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Let {X(#),t =0, £1, £2, - - -} be a p-dimensional, zero mean, stationary
Gaussian time series with matrix-valued covariance function R(u) = (rji(«)),
u=0,+1,+2,--+;j,k=1,2,--.,p. Let Flo) be the spectral density
matrix of the time series (if F(w) exists), and assume that F(v) is positive
definite for all w€ (0, 2z]. Let ﬁx(w,) be an estimator of F(w,) formed by
averaging (2n + 1) periodogram ordinates centered and equally spaced
around w;, / = 1,2, -+, M, where the w,’s themselves are equally spaced
on (0, 7], and where all periodogram ordinates are based on the same record
of length T, 2n + 1)M < T/2, taken from the time series {X(f)}. Wahba
(1968) has shown that if 31; 2k 2w |urje(u)] < oo and logs M < n, then it is
possible to construct M independent complex Wishart matrices Wr(w,),
1=1,2,.--, M, such that {ﬁx(wl), I=1,2, ..., M} converge simultaneous-
ly in mean square to {Wr(w), ! =1,2, .-+, M} as n, M (and thus T) get
large. In the present paper, it is shown that Wahba’s result holds under the
less restrictive condition that 3; Yk Yu |#|? |rje(e)] < oo, and without our
needing to assume that logs M < n. In consequence, a form of weak
convergence of the averaged periodogram to a certain matrix-valued
Wishart stochastic process is demonstrated (something, by the way, that
Wahba (1968) cannot show because of her restriction that logs M < n).
This result is a consequence of some general conclusions concerning the
approximation of circulant quadratic forms in the time series {X(¢)}.

1. Introduction and summary. Let {X(¢),r =0, +1, +2, ...} be a p-dimen-
sional, zero mean, stationary Gaussian time series with matrix-valued covariance
function:

(1.1) R(u) = E(X(NX'(t + u)) = (rp(u)): p X p
fort,u =0,+1, +2,.--;j,k=1,2,---, p. Let
(1.2) Flo) = 2r) Xr e ““R(u), 0< w2,

be the spectral density matrix of the time series (conditions are given shortly
that guarantee the existence of F(w) for all w € (0, 2x]). We assume that F(w)
is a positive definite matrix for all w € (0, 2x].
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Wahba (1968) has shown that if
(1.3) F=1 Dker Do U] [ri(u)] < o0,

and if F"X(w,), I=1,2,..., M, are estimators of the spectral density matrix,
each consisting of averages of (2n + 1) periodogram ordinates based on a record
of length 7', with the v, equally spaced of the form w, = 2z//T for integer /, and
(2n + 1)M < T/2, then provided log, M < n it is possible to construct, on the
same sample space as {X(r),r =0, +1, +2, ...}, M independent complex
Wishart matrices W,(w,),! = 1,2, ..., M, such that {F,(w),l =1, ..., M}
converge simultaneously in mean square to {W,(w,),/=1,2, ..., M} as n, M
(and thus T') get large. For some applications of this result see Wahba (1968).
In the present paper, we prove Wahba’s result under the less restrictive condi-
tion

(1.4) F1 Db D (U]} ()] < oo,

and also dispense with her requirement that log, M < n. In consequence, a
form of weak convergence of the averaged periodogram to a certain matrix-
valued Wishart stochastic process is demonstrated (something, by the way, that
Wahba (1968) cannot show because of her restriction that log, M < n).

In Section 2, we discuss Condition (1.4) and some of its consequences. Section
3 contains some needed notation, plus a lemma of general use in proving results
about approximating quadratic forms. Finally, Section 4 contains the proof of
the main result of this paper.

2. Condition (1.4) and its consequences. Since

@1) Py Tt Ir)f £ Doy Thes 730) < (2 ms S Irn(w)l)

and since tr R(W)R(—u) = 12, Yi ri(u), all u =0, =1, +2, ..., it follows
that Condition (1.4) is equivalent to the condition that
(2.2) e o U (tr R@R(—u))} = C < oo .

A comparison of (1.4) with (1.3), shows that Wahba’s Condition (1.3) implies
(1.4). On the other hand, the example of a one-dimensional time series {X(7),
t =0, =1, ...} with covariance function r(x) proportional to (1 4 u*)~* shows
that (1.4) (or equivalently (2.2)) may hold in contexts where (1.3)is false. The
above remarks thus establish the assertion made in Section 1 that Condition (1.4)
is less restrictive than Wahba’s (1968) Condition (1.3).

