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SEQUENCES CONVERGING TO D-OPTIMAL
DESIGNS OF EXPERIMENTS

By CorwIN L. ATWOOD
Haile Sellassie I University

Fedorov (Theory of Optimal Experiments (1972)) gives a sequence of
designs converging to a D-optimal design. Several modifications of that
sequence are given to improve the speed of convergence. The analogous
sequence for estimating some of the parameters is shown to converge to
a D-optimal design, whether or not all the parameters are estimable under
the limiting design. We prove the result d(x, £)¢(x) < 1, and several related
results.

0. Introduction and summary. There have been several papers giving sequences
of designs which converge to D-optimal designs. (For terminology, see the next
section.) Wynn [5] considers only designs using a finite number of observations.
Given the design £, using n observations, he produces ¢,,, by taking the next
observation at a point x, where d(x, £,) is maximized. The resulting sequence
det M(&,) converges, though not monotonically, to the maximum possible value.
Fedorov [2] deals with the continuous theory, in which the designs considered are
probability measures. He adds that measure at x, which maximizes det M(¢,.,),
and obtains a sequence analogous to that of [5], except the convergence now is
monotone. More recently Wynn [6] has given a similar result for exact designs
when only some of the regression parameters are to be estimated. Fedorov
mentions such a result for the continuous theory, but only in the case when the
sequence of designs (which are intended for estimating only seme of the pa-
rameters) converges to a design under which all the parameters are estimable.

Here, after proving the preliminary result that d(x, §)é(x) < 1, we present
some simple modifications of the sequence given by Fedorov for estimating all
the parameters. In an example these modifications substantially increase the
speed of convergence. We then prove that the analogous sequence for estimating
some of the parameters converges to a D-optimal design, whether or not this
limiting design allows all the parameters to be estimated. An interesting corollary
of our methods is that an optimal design never assigns a point measure which
is greater than the reciprocal of the number of parameters being estimated.

1. Terminology. We use the definitions and notation which have become
standard. For fuller details, see almost any of the references listed. A con-
trollable variable x can range over a space 2. On .7~ are defined k regression
functions f;, - - -, f,, which we write as a column vector f. We can observe
uncorrelated random variables Y,, each with variance ¢? and mean f’(x)d, for
some unknown k-dimensional parameter §. (Primes denote transposes.) A design
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D-OPTIMAL DESIGNS OF EXPERIMENTS 343

¢ is a probability measure on 22”7, If ¢ is supported on finitely many points and
£(x) is rational for all x, £ is called exact and £(x) is the proportion of observa-
tions to be taken at x. Otherwise we allocate observations to approximate the
distribution given by &. Define M(§) as the k x k matrix with ijth entry
§ () (%) dE ().

Suppose we want to estimate 6. If & is exact then the covariance matrix of
the best linear unbiased estimator of @ is proportional to M~*(§). Accordingly
we call £ D-optimal if it maximizes det M(£). The variance of the best linear
unbiased estimator of f’(x)f is proportional to d(x, §) = f'(x)M~*(§)f(x). There-
fore we call £ G-optimal if it minimizes d(§) = max, d(x, &), the maximum being
taken over 2", Kiefer and Wolfowitz [4] showed that & is D-optimal if and only
if it is G-optimal, and either condition is equivalent to max, d(x, §) = k. From
the identity § d(x, §) d§(x) = k, we conclude that the maximum (over the sup-
port of &) of d(x, §) is = k, and the minimum is < k.

Now suppose instead that we want to estimate only some of the components
of #, say 0 consisting of the first s components of §. The covariance matrix
of the best linear unbiased estimator of ¢ is proportional to M, the upper
left s x s submatrix of M~*(§). (Use a limit if M(€) is singular, as in [1] or [3].)
Define M*(§) = [M™M(§)]'. We call £ D-optimal for estimating s out of k pa-
rameters if it maximizes det M*(§). Let us define r = k — s and define M, (¢)
as the lower right r x r submatrix of M(§). Then it is not hard to show that

(1.1) det M(§) = det M*(&) det M,(£) .

