). Since,
neither F(x) nor the distribution of D, is explicitly known, no fixed sample size
procedure sounds available.
For n = 1, we define

(1.6) I1@d)=[Z,—4d,Z,+d], d>0, and p, =@+ 1)7'r,.
Also, let {a,} be a sequence of known positive constants such that

lim, ,a, =a where (2z)7}§*,exp(—27'"F)dt=7.
Finally, let
(1.7 ) = a2Zp /[0 —p)]  and  w(d) = @Orf[d(1 — 7)] -

Then, our proposed sequential confidence interval I, ;)(d) = {0: Zy) —d <0 <
Zy + d} is based on the stopping (random) variable N(d), defined by

(1.8) N(d) = first positive integer n (=2) for which v,(d) < n.
The following theorems establish the properties of N(d) and 1.

TueoreM 1.1. If 2 < oo, then for every d > 0, the sequential procedure terminates
with probability one. In fact, there exists a t, (=1,(d) > 0 for d > 0), such that
(1.9) Efexp[IN(@)]} < co  for every —oco <t<1,.

THEOREM 1.2. Under (1.1) through (1.4), N(d) is a non-increasing functions of
d (>0), lim,_, N(d) = oo a.s., and lim,_, E[N(d)] = oo;

(1.10) lim,_, {N(d)/v(d)} =1 a.s., lim,_, P{0ely,(d)} =7,
(1.11) lim,_, {E[N(d)]/p(d)} = 1 .

The proofs of the theorems are postponed to Section 4. It may be noted that
the estimator Z, of 6 or v,(d) of v(d) is not linear in X; or X;* etc., and hence,
the results of Anscombe [1] or of Chow and Robbins [3] are not directly ap-
plicable. In fact, we need to prove some a.s. convergence results on {Z,} (see
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Section 3) for the validation of the condition of ‘uniform continuity in probability’
(with respect to n~*) of Anscombe [1] (also implicit in [3]). This, in turn, requires
certain convergence results on the empirical cdf which are studied in Section 2.
The last section develops sequential fixed percentage error confidence bands for 6.

2. Some results on the empirical cdf. Let c(x) be equal to 1 or 0 according as
u is > 0 or not. Define the empirical cdf F,(x) by

2.1 F,(x)=n71 3% c(x — X)), 0<x< .
By the Glivenko-Cantelli Theorem, we know that
(2.2) sup, |F,(x) — F(x)] - 0 a.s., as n— oo .

Also, by the well-known results on the Kolmogoroy-Smirnov statistics, we know
that for every ¢ > 0, there exists a positive K, (< o), such that for everyn > 1,

(2.3) P{sup, nt|F,(x) — F(x)| > K} < ¢;

in fact, by Lemma 2 of Dvoretzky, Kiefer and Wolfowitz [5], we obtain that
for everyn = 1 and r = 0,

(2.4) P{sup, n}|F,(x) — F(x)| > r} < c{exp[-2r*]}, where 0 < ¢ < o0,
and hence,
(2.5) sup, |F,(x) — F(x)| £ n~¥(log n)t a.s., as n— oo .

THEOREM 2.1. If 2 < oo, then for every ¢ > 0, there exist positive constants C
(<), p(e): 0 < p(e) < 1, and an integer ny(e), such that for n = ny(e),

(2.6) P{supyg, <o X|[Fu(x) — F(x)| > ¢} < Clo()]",
and hence,
2.7) SUPp<pce X|F(X) — F(x)| > 0 a.s., as n— oo .

Proor. If the range of the cdf F is finite, i.e., F(a) = 1 for some a < oo,
then noting that F,(x) = F(x) = 1 for all x = a, so that
(2.8) SUPo<, <o X[ Fo(X) — F(X)| = SUPog,<q X|F,a(x) — F(x)|

< afsup, |F,(x) — F(x)[],

the result directly follows from (2.4). Hence, in the sequel, it will be assumed
that F(x) < 1 for all x < oo.