The following lemma gives further consequences of Condition (1.4), and is of
interest in its own right.

LEMMA 2.1. Assume that
(2.3) T Ul (tr R@R(—u))} < oo
for some o, 0 < a < 1. Then

(1) F(o) = (f;u(w)) exists for all w € (0, 2x];
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(ii) there exists a constant A, 0 < A < oo, such that AI, — F(w) is positive
semi-definite (p.s.d.) for all € (0, 2], where I, is the p X p identity matrix;

(iii) each component f; () of F(w) is Lip (a);

(iv) if F(w) is positive definite for all w € (0, 2x], there exists 2 > O such that
F(w) — I, is p.s.d. for all w € (0, 2x].

Proor. Parts (i) and (ii) follow since for any p x 1 vector ¢, ¢’c = 1, we
have

(2.4) 2nc'F(w)e = Yo _ e " *c'R(u)c < Y2 _., |c'R(u)c]|
‘ < (U RY0)F + X7 fu|* (tr R@)R(—u))* < oo

by the given (2.3). Hence, for all » € (0, 2z], the maximum latent root of F(w)
is bounded above by a finite constant, thus proving parts (i) and (ii). Part (iv)
follows from part (iii) since f;,(w) being Lip (a) for a > 0 implies, since the
roots of a matrix are continuous functions of the entries, that the minimum
latent root of F(w) is continuous in w over (0, 2x], and (since F(w) is everywhere
positive definite and is periodic of period 2r) is bounded below by a positive
constant 4. It therefore remains to prove part (iii).

Let ,, w,€ (0, 2] and let b be the largest integer less than or equal to
(27/|w, — w,]|). Then

27 | fir(@1) — fir(@)| = | Do (675 — emior)ry, (u))|
= |0y — oo Tyurss 8] 1) + 27 Zjuise [7(w))]
=< b7 oy — oo Tyuiss (1] [re(@)] + 2767 Fpuise 1] [r5(w)]
= oy — 0| (2m)7 T [u]* (@) -
This result, together with (2.3), establishes that f () is Lip («). []

From Lemma 2.1 it follows that under either (1.3) or (1.4), F(v) exists and
there exist constants 2, A,0 <1< A < oo, such that Al, — F(w) and
F(w) — Al are p.s.d., all we (0, 27r]. However, we see from Lemma 2.1 (iii)
that (1.3) implies that each f,(w) is Lip (1), and hence must have bounded left-
and right-hand derivatives, j,k = 1,2, ..., p. On the other hand, Condition
(1.4) implies only that each f; (w) is Lip (}), and Lip (1) is a proper subset of
Lip (3)-

3. Notation and some useful lemmas. Assume that the time series {X(¢),

t=0,+1, +2, ...} is observed at the T consecutive points 1,2, ..., T. Let
X(1), X(2), - - -, X(T) be the record of observations, where

X(0) = (x(1), (1), -5 x(1) 2 p X 1

Let
Gy = (1), x(2),- -+, xu(T), X,(1), X3(2), -+ 5 X(T), - -+, x,(1),- -5 x,(T))
(3.2) Z = (X(1), X(2), ---, X(T)) .

Here, y is pT x 1 and Z is p X T. Because we have assumed that the time
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series {X(¢),t =0, +1, +2, .. -} is Gaussian, y has a pT-variate normal distribu-
tion with mean vector equal to zero and a covariance matrix X which we can
represent as follows.

First, let us define the 7' x T shift matrices $(0), S(1), S(—1), ---, in the
following manner: S(0) = 7, is the T x T identity matrix, and

S(1) = (851) > where s, =1, k=j+1

(3-3) =0, otherwise,
(3.4) S(u) = (S(1))*, ff u>0
= (S'(1)'*!, if u<O.

Straightforward calculation shows that S(#) = 0 for all u for which |u| > 7.
In terms of the shift matrices $(0), S(1), S(— 1), ..., defined above, it is not
hard to show that

(3.5) I = Fisio Ru) x S(uy,

where 4 x B denotes the pT x pT Kronecker productof 4: p X pand B: T x T.