If M(¢) is nonsingular, we can define

d,(x, &) = [P ()M, SV (x) ,
where f® consists of the last » components of f. We then define
(1.2) d(x, &) =d(x,§) —d.(x,§).

(The notation is compact but potentially misleading. The functions d, and d,
correspond to estimating r out of r and s out of k parameters, respectively.)
Kiefer [3] showed that if M(§) is nonsingular, ¢ is D-optimal if and only if
max, d,(x, §) is minimized, and either condition is equivalent to max, d,(x, §) = s.
For any & the maximum (over the support of &) of d,(x, ) is = s, and the mini-
mum is < s, paralleling the results for d.

For estimating 6 or 0V we will always assume that an optimal design exists.
Sufficient conditions for this are that the regression functions are continuous and
£ is compact. By &* we will always mean an optimal design.

2. Results. We first give a theorem which will be used frequently.
THEOREM 1. If M(§) is nonsingular, then for any x, §(x)d(x, §) < 1.

Proor. The result is trivial if §(x) = 0. Fix x and suppose &(x) > 0. Let ¢
satisfy 0 < ¢ < &(x), and let @ = §(x) — . Define &, by §,(x) = ¢/(1 — «), and
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for x" = x, £y(x") = §(x)/(1 — a). Then &, is a probability measure with M(&,)
nonsingular. Let &, be concentrated at x. Then § = (1 — a)s, + af,. By Theo-
rem 2.6.1 of Fedorov [2],

(2.1) d(x, &) = d(x, §)/[1 — a + ad(x, &)] .
Therefore
(E(x) — e)d(x, §) = ad(x, §)
= ad(x, &)[[1 — @ + ad(x, &)]
<1.

Taking the limit as ¢ — 0, we obtain &(x)d(x, §) < 1. []
There are two easy corollaries. The first is true because d,(x, &) < d(x, &),
the second because if ¢ is optimal then d(x, £) = k on points of support of &.

CoroLLARY 1.1. If M(£) is nonsingular, &(x)d,(x, H 1.
CoroLLARY 1.2. If § is optimal for 6, then &(x) < 1]k for all x.

As Theorem 4 we will prove the analogue of Corollary 1.2 when estimating
9. At present we can assert that £(x) < 1/s when & is optimal for 6% only if
we also assume that M(£) is nonsingular.

We now summarize some results given by Fedorov [2], which we will also be
using. Let £, be any design, and let £, be the design concentrated at one point
x. Let&,,, = (1 — @), + af,. This is a probability measure if it assigns non-
negative measure to every point, i.e. if —&,(x)/(1 — £,(x)) < @ < 1. Note that
if £,(x) > 0 then we can make &,,,(x) < &,(x) by making @ < 0. The details
below will be slightly easier if we define 8 = a/(1 — a), so —¢&,(x) < f < oco.
(It is only important to allow 8 = oo, i.e. @« = 1, when k = 1. In that case
the formulas below need minor rewriting whether we parametrize in terms of
a or 5. We leave this to the reader.) Then assuming that M(£,) is nonsingular
we have

(2.2) det M(§,...)/det M(E,) = (1 + P)*(1 + fd(x,€,)) .

The logarithm of (2.2) is defined if 3 > — 1 and 8 > —1/d(x, &,). Therefore it
is defined for § in (—¢&,(x), oo), the interior of the domain of (2.2), using Theo-
rem 1 to handle § > —1/d(x, §,). The derivative of the logarithm has a zero
corresponding to a relative maximum of (2.2) at

(2:3) B(x) = [d(x, £,) — K][(k — Dd(x, £,)]™" .

This (x) is in the domain [ —£(x), oo] if d(x, £,) = k/(1 + (k — 1)§,(x)). Other-
wise the maximum is attained at § = —&,(x). The value of (2.2) attained at
B(x) is

(2.4) [d(x, &)/K]T(k — D/(d(x, €,) — DI

(When k = 1, (2.2) is maximized at 8 = —&,(x) or 8 = oo, according as d(x, £,)
is < 1 or > 1respectively, and the maximum in the latter case is d(x, §,).)
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Expression (2.4) is strictly increasing in d(x, §,) for d(x, £,) > k, and strictly
decreasing for d(x,§,) < k. Thus we can make (2.4) large by maximizing
d(x, £,). Fedorov therefore gives the following procedure. Let &, be any-design
with M(&,) nonsingular. At each step let x, be chosen to maximize d(x, ¢,), and
let 8 = B(x,). Then Fedorov obtains the following theorem (his Theorem 2.5.3).