Note that 2 < co = x’[1 — F(x)] converges to 0 as x — co. Hence, for every
e > 0, there exists a positive K, (x, < K, < o), such that
(2.9) Sup,cx, X[1 — F(x)] =6, SUp,s i, X[1 — F(x)] < 0 — 2¢;
(2.10) inf,. ¢ {[1 — F(x) + ¢/2x]log (1 + ¢/2x[1 — F(x)])} = 2¢.
Also,
(2.11)  sup, {x|F,(x) — F(x)|}

= max {SupstE XIF,n(X) - F(X)[, Supz>Ke x|Fn(x) - F(X)l} ’
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Thus, it suffices to show that for n = ny(e),

(2.12) P{sup.sx, X|Fu(x) — F(x)| > ¢} < Ci[p(e)]"

(2.13) P{sup,; ¢, X|Fu(x) — F(x)| > ¢} < Clo(e)]" s

where C, and C, are positive (finite) constants. Now, as in (2.8), (2.12) follows
from (2.4), so we need only to prove (2.13). For this define

(2.14) bm =K +jnt, j=0,...,n* =[exp(n)]; 0 < < ¢f2.
Then,

(2.15)  P{Sup,zx, X|F,(x) — F(x)| > e} < P{supg,c.zafw X|Fu(x) — F(x)| > ¢}

+ P{sup,syim x|F,(x) — F(x)| > ¢},
where the second term on the right-hand side of (2.15} is bounded from above
by
(2.16) P{sup,.,m x|F,(x) — F(x)| > ¢, max,gg, X; < by

+ P{max, g, X; > bV} .

If X, ---, X, are all <b{, for x = b{, x|F,(x) — F(x)| = x[1 — F(x)], and as
x’[1 — F(x)] — 0 with x — oo, for every ¢ > 0, there exists an ny(¢), such that
for n = ny(¢), x[1 — F(x)] < ¢ for every x > b{»’. Consequently, the first term
of (2.16) vanishes for every n = ny(c). On the other hand, by (2.14) and the fact
that as x — oo, x*[1 — F(x)] — 0, the second term can be expressed as
(2.17) 1 —[FOEH =1 — {1 — [1 — F(bEH]}

< 1— {1 —o([B] )

= o[exp (—2¢'n + log n)]

= o[exp (—¢'n)], for n = nye).
Thus, it suffices to show that

(2.18)  P{supgcumsm AF,(x) — F| > ¢ S Clp@)]"s  0< C/ < oo

In the choice of K, in (2.9) and (2.10), we may let (without any loss of generality)
K, = 1, so that by (2.14), b{~,/b;™ < 1 4 n~, for every j = 0. Then, for xe
[6,", 6],

(2.19)  x|F,(x) = F(x)| = (1 + n7"}{max [U,;, U,; ] + b, [F(b;1,) — F(b,")]},

where
(2.20) U,; = b;"[F,(b;") — F(b;")], j=0.
Note that for j = 0,
(n)
221) b [F(by) — F(B;™)] < §,753 x dF(x)

(n)
< [§,731 X*dF(x)]/b;” -0 as n—oo,
2

by (1.1) and (2.14),
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and hence, for (2.18), it suffices to show that for every ¢ > 0, there exist an
ny(e) and a p(e): 0 < p(e) < 1, such that for n = nye),
(2.22) Pmax,g; s, [Unil > €2} < C/Lo()]" -
Note that U,; = (1/n) 337, {6;"[c(b;” — X;) — F(b;")]} = n~* 37, d,;;» Where
d,;,i=1,..-,n, are i.i.d. bounded rv’s with mean 0 and —b;™F(b;™) <
d,.; < b;™[1 — F(b;™)]. Thus, by Theorem 3 of Hoeffding [6],
(2.23)  P(U,; < —¢/2)
< {(1 4 ¢/22[1 — F))=F+2(1 — ef2xF(x))= @),y
< exp(—en),
as for x = K,, by (2.9) and (2.10), [1 — F(x) 4 ¢/2x] log (1 + ¢/2x[1 — F(x)]) +
(xF(x) — ¢/2)log (1 — ¢/2xF(x)) = e. In a similar manner, it follows that
(2.24) P{U,; > ¢/2} < exp (—en) for n = nye).
Consequently, by (2.23), (2.24) and the Bonferroni inequality, for n > ny(e),
(2.25) P{maxy_; .. |U,;| > ¢/2} < 2(n* + 1)[exp (—en)] = 2[exp (—en + €'n)]
< 2[exp (—enf2) = 2[exp (—¢/2)]*,
and hence, the proof of (2.6) is complete. (2.7) follows directly from (2.6) and
the Borel-Cantelli lemma. []