It has been noted by Wahba (1968) that the estimator £ (w,), which is the
average of (2n + 1) periodogram ordinates I(w, — T~'2zn), I(w, — T-2x(n — 1),
s (o, + T72x(n — 1)), I(w, + T~'2zn) centered around w, = T-'2xj,, for
integer j;, can be written as a generalized quadratic form;

(3.6) Fy(w) = ZQ(w)Z',

where Z is defined by (3.2) and Q(w,) is a certain T x T circulant Hermitian
matrix, [ = 1,2, ..., M. (Q(w)) is explicitly defined in Section 4.) 1t is easily
seen that Z, and thus F,(w,), is also a function of y. Let O(w) be a function
mapping pT X 1 vectors w into p x T matrices in such a way that the (j, k)th
element of ©(w) is the [T(j — 1)+ k]th element of w,j=1,2, RN S
k=1,2,...,T. Then, Z = 6(y) and F(w,) = 0(y)Q(,)0'(y).

To approximate £;(w,), we transform y by a sequence of linear transforma-
tions y — A*X~ty, where A is a pT X pT p.s.d. matrix and A, 3} are any p.s.d.
square roots of A, X respectively. From the transformed data vector AZ-ty, we
then construct the new approximating quadratic forms

(3.7) Fr (@) = O(AZ7Hy)0(,)0/ (AT Yy) |

If A is chosen appropriately, the new quadratic forms FX,A(wl), l1=1,2,..., M,
have a more convenient joint distribution than F‘X(wl), l=1,2,..., M, and
yet the new forms are “close” to the original estimators in the sense that

(3.8) Moy, @y -+, 0y 4, 0) = T, Etr (Fy(o) — Fy (o))

is small for large enough n and M.
We now present a lemma which is of use in establishing rates of convergence
for A(w,, -+, w,; A, n), and which also is of more general use. For j, k =
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L,2,...,p, let

E,.,j+ k, be the p x p matrix whose (j, k)th and
(k, j)th coordinates are %, and all of whose other co-
3.9) ordinates are 0,

E,; be the p x p diagonal matrix with jth diagonal ele-
ment equal to 1 and all other elements equal to 0.

LeEmMMA 3.1. Let y be a pT-dimensional normally distributed vector with mean
vector equal to O and covariance matrix I ,. Let A and B be any two real pT X pT
p.s.d. matrices and let Q,, Q,, - - -, Q, be MT X T Hermitian matrices. Then

(3.10) IL & tr [0(4ty)Q,0'(4ly) — 6(B)Q,0'(BYy)[

- 1y [ max root (4 + B)} t M 02 tr (4 — B)
=+ )[min root (A + B) [max root i QT tr :

+ 2 X X Dha [tr (4 — B)(E, X Q)]
Proor. Using an idea of Wahba’s ((1968) page 1857), we note that
(3.11)  &£'tr[6(4ty)Q,0'(4ty) — O(B*))Q,0'(BYy)J*
= T2 Db S [ANE; X Q) At — BYE;, X Q)ByY,
l=1,2, ..., M. Further, from the proof of Lemma 5 in Wahba’s (1968)
paper,
(3.12)  E{Y[ANE; X Q)A} — BYE;, X Q)B*]y}
= tr [4}(E;, X Q)At — BYE; x Q)BT
+ 2[tr (4 — B)(E;, X Q)] »
k=1,2,-..,p;1=1,2,..., M. Now note that
(3.13) ANE;, X Q))AF — BYE;, X Q))B
= (A} — BY)(E;, X Q)A4} + BYE; X Q)(4! — BY),
and thus (from Lemma A.l of Wahba (1968)),
(3.14) tr [AYE;, X Q,)A} — BYE;, X Q,)B]?
< 2tr[(4f — BY(E; X Q)(A + B)(E;, x Q)4 — BY],
Jok=1,2,--.,p;1=1,2, ..., M. Since for E p.s.d. and any matrix C for
which CEC’ is defined,
(3.15) tr CEC’ < [max root E] tr CC’ ,
it follows from (3.14) that
N Db tr [ANE;, X Q)4 — BYE;, X Q,)B*)
< 2[max root (4 + B)]
(3.16) X ML T Do tr (A — BY(E;, X Q)Y(A* — BY)
= 2[max root (4 + B)]tr (4* — B¥)(3(p + DI, X 1L, Q)(4} — BY)
< (p + 1)[max root (4 + B)][max root (I, X X{L, Q)] tr (4% — By,




APPROXIMATING CIRCULANT QUADRATIC FORMS 327

Finally, from the proof of Lemma A.2 of Wahba (1968),
(3.17) tr (A* — BY)? < [minroot (A4} + B})] 2tr (4 — B)?
< [minroot (4 + B)]~*tr (4 — B)*,
and from known facts about the roots of Kronecker products,
(3.18) max root (I, X L, Q,°) = [max root (/,)][max root (3,2, Q,")] .