THEOREM 2 (Fedorov). For the sequence of designs generated above, det M(£,) —
det M(5*) monotonically, where £* is optimal.

Monotone convergence is not necessarily fast convergence. We now give a
few refinements on the above procedure in order to improve the speed of
convergence.

Since (2.4) is decreasing for d(x, £,) < k, the expression may be maximized
by choosing x, to minimize rather than maximize d(x, §,). The minimization
is worthwhile over the support of &, only, as will be seen below. In this case
we have 8(x;) < 0, and §,,, is obtained by subtracting measure from &, at x,.
So we use either x; and (x,), assuming B(x,) = —¢&,(x,), or x,and S(x,), whichever
makes (2.2) larger. If B(x,) < —&,(x,), then we use either x; and 8 = —£,(x,)
or x, and S(x,), whichever makes (2.2) larger. In this last case we may con-
ceivably do even better by considering x,, the point of support of &, where
d(x, &,) is next smallest after x,. The details are left to the reader. Allowing 8
to be negative can speed up convergence enormously, as will be discussed in
connection with the example of Section 3.

A second refinement on the sequence is as follows. It may happen that d(x, £,)
is maximized or minimized at several points simultaneously. This will typically
happen if the model has some symmetry. In this case we can obtain several
designs, say m such which we denote &,,,,, -+, &,,, ., such that det M(¢,_, )
is the same for all i. Since —log det A4 is a convex function of 4 (mentioned for
example in [3]), a convex combination of the §,,,; will give a matrix M with
det M > det M(§,,,,) for any i. In fact it will be strictly greater unless the
convex combination is of £, ,, ; which all have exactly the same matrix M(¢,,, ;).
Therefore rather than arbitrarily choosing one §,,,,, let&,,, = >, m ¢, ..

Here is a third refinement, definitely less important than the other two. By
Corollary 1.2, §*(x) < 1/k for all x. So if we obtain &,(x) > 1/k for some x,
we know that &, (x) is too large. Of course this can only happen if kK > 1. Be-
fore investigating the extrema of d(x, §,) we can improve &, by subtracting
measure from &, at x. Formally we choose a < 0 such that & /(x) = 1/k,
where &, = (1 — a)§, + a&,. Direct computation gives that the required « is
[1 — k&,(x)]/[k — ké,(x)]. The corresponding 8 is

(25) (I — k&, (x))/(k = 1).

Clearly expression (2.5) is negative and > —¢,(x), and by Theorem 1 it is
= P(x), where f(x) is defined by (2.3). Inspection of the derivative of the
logarithm of (2.2) shows that (2.2) is strictly decreasing in 8 for 8 both > (x)
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and = —¢&,(x). Also (2.2) equals 1 at 3 = 0. From this we conclude that if
B8 = (2.5) then (2.2) is > 1, so det M(§,”) > det M(&,). Thus we can replace &,
by &,” without ever investigating the extrema of d(x, £,). This modification is
probably not worth the trouble unless it is rather time consuming to look for
the extrema of d(x, §,), since for most n d(x, £,) will probably be < 1/k. More-
over even if we do use £, instead of §,, we might get the same £, in either
case. In the example of Section 3, £,(A4) > %, but we get the same &, whether
we base it on &, or &,'.

The idea of the proof of Theorem 2 is that if for some ¢ > 0 and all n,
det M(¢,) < det M(£*) — ¢, then there isa ¢ > 0 such that for all #,

det M(&,,,)/det M(E,) > 1 + 3,

which is impossible. Each of the above improvements on the original sequence
increases (possibly strictly) det M(¢,,,)/det M(§,). Therefore the same proof
works for our modified sequence. We state this formally.

COROLLARY 2.1. For the sequence of designs generated above, det M(§,) —
det M(£*) monotonically, where £* is optimal.