REMARK. When the X; are real valued rv’s, defined over (— oo, o0), the theorem
readily extends with the range of x as (— oo, o). Further, if the X; are inde-
pendent but not necessarily identically distributed, we denote the cdf of X; by
F;*(x) and let F,* = n~' 337, F;*, n = 1. If then,

(2.26) sup, §¢ x2dF,*(x) < 2 < oo,
the conclusions of Theorem 2.1 hold with F replaced by F,*.
Now, by (2.3) and (2.5), for every K, (<w),

(2.27) SUPsg, <, MX[Fa(x) — F(x)]| = 0,(1),

(2.28) SUP<,<x, M[X[F,(x) — F(x)]| = O((log n)}) a.s., as n— oo .
Let us then write

(2.29) a,,=n"logn, A(n, a) = [x) — a, 4, Xy + @, ]

(230)  G,(xy @) = sup (m|[F,(x) — F(x)] — [F,(x) — F(x)]|: x& A(n, @)} .
THEOREM 2.2. Foranya: 0 < a < 1,asn— oo
(2.31) G,.(xp @) = O(n=**logn) , with probability 1.

Proor. We consider 2nf (8 < 1) equidistant points on A(n, a) and apply the
same technique as in Lemma 1 of Bahadur [2], who considered the special case
a = §; for brevity, the details are omitted. Further, if the distributions are not
all the same, we can proceed as in Sen [8] and derive the same result (on replacing
F by F.*).
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Let us now define
(2.32) M, = n¥{x,[F,(x,) — F(x,)]} and G = xin(l — =) -

THEOREM 2.3. For every positive ¢ and 7, there exists a d (>0), such that for
all n = nye, p) and N < on

(2.23) P{supigicn IM, — M, ;| > £} < 7.

Proor. From (2.1) and (2.32), it follows that M, * = n*M, forms a martingale
sequence, and hence, by the well-known Kolmogorov inequality

(2.34) P{sup,g;<y IM3y5] > 0} < 67°E{M, \F < n(1 + 0)(C/8)*,
for all N < én. Also, foralll <j < N< dn,
2.35) My, — M| = |(n + j)*ME; — nmiM,¥
= MG — M+ {3+ 0)F — 1H(L + 9)HIM,¥[}

Hence, it follows from (2.34) and (2.35) that we are only to show that for every
positive ¢’ (<¢) and 7’ (<), there exists a 6 (>0) such that
(2.36) P{sup,c<cy M} ; — M*| > n¥e'} < 7/ forall N < on
and this readily follows from the Kolmogorov inequality on martingales (cf. [7],
page 386).

3. Convergence of Z, and p,. We are mainly interested in the following
theorems.

THEOREM 3.1. If 2 < oo, then for every ¢ > 0, there exist a positive integer ny(c)
and a p(¢): 0 < p(e) < 1, such that for n = nye),

(3.1) P{|Z, — 0] > ¢} < [o()]" -
Proor. By (1.5) and (2.1), we have

(3.2) Z, = [1 — Fy(X,,)] = Sup.z0 (x[1 — F,(®)]},
and by assumption,

(3.3) 0 = x[1 — F(x)] = sup,, (x[1 — F(x)]} .