Combining (3.11), (3.12), (3.16), (3.17), and (3.18) gives us (3.10) and completes
the proof. []

4. Proof of the main result. Using Lemma 3.1, we now successively approxi-

mate the quadratic forms FX(a)l), I=1,2,..., M. Use of the explicit form of
the matrices Q(w,) of the quadratic forms FX(w,), 1=1,2, ..., M, is delayed

until knowledge of the exact forms is needed, so as to make our results as
general as we can.

4.1 A block circulant approximation to X. Let H,, be the T x T diagonal
matrix having 1 in the rth diagonal place, and 0 elsewhere. Define the Fejér

polynomial of degree T,
4.1) K, (0) = 2zT)* 2721, (T — |ul)e~*“R(u) , 0< w<2r.

Let W be the T x T unitary matrix whose (r, s)th element w,, is given by

(4.2) w,, = T-leimIT | rs=1,2,...,T.
Let

(4.3) =1, xWw,

and

(4.4) Dy ALy

The matrix

(4.5) %, = 22D, T*

where C* denotes the conjugate transpose of the complex matrix C, can be
shown (Lemma 4.1(i)) to be composed of T x T blocks each of which is a
circulant matrix. Hence, the arguments used by Wahba (1968) in her Lemma 3
can now be utilized to obtain a convehient distributional representation for
generalized quadratic forms ©(Z Z-ty)Q0'(Z*X~ty) where Q is a circulant
symmetric matrix.

LemMA 4.1. Let X, be defined by (4.5). Then
() B =TT (T — [u)R() + |u| ROLT — [u]))} X S(u)
where 6, = —1ifu >0, lifu <O,
(ii) tr (T — Z)?
= 1) it D [l (T — [ul)(rj(#) — rip(0.(T — [u])))*-
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(iii) For any circulant Hermitian matrix Q: T x T,
tr (X — X )NE;, X Q)=0, allj,k =1,2, ..., p.
(iv) For any circulant Hermitian matrix Q : T X T, the random matrix
B(Z1Z-1) 00/ (2,5 -ty)

has the distribution of 3\7_, &, z,z,*', where ay, a,, - - -, a, are the (real) roots of Q,

rercr

and for each r, z, is a p-dimensional complex normal random column vector with
complex covariance

4.6) 72 % = 21K, <.2.;l> ,

with z, = z}_, and z,, z_ independent for s + ror T — r.
v) If 01, Qy, -+, Qy are all T X T circulant Hermitian matrices, then
(4.7) XNiLEu[0(y)Q,0'(y) — O(ZZI71)Q,0' (2 7))
< 2(p + 1) & [max root (T2, QAT r il (tr RWR(—1))?)

Proor. Part (i) follows in a straightforward manner once one notices that

(4.8) SI_ eI TWH W = S(u) + S(T — |u]), u=0
= S(u) + S(T — |4]), u<o.

Part (ii) follows from (3.5) and part (i) by using the facts that tr (4 X B) =

(tr A)(tr B) and tr S(#)S(v) = 0 unless u = —v. To prove part (iii), first note

that if Q is circulant Hermitian, then there exist complex numbers ¢,_,,
Gy_ps > §p_y, sSuch that

(4.9) 0 = ZiZir 4.50u),
where for u > 0, 9, = ¢*, = q,_,. From (4.9), tr S(v)Q = (T — |v|)q_,. Thus
since R(#) = R'(—u), and from (3.9),
tr (& — Z)(E; X Q)
=T Xzl [ul(T — u])g-, tr{R(u) — R(G(T — [u]))}E;;
=0.
This proves part (iii). Part (iv) is a diréct consequence of the construction (4.5)
of X,, and the fact (Wahba (1968), Lemma 1) that Q is T x T circulant
Hermitian if and only if there exist real numbers a,, a,, - - -, a,, such that
(4.10) Q=W i ,a H, )W,

The method of proof of part (iv) now parallels the proof of Wahba’s (1968)
Lemma 3. Note that (4.10) implies that a,, a,, - - -, @, are the latent roots of

Q.