Let us now turn our attention to the case where we estimate s out of k pa-
rameters. Let &, be any design for which M(£,) is nonsingular, and let x be any
point. As before, let £, be concentrated at x, let §,,, = (1 — a)§, + a&,, and
let 3 =a/(1 —a). We want to choose «, or equivalently $, to maximize
det M*(¢,,,). We summarize the relevant facts.

LEMMA. Define B(x) to be the larger solution, if solutions exist, of
(2.6) Bsdd, + p(2sd, + (s — )d) +s—d, =0,

where d means d(x, §,), etc. For B(x) to exist it is sufficient, but not necessary, that
d(x,§,) be = s, and d(x,§,) > s if and only if B(x) > 0. If B(x) exists and is
> —&,(x), then det M*(&,.,) is maximized by 8 = P(x); otherwise it is maximized
by 8 = —§&,(x). Finally, suppose f(x) = —&,(x). Thend(x,§,,,) = sif and only
if B = Bx)

Proor. By (1.1) and (2.2)

det M*(&,,,)/det M*(£,)
(2.7) = [det M(§,,,)/det M,(&,,.)]/[det M(§,)/det M,(£,)]
= (L + B)7(1 + pd(x, £,)/I(1 + B)7"(1 + Bd,(x, £,))]
= (1 + 8)7(1 + pd(x, E)/(1 + pd,(x,€,)) -
The logarithm of (2.7) isdefined if 8 > — 1, 8 > —1/d(x,&,)and 3 > —1/d,(x,¢,).
Hence it is defined for —&,(x) < 8 < oo. The derivative of the logarithm is a
negative quantity times the left side of (2.6). The left side of (2.6) is increasing

at 8§ = 0, and its sign changes as 3 goes from 0 to oo if and only if d, > s. Thus
(2.6) has a positive solution if and only if d, > s, proving the first assertion. The
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next assertion is trivial if 4, = 0; assume thatd, > 0. If (2.6) has solutions then
the smaller one is
—(2sd, + (s — 1)d,)/(2sdd,) — A

where A is nonnegative. But this is < —1/d, hence < —¢&,(x). So the only
solution of (2.6) in (—§,(x), co) must be the larger root, 8(x). Since (2.7) ap-
proaches 0 as 8 — oo, the maximum must be at g(x) if f(x) > —¢&,(x), and at
—&,(x) otherwise. Finally, suppose g(x) = —¢&,(x). Then 8 = B(x) if and only
if for our given x, det M*(¢,,,) is maximized. This is equivalent to saying that

if we use the same point x, and for some a’ define

Sppa = (1 — ), + @6,

then det M*(§,,,) is maximized by a’ = 0, or equivalently 8’ = 0. This says
that 0 must be a solution of (2.6), where now d means d(x, £,,,), etc. But this
is true if and only if d(x, £,,,) = s. []

We are now ready to prove our main result. Let &, be any design such that
M(&,) is nonsingular. Given any &,, n > 0, let x, be chosen to maximize
dy(x, €,), and let 8 = B(x,). This determines &, ,,.

THEOREM 3. For the sequence of designs given above, det M*(£,) — det M*(£*)
monotonically, where §* is optimal for 6.

We could hitchhike on Wynn’s proof [6]. By adding one point to an n-point
design, he is taking 8 = 1/n at the nth step. Thus we could argue that any con-
vergence which can be obtained using 8 = 1/n can be obtained faster using 8 =
B(x,). This would work, but Wynn’s problem has complications which are not
present in our problem, and the proof we give below is therefore simpler than
Wynn’s proof.

Proor. Since x, maximizes d,(x, §,) we have d,(x,,£,) = 5. Sowhen § = B(x,),
det M*(&,,,)/det M*(§,) is maximized, hence it is = 1. Therefore det M*(£,) is
a monotone increasing sequence.