Also, (3.2), (3.3) and the event that sup, |x[F,(x) — F(x)]| < e imply that
|Z, — 0] = |sup, x[1 — F(x)] — sup, x[1 — F,(x)]| = sup, [x[F,(x) — F(x)]| S e.
Hence, the proof directly follows from Theorem 2.1. []

Note that (3.1) implies that
3.4 : [A< 0]=Z,—>0 as., as n—oo.

For our purposes, we require some relatively stronger results, stated below.

THEOREM 3.2. Under (1.1)—(1.4),[n¥(Z, — 0) + M,]— 0, with probability one,

as n— oo.
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Proor. Since x[1 — F(x)] has a unique maximum 6 at x,, for every (small)
e > 0, there exists a d (>0), such that
(3.5) x[1 —F(x)] <6 — 2¢ forall |x — x| > 0.
Thus, by (2.7), (3.3) and (3.5),

(3.6) sup {x[1l — F (x)]: |[x — x| >0} <6 — ¢, with probability 1,
as n—oo.

With the definition of k, in (1.4), we let @ = 1/2k, in (2.29), and let
3.7 A(n, a) =[x, — 9, x, + 6] — A(n, a) .
Then, for all x ¢ A(n, a)

sup {|n}{x[1 — F,(x)] — x[1 — F(x)]} + M,|: x € A(n, a)}
(38) = sup{|(x, — NM[F,(x) — F(X)] + %,G,(x, a)|: x € A(n, @)} + o(n~})
= O(n=*/[log n)) , with probability 1, as n— oo,

by virtue of Theorem 2.2, (2.27) and (2.29). Consequently,
3.9) nisup [x{1 — F,(x)}: x € A(n, a)] — 0} + M, = O(n~**(log n)) ,
with probability 1, as n — co. Finally, by (2.28), as n — oo,

(3-10)  sup {Ix[F,(x) — F()]|: xe (n, a)} = O(n~¥(log n)?) ,
with probability 1, and by (1.4) and the value of & = 1/(2k,),
(3.11) sup {x[1 — F(x)]: xe A(n, a)} < 0 — O([n~}(log n)*2]) .

Upon noting that for large n, O(n~*(log n)t) = o(1)O(n~}(log n)*) for all k = 1,
it follows from (3.10) and (3.11) that

(3.12) sup {x[1 — F,(x)]: xe A(n, a)} < 0 — O([n~*(log n)*]) ,
with probability 1.

Since, by (2.27) and (2.32), |M,| < x,(log n)}, with probability 1 (as n — o), it
follows from (3.6), (3.9) and (3.12) that as n — co,

(3.13) W,=nZ, —0) + M, —0, with probability 1. []

Now, from (3.13), it follows that for everv ¢ > 0, there exists an 5 > 0, such
that for all n = ny(e, 7)

(3.14) P{|W,.;| > ¢ foratleastone j=1,...,N, ...} < 7.
Hence, from Theorem 2.3, Theorem 3.2 and (3.14), we arrive at the following.

THEOREM 3.3. For every positive ¢ and 1 there exists a 6 > 0, such that for all
n = nye, ) and N < on

(3.15) P{|Z,,; — Z,| < n¥e forall j=1,-..,N}=1—7.
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Further, we state the following result already proved in [4], [9]: for every ¢,
(3.16) lim, ., P{n}(Z, — 0)/C < 1} = (2n)~} §L. exp (—$x?) dx,
—co Lt 00,
THEOREM 3.4. If 2 < oo, for every ¢ > 0, there exist an nyc) and a p(e): 0 <
o(e) < 1, such that for n = ny¢),
B3.17)  Pp, <m—e} S2Ap@)]" and  P{p, >+ ¢} < 2[p()]" -
Proor. We only prove the result for p, > =, 4 ¢, as the same proof holds for

the other case. Corresponding to every ¢ > 0, we can find an 5 (>0) such that
F(x, + n) = m, + ¢/2. Then, we have