We finally have left the proof of (v). This result is a direct consequence of
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parts (ii) and (iii), Lemma 3.1, the easily verified facts that
(4.11) max root (£ + X,) < maxroot X + maxroot X, < 2A
min root (X + X;) = minrootX + minroot X, = 24,
and the fact that
(2T)7 Zitier Zham (T — [u){rs() — rp(0u(T — [u])}
< 2 Yicip |u] tr R@)R(—u) < 2{ 50500 u]* (tr R(u)R(—u))Hf" .
This completes the proof of the lemma. []

Let us now introduce the particular circulant Hermitian forms Q(w,),
l=1,2,..., M, implicitly defined in (3.6). Choose M,n >0 so that
2M(2n 4+ 1) < T. Letj, j,, - -+, jy be integers such that
(4.12) O<j—n<j+n<jy—n<j,+n

< LK Jy—=n<jy+n=sTJ2.
Let w, = 2#j,/T. Then

(4.13) Qo) = (2n + H7'W(Riy , H,)W™*,
[=1,2,..., M. Since Q(w,) is of the form (4.10), Q(w,) is circulant Hermitian,

l=1,2, ..., M. Wahba ((1968) page 1854) verifies that with the Q(®,)’s defined
by (4.13), the p x p matrices F,(w,) defined by (3.6) are indeed the averages of
(2n 4 1) periodogram ordinates /(w, 4 2zT-(j —n—1)), j = 1,2, .-+, 2n+ 1,
centered at w, = 2xj,/T, [ = 1,2, ..., M.

COROLLARY 4.1. Let T, be given by (4.5) and let Fy , (w,) be given by (3.7)
with A = X ,. Then

i) the random matrices F, , (w,) are mutually stochastically independent,
X,Zg .y .y p
I=1,2,..., M,
(ii) Fx,z,((wz) has the distribution of (2n + 1)7* Zi”}’;—n z,z,*’, where the com-

plex random vectors z, are defined in Lemma 4.1, 1 = 1, 2, , M,
(iily XL Ftr (Fy(wy) — Fy, zK(wz))2

=2p+ 1)—~ (2n + )75y [u]* (tr R@)R(—u))hy*,

so that if (1.4) holds, Y.}, & tr (Fy(w)) — Fy, >:K(wl))z is O((2n + 1)) asn — oo.

Proor. Part (i) follows since Q(w,)Q(w,) = 0, all r = s. Parts (ii) and (iii)
are immediate corollaries of Lemma 4.1. [J

4.2 A second block circulant approximation to X. F, ; (+) is not a satisfactory
approximation to F,(.) since the distribution in Corollary 4.1 (ii) is not a
pleasant one with which to work. The reason for introducing F ; (+) is
analytical. It proves to be an intermediary between F,(+) and F, ;,(-), which
we now define, whose distribution is straightforward. Let M,n > 0 and let
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Jus Ja» + + +» iy e chosen as in (4.12). Further, let
2rr 2rs . .
L(Z5) = @n+ ) map K (), 0 r—jl s,

(4.14) — K, (27rr> fO0<r<TRRand ji+n<r<j,—n
T/’ forsome [ =1,2,.---, M,

L (2&2) s if r>T/2,

T
and let

(4.15) - D, = ::1L<2;’> % H.,
(4.16) S, = 22D, T* .

Using the characterization (4.10) of circulant matrices, it is straightforward to
show that X, is a block circulant matrix.

LEMMA 4.2. Let I, be defined by (4.16) and let F ; (@), = 1,2, .-, M, be
defined by (3.7). Then

(i) the random matrices F, ; (w)) are mutually stochastically independent,
I=1,2,..., M,

(ii) Fy ., (0,) hasacomplex Wishart distribution with (2n + 1) degrees of freedom
and expected value 2nK(w,) where

(4.17) Ko) = @n+ 1) S, K (),
(418) (i) T 15 (P — Fufod
< 2p+ 1) % @0+ 1)@ + SE[TI ) (i ROR(— )P

so that if Condition (1.4) holds, then as n — oo,

(4.19) DLy Atr (F(o) — Fy s (0)) = O(1/(2n + 1)) .