A basic identity which we will use to prove convergence follows from (1.2)
and (2.1). Forany x, and any 8 > —¢&,(x),

dy(x, &pr) = d(x,6,41) — du(x, §,40)
(2.8) = (1 + Byd(x, §,)/[1 + pd(x, £,)]
— (1 + B)d(x, &,)/[1 + Bd,(x, §,)]
= (1 + B)dy(x, &,)/I(1 + Pd(x, &,))(1 + Bd,.(x,§,))] -

If we differentiate the logarithm of this last expression, we see that when
d(x, &,) > 1 the expression is monotone in 8 for 8 = 0. Hence if d(x, §,) > s,
the expression is monotone in 8 for 8 = 0. If 8 = 0, d,(x, §,,,) = d,(x, §,), and
by our lemma if 8 = g(x) = —&,(x) thend(x, §,.,) = 5. (Asanalternate proof
of the last assertion of the lemma, we could observe that (2.8) reduces to (2.6)
if and only if d,(x, §,,,) = s.)
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Suppose now that det M*(£,) does not converge to det M*(§*), i.e. for some
¢ > 0 and all n, det M*(§,) < det M*(§*) — e. Then by Theorem 4.3 of [1]
there is some d > O such that for all n, max, d,(x,§,) = s + d. Thatisd(x,,&,) =
s+ 0.

For reasons which will become clear below we will choose § > 0 small enough
that

(2.9) (14 d/s)t =1+ g/ds.

Now define

(2.10) n = 6/(2s + d) .

Let 8’ > 0 be small enough so that if 0 < 8 < 8’ then

2.11) (1= sP)1 + sp(1 — B)(L + 7)) = 1 + sBn/2.

For each n, let 8, be B(x,) or 5, whichever is smaller. Leta, = 8,/(1 + 8,),
and let §' = (1 — a,)§, + a,§, . Then
det M*(£,,,)/det M*(&,) = det M*(&')/det M*(E,) .
By (2.8) and the remarks following it we have
s < dy(x,, &)
= (1 + B.)dy(xus E)/I(L + Bud(Xus (1 4 Budy(xs €4))]
= (1 + Bdi(x, €)/(1 + B,d,(x,, €4))" -
Therefore
(I 4 Bud (x4 €2))" = (1 4 Bu)di(x, €,)/5
= (1 + 8.1 + d./s)
defining ¢, = d,(x,, £,) — s. Therefore
L+ Bud,(x,, €0) = (1 + B)(1 + 6,/25) .
From (2.7) we therefore have
det M* (£, ,,)/det M*(€,)
> det M*(&")/det M*(£,)
= (1 + 8.)7(1 + Bad(x,, €)1 + Bad, (x4 €,)]
= (1 + 8,)7(1 + Budi(x., §)/1 + Bad,(x,, €,)])
= (1 = sB)(1 + Bu(s + 0,)/I(1 + B)(1 + 6,/29)])
= (1 = sp)(1 + Bu(1 — Bo)(s + 0,)/(1 + 9,/29))
= (1 = sB)(1 + (1 — Bu)(s + 9)/(1 + 6/29))
since by assumption d, = 4. But by (2.10) this last expression equals
(I = sB,)(1 + sBu(1 — B)(1 + 7)) = 1 + sB,n/2
by (2.11) and our definition of 3,. Thus, defining 7" = s7/2, we have

det M*(&,,,)/det M*(&,) = 1 4 7', .
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Now there are two cases. Suppose first that {d(&,)} is an unbounded sequence,
where d(¢,) is defined as max, d(x, £,). From Theorem 2.6.1 of [2] we can con-
clude that

d(€ars) = d(Xpi0r ) < (1 + BERA(Xy100 £,)
= (14 B(x))d(Es) -
Therefore

d(Enin) = dE) TT5 (1 + A(x)

or
IT8 (1 + B(x) = d(&,10)/d(E) -

The right side can be made arbitrarily large by suitable choice of n. The left
side is monotone in #, and therefore — oo. It is well known that for B(x;) = 0,
the product TT (1 + B(x;)) converges if and only if 37 B(x;) converges, since
T B(s) = TI (1 + B(x)) < exp(X B(x). So in our case since [T (I + A(xy)
diverges we conclude that 37 f(x;) diverges and therefore [ (1 + 7' B(x;)) di-
verges. Now either §; = §’ for infinitely many i, in which case [J (1 + 7'B;)
diverges, or else §; = f(x;) for all but finitely many i, in which case ]2 1+ 78)
is a constant times []3 (1 + »’8(x;)) for n large. Therefore [ (1 + »’B;) must
diverge.