P{Pn>n'o+5}

=P {n :’r Fu(X,,) >+ e}

(3.18) = PIF(X,,,) > m + ¢}
< PF(X,,) > 7+ & X, <%+ 7} + P(X.,,
S P{F,(xy+7) > m + e} + P{X,, > x + 7}.
Now, by Theorem 1 of Hoeffding [6], we have upon noting that F(x,+ 7) = m,+ }e,
(3.19) P(F, (%, + 7) > m + ¢} < exp (—4ne’) = [(O)]" »
where p,(¢) < 1. Also, [X,, > x + 7]=X,, [l — F(X,, )] <0 — 0, where
0 > 0. Therefore
P{X, ., > X, + 7}
= KX, [1 - F(X,,)] <0 —2d}
= KX, [1 - F(X,, ) <0—9,X,, [F(X..,)
(3:20) — F(X,. )]l = 9/2}
+ P, [Fu(X,,,) — F(X,, )]l > 6/2}
= PX, . [1 — F.(X,,,)] <0 — 32}
+ P X, [Fu(X,,r,) — F(X,. )] > 6/2}
< P{Z, < 0 — 9/2} + P{sup, [x[F,(x) — F(x)]| > 9/2}.
Hence, (3.17) follows from (3.18), (3.19), (3.20) and Theorems 2.1 and 3.1. ]
Note that (3.17) implies that
(3.21) [A< 0]=p,—>m a.s., as n— oo .

4. Proofs of Theorems 1.1 and 1.2. Since (1.9) implies that P{N(d) < oo} = 1,
we need to prove only (1.9) for Theorem 1.1. Define

4.1 Q,(d) = P{N(d) > n}, n=0,1,..--;0/d)=1.
Then, upon noting that for every ¢ > 0,
(4.2) E[exp (tN(d))] = 1 + |e* — 1|[{ X7, [exp (n)]Q.(d)} »

> x, + 7}
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it suffices to show that there exists a positive #,, such that
(4.3) [exp (n2)]Q.(d) — 0 as n— oo, for every (fixed)d > 0.
Now, by (1.7) and (1.8),
Q,(d) = P{N(d) > n} = P{v,(d) >r,r=1, ...,n}
(4.4) < P{v,(d) > n} = P{Z,* > (nd’[a,’)(1/p, — 1)}
< Pz > (nd*[a,)(pa™ — 1), pp = 7o + B} + PP > 7 + B}

where 8 > 0. Sincep, < ny+ B=p,*— 1= p*>n,~* — 1, we have
(4.5) Q. = P{Z, > (np*)¥d[a,} + P{p, > = + B}.
Now, a, — a (>0), as n — oo. Hence, for every ¢, there exists an ny(d) such

that for n = ny(d), (nf*)}d/a, > 0 + ¢, where ¢ > 0. Hence, from (4.5), we have
for all n = ny(d),

(4.6) Q.ZPZ, >0+ ¢+ Plp, >+ B}

Thus, (4.3) directly follows from (4.6), Theorem 3.1 and Theorem 3.4, and the
proof of (1.9) is complete.

To prove Theorem 1.2, we note that by (1.7), v,(d) 1 co asd — 0, and hence,
by (1.8), N(d) is non-increasing ind (>0). From (1.7), (3.4) and (3.21), it follows
that as n — oo,

4.7 Y, =v,(d)r(d)—1 a.s., uniformly in d (>0) .

Hence, lim,_,v,(d) = o a.s., which by (1.8), leads to lim,_, N(d) = oo a.s.
Finally, by Theorem 1.1 and the monotone convergence theorem (cf. [7], page
124), it follows that lim, , EN(d) = oo.

Now, upon writing f(n) = na*/a,’ and t = a’»(d), it follows from (4.7) that the
conditions of Lemma 1 of Chow and Robbins [3] are all satisfied. Also, by virtue
of (3.15) and (3.16), the conditions (C1) and (C2) of Anscombe [1] hold for {Z,}
(these conditions are implicit in [3]). Hence, the proof of (1.10) follows along
the lines of Lemma 1 of Chow and Robbins [3] (together with the proofs of their
(4) and (5)).