Now suppose that d(¢,) is bounded by some constant A4, for all . By (2.8),
for x = x, and 8 = B(x,) we have

s = (1 4 Blxu))dy(x,, E)/[(1 + B(x,)d(x,5 E))T + B(x,)d,(x,, £,))]
g ds(x’ Sn)/(l + ﬁ(xn)d(xn’ én))z M
Therefore
(I + B(x,)d(x,, £,)) = dy(x,, &,)/s
=14 0d/s.
Therefore by (2.9),
Since d(x,, £,) < A, we have

B(x,) = d/(4sA) forall n.

We conclude that 8, > min (6/(4sA4), 8’) > 0, for all n. Therefore in this case
II (1 + 7'B;) diverges.

Thus in either case
det M*(€,) = det M*(&,) [T¢7 (1 + 7'8;) — oo .

But this is impossible, since det M*(¢,) < det M*(&*) for all n. Therefore we
must have det M*(§,) — det M*(£*). ]

We modified the sequence of Theorem 2 in three ways to speed up the con-
vergence. These modifications can also be applied to the sequence developed
here for Theorem 3.

First, there is no reason why we should get the largest value of
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det M*(§,,,)/det M*(§,) by choosing x, to maximize d,(x, £,). When estimating
6 we had to choose between maximizing and minimizing d(x, £,). When esti-
mating 6V there seem to be many choices, since det M*(¢,,,)/det M*(&,) de-
pends in a complicated way on both d,(x, £,) and d,(x, £,). However we can
certainly consider at least the points where d,(x, £,) is maximized and minimized,
and other points if it is not too inconvenient. For example, if we know thatan
optimal design is supported on a small given set of points, we might consider
all these points. For each x considered the 8 to use is given by our lemma.
Then we select that x from the points considered which gives the largest value
of (2.7). A practical difficulty is that if we remove all the measure at x, this
could conceivably make M, (¢, ,,) singular; this will happen if 1 + Bd,(x, £,) = 0.
Therefore in this case the computer should be programmed to leave a tiny mea-
sure at x.

Second, if the model possesses some symmetry we may have several points
Xy, + -+, X, such that d,(x;, £,) is the same for all i, and d,(x;, §,) is the same for
alli. If €,,,; = (1 — )¢, + af,,, where a maximizes det M*(§,,,;), we would
do better to let &,,, = >, m*,,,;. This follows from the convexity of
—log det M*(§) — see (2.12) of [3].

Third, suppose &,(x) > 1/s. Let us choose @ < 0such that £, '(x) = 1/s, where
£, =1 — a)¢, + af,. The corresponding  is

(2.12) (1 — s&,(x)/(s — 1).

Clearly this is > —§&,(x). We want to show that det M*(§,’) = det M*(§,).
Since (2.6) has at most one solution > —§&,(x), (2.7) must be monotone between
0 and f(x). Because &,(x) > 1/s, we have d,(x, §,) < s, by Corollary 1.1, so by
our lemma, B(x) < 0. Since &£,'(x) = 1/s, we have d,(x,§,’) < s, so we would
improve on §,’ by subtracting still more measure at x. Therefore the 8 given
by (2.12) is = B(x), and of course < 0. By the monotonicity of (2.7) we con-
clude that det M*(¢,”) > det M*(§,), so we shall replace &, by &,’.

If we use the sequence of designs given above, then the proof of Theorem 3
goes through word for word, except for trivial modification of the first para-
graph of the proof. Therefore:

CoROLLARY 3.1. For the sequence of designs given above, det M*(§,) —
det M*(§*) monotonically, where £* is optimal for 6.

We are now in a position to give the analogue of Corollary 1.2.
THEOREM 4. If & is optimal for 6, then &(x) < 1/s for all x.

As was mentioned after Corollary 1.2, the result is easy if M(§) is nonsingular.
We give here a proof which is valid even if M(§) is singular.