To prove (1.11), we require to show as in Lemma 2 of [3] that E(sup, ¥,) < oo
or verify the conditions of their Lemma 3. Now, by definition,

(4.8) Y, = (a2)@)[1 — ao)/m6)[Z,’pu/(1 — Pu)] 5
and hence, it suffices to show that E(sup, Z,’p,/(1 — p,)) < co. But,
(4.9) U= Zpa/(1 — po) =070 — 1, + Dr, X5,

< () B, X2 ST DI XD ae,

and hence, it suffices to show that E(sup, n~* }}7; X;?) < oo. A sufficient condi-
tion for this is, of course, that E(X*) < co. However, as in Lemma 3 of [3], we
prove (1.11) without unnecessarily assuming that E(X*) < co. For this, consider
first the following lemma.
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Lemma 4.1. U, /U, , = (1 — n7')* foralln = 2.

ProoF. Given the sample of sizen — 1 ie., X, ;;, < -+ < X,y 1, X, Can
belong to one of the n intervals: X, ,;, , < x< X, ,;,i=1,...,n, where
X,o0=0and X, ,,=o0. If X, ,,, <X, <X, ,;, we have the following

two arrays corresponding to the samples of sizes n — 1 and n respectively:

m—DX, s —i+ DX, (n— DX o005 4,

n—1,n—1"

an—l,li cc (n — i + Z)Xn—l,i—l’ (ﬂ —i + I)X'M (n - I)X 1,4 ° " "> Xn—l,n—l s

where (n — r,_)X,_,, _, and (n — r, + 1)X, , are the maximum values within
the first and the second rows. Thus, (i) if r,_, = i, we may have either r, =
rooi+ 1>, 0rr,=r, ;=i In the first case, X, , = X, ,,  and hence,
rfn—r,+ O)X:, =r,(n—r,_)X;_,, . In the'second case, X,, = X,
and hence (n —r, + )X, = —r)X,.,, = (@ —r)X,,;. Thus, r(n—
ot DX, =1 (i — 1+ DX, - X, =1 (n— 1, X2, . Hence, in
either case,

(4.10) ron—r,+ 1D)X5, =Zr,(n—r,_)X;

=171 °

Ty

@ii) If r,_, <i— 1, it is quite evident that r, = r,_,, X,, = X,

Ty = =1L,7,— and
(n—r,+ 11X, =(@—r,)4X . Consequently, (4.12) holds again. 2l“hus,

“Lrp—1

(.11) UU,, _ (n — 1>2|: rin—r,+ )X :|2 > (1 _ l)z ae.

n Fu_i(n —r,_))X2 n

n—1 “Lrp—1

Hence the lemma.

Using now Lemma 4.1, (4.8) and (4.9), the proof of (1.11) follows exactly as
in [3, pages 630-631]. Alternatively, a proof similar to the one in (5.10) through
(5.14) can be sketched. Hence, the proof of Theorem 1.2 is complete.

5. Fixed percentage error confidence bands for §. For every d > 0, we define
d, = exp(—d) and d, = exp(d), so that 0 < d, < 1 < d;, < o. We intend to
find a confidence interval /,(d) = {0: d,Z, < 6 < d,Z,} such that
.1 el @t=r O<r<1.

Our desired sequential confidence interval I, (d) = {Zy,d, < 0 < Zy,,d,}
is based on the stopping (random) variable N(d), defined by
5.2) N(d) = smallest integer n ( = 1) for which p, < nd*nd* 4- a,’}*,
where p, and a, are defined as in Section 1. We also define z, as in (1.2), and let
(5.3) v(d) = a’rf(1 — m)d*} .

THEOREM 5.1. The results of Theorems 1.1 and 1.2 also hold for the sequential
procedure in (5.2), with v(d) defined by (5.3).

Proor. Note that
5.4) Pn = nd*(nd* + a,})' = p,(1 — p,)~* < nd®a,™*.



536 PRANAB KUMAR SEN

Hence, if we define Q,(d) as in (4.1), to prove the results parallel to those in
Theorem 1.1, we are only to show that (4.3) holds for the stopping variable
N(d) defined by (5.2). Now, by (5.2) and (5.4),

(5.5)  Qud) = P[Nd) > n} = P{p,(1 — p)* > rd%a, % r =1, ..., n}
= P{p,(1 — p,)' > nd’a,*} = P{p, > nd*(nd* + a,*)7'}.

Now, for every d > 0, there exists an n,, such that nd?/(nd* + a,?) = =, + ¢, for

all n = n,, where ¢ > 0. Hence, for n > n,,

(5.6) Q.(d) < P{p, >, + ¢},

and hence, (4.3) follows directly from Theorem 3.4.
To prove the results parallel to those in Theorem 1.2, we use (3.16) and some
standard results on transformation of statistics, and obtain that

(5.7) L(ntlog[Z,/0]) — A0, n(1 — 7)) .

Also, by (1.1), @ is strictly positive, and hence, from (3.4) and Theorem 3.3 it
follows that for every positive ¢ and 7, there exists a > 0, such that for all
n = nye, ) and N < dn, '

(5-8)  PnillogZ,,; — log Z,| < efmo/(1 — m)}t,j=1, .-+, N} > 1 — .
Hence, {log Z,} satisfies both the conditions (C1) and (C2) of Anscombe (1952).
We also note that by virtue of (3.21)

(5.9) Vo = p.(1 — m)/(1 — pymy— 1 as., as n— oo,

and hence, using (5.2), (5.4), (5.7)—(5.9) and Lemma 1 of [3], it follows that
(1.9) holds for the stopping rule (5.2). To prove (1.11), we proceed as follows.
Choose some arbitrarily small ¢ (>0), and defining v(d) as in (5.3), let

(5.10) ny(d) = [v(d)(1 — ¢)] and ny(d) = [v(d)(1 + &) + 1].
Then,
(5-11) E{NM@d)[v(d)} = [v(@)]7'[Z: + Zs + ZsnP{Nd) = n}],

where the summation };, extends over n < ny(d), >, over ny(d) < n < ny(d) and
>i; over n > ny(d). Since lim,_,v(d) = oo and N(d)/v(d) — 1l a.s., asd — 0, for
every e > 0, we can find a d; (>0), such that for 0 < d < d,, P{n,(d) < N{d) <
ny(d)} = P{1 — ¢ < N(d)/v(d) £ 1 + ¢} > 1 — 7, where 5 (>0) is a preassigned
small number. Then, for d < d,, the first sum on the right-hand side of (5.11)
is less than

(5.12) (1 — 9P(N() < m@d)} < 7(1 — ) < 7.
The second sum is equal to 1 + R(d), where
(5.13)  |R@)| < eP(n(d) < N(d) < ny(d)}

+[1 — Pn(d) < N@d) S n@))] S ¢ + 7.



BUNDLE STRENGTH OF FILAMENTS 537

Finally, on using (5.5), we have on noting that Q,, ,,(d) = P{N(d)/v(d) = 1 + ¢}
that

[v(d)]™ X nP{N(d) = n}
= @) {250+ Qul@) + [1:(d) + 1]Q,,0)(d)}
= @] X5y P{p. > nd?[(nd® + a,%)}]
(5.14) + {[na(d) + 11/(d)}Cnya)(d)
= (@)]™ Do P{pa > mo(1 + o[(1 + e)mo + (1 — mo)a,’/a’]™}
+ {[n(d) + 1]/v(d)}y
= @)™ X P{pa > 7o + €} + {nlna(d) + 1]/v(@)}; ¢ > 0.

Hence, by Theorem 3.4 and (5.10), it follows that the right-hand side of (5.14)
can be made arbitrarily small by letting d be small. Hence, (1.11) follows from

(5.11) through (5.14). []

Acknowledgment. Thanks are due to the referee for his useful comments on
the paper.
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