ProoF. Suppose & is a design with &(x) > 1/s for some x. Call {(x) =
(1 4 2h)/s. Let&’ = (1 — a)§ + a&,, where a < Oissuch thaté’(x) = (1 4 h)/s.
The idea of the proof is as follows. We will define designs &, and £, which are
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close to & and &’ respectively, show that £ is better than &, and conclude that
&’ is better than &.

Let &, be any design such that &,(x) = (1 + h)/s and M(&,) is nonsingular. For
e with 0 < e < 1, define £/ = (1 — ¢)&" + ¢&,. Now M(&/) is nonsingular and
§/(x) = (1 + h)/s, so by Corollary 1.1d,(x, &) < s/(1 + h) < s. Let us consider

.= —ad), + a¢, .

At a’ = 0 the derivative of log [det M*(¢,)/det M*(£.)] equals d,(x, £) — 5. By
the concavity of log det M* (see (2.12) of [3]), at any a’

(2.13) log det M*(§,) < log det M*(£.") + &’(d(x, ') — 5)
= logdet M*(€/) — a'hs/(1 + h).
Now choose @’ = —a/(l — a) > 0, where a was defined above. Then

E.=(1 —¢e)f + ¢[(1 — ")y + a’€,].
Take the limit of (2.13) as ¢ — 0. Then we have
log det M*(§) < logdet M*(&") — a’hs/(1 + k)
< log det M*(¢") .
So £ is not optimal. []
3. An example. Wynn [6] considers the following example:
[1(x)0 =6y + 0,x, + 0,x,, x = (x;, x;)
and <77 is the closed convex quadrilateral with vertices 4 = (2, 2), B = (—1, 1),
C=(l, —=1)and D = (—1, —1). He begins with one observation each at B, C
and D. After successively adding 29 more points he obtains an optimal design
for estimating 6: £(A) = 10/32, &(B) = &§(C) = 9/32, £(D) = 4/32. For com-
parison we will consider the same example, and begin with the same design &,
uniform on B, C and D. We use the sequence of Corollary 2.1.
Table 1 summarizes the results. Somewhere between steps 3 and 7 most people

would decide, based on d, that they are satisfied with the accuracy obtained.
Although we naturally do not get the exact fractional form for &*(x) which

TABLE 1
_ Point to be B
n En(A) En(B) Ea(C) &u(D) det M(¢n) d(&s) changed for to get
€7H 1 E’IH 1
0 .0000 .3333 .3333 .3333 0.59259  25.5000 A 4412
1 .3061 .2313 .2313 .2313 2.42516 3.2725 D —.1110
2 .3443 .2602 .2602 .1353 2.51110 3.1756 A —.0485
3 .3109 .2734 .2734 . 1422 2.52838 3.0276 D —.0183
4 .3167 .2785 .2785 L1262 2.53089 3.0216 A —.0064
5 .3123 .2803 .2803 L1270 2.53120 3.0029 D —.0022
6 .3130 .2809 .2809 L1251 2.53124 3.0024 A —.0007
7 L3125 .2811 2811 L1252 2.53124 3.0003 D —.0002
o L3125 .28125 .28125 .1250 2.53125 3.0000
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Wynn obtains, if we should happen to have 32 observations our &, rounds off
to the correct fraction for n > 4. From step 5 onwards any of our &, is better
than any design which Wynn obtains before getting the exact optimal design
using 32 points.

If we instead use the sequence given by Theorem 2, with 3 always positive,
the procedure soon settles down to adding minute measure alternately at 4, B
and C. By step 30 we have d(€,) = 3.031. Thus the sequence of Corollary 2.1
does better, in the d sense, in 3 steps than the sequence of Theorem 2 does in
30 steps.

This example shows dramatically the improvement which Corollary 2.1 can
make over Theorem 2. Of course there is no guarantee that in every problem
the sequence of Corollary 2.1 will arrive at a particular value of det M(§) before
the sequence of Theorem 2 does. At each step we have tried to choose a good
€., given &,. This does not necessarily improve the long term rate of con-
vergence, although in most examples it probably does improve it.

Anyone who is constructing an optimal design using the procedures mentioned
here should consider the recommendations and useful formulas given by Fedorov

in Section 2.6 of [2].
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