Proor. Parts (i) and (ii) follow from the definitions of X, and Q(w,), I = 1,
2, .-+, M, using a proof parallel to that of Lemma 3 of Wahba (1968). The
independence follows since Q(w,)Q(w,) = 0, r = s. It remains to prove part
(iii). Now

(2n + 1) tr (g — Z)(Ej; X Q) .
= 2ntr (D — D)(Ey X Xi5  H,) =0,
which together with Lemma 4.1 (iii), lets us conclude that

(4.20) tr (E — Z,)(Ej X Qo)) =0,
j’k:1,2,---,p;l:1,2,...,M_ Also

tr (X, — Z,)* = (2n)*tr (D, — D, )’
(421 =8 nt mer {8 () - L (7))

2rr 2ms\)?
. AN K, — it | S
= gy i B (K () - 6 ()]
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LetJ; = {r:j, —n < r < j, + n}. Then, from (4.21)
tr (T, — Z,)

2zr 27s\)?
< 8a'n Y, max, ., tr {KT< : > — K, <~;_>}

= 2n N, max, ., tr{DI5h, T-HT — |u|)R(u)(e=#ruiT — g=itmuir)ye

(422) <8y, max,,., { 71, (tr R(@u)R(—u))* min <|£||’T—s_| , 1)}2

< %M { T2 2 el RUOR(=0)! + Tl (11 ROR(— 1))

1O Tt e Jul (i RGOR(— )

< 87n{ SIzky [u]? (tr RE)R(—u))f .
It is not hard to show that

IA

(4.23) max root (X, + X,) < 2A, minroot (X, + X,) = 22,
and since (Lemma A.1, Wahba (1968))
(4.24) & tr (ﬁX(wl) - FX,EL(‘”l))2

< AEt (Fe(@) — Frs @) + Etr (P s (@) — Fr sy (0))7]
part (iii) now follows from (4.20), Lemma 3.1, (4.22), and (4.24). The result
(4.19) is a direct consequence of part (iii). []

With the proof of Lemma 4.2, we have actually accomplished the proof of the
assertion made in Section 1. However, although the random matrices Fys (@)
do have complex Wishart distributions and are mutually stochastically in-
dependent, they are not the random matrices constructed by Wahba (1968) to
approximate F (), | = 1,2, ..., M. Therefore, we now demonstrate that
under Condition (1.4), the random matrices constructed by Wahba (1968) also
converge in expected mean square to the estimators Fx(wl), l=1,2,..., M.

4.3 A third block circulant approximation to L : Proof of the main theorem. Let

2zr _ m 27s . .
G<T> — (@2n+ 1) lzggl_np<7>, if r—jl<n,
(4.25) :F<%§C>, if0<r<T[2andj, + n<r<j,, —nfor
T some [ =1,2,..., M,
_ G<M> if r>71)2,
T

and let
(4.26) D, = ST, G<3_;_r) X H,,,
(4.27) %, = 220D, T* .

Again, X, is a block circulant matrix.
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MAIN THEOREM. Let I, be defined by (4.27) and let Fy ; (@), | = 1,2, .- -, M,
be defined by (3.7). We note that F ; (w)) is Wahba’s (1968) Fz(w,). Then

(i) the random matrices Fy, (w,) are mutually stochastically independent,
I=12,..., M

(ii) F‘X,Ea(wl) has a complex Wishart distribution with (2n 4 1) degrees of
freedom and expected value 2nF(w,) where

(4.28) Flo) = @n+ 1) Sig, F ()

(iii) under Condition (1.4), as n — oo (regardless of whether M stays fixed, or
M — o),

(4.29) T Etr (Fy(w) — Fy sp(@)) = O(1/(2n + 1)) .

Proor. Parts (i) and (ii) have been proven by Wahba (1968). We turn now
to the proof of part (iii). From Lemma A.1 of Wahba (1968) and Lemma 4.2,

(4.30) L E U [Fr(0) — Fy sh(0)T
S 2N, &t [FX(wl) Fy EL(wl)]
+ XL &tr [Fx 2(@) — Fy so(@)]}

and since we have a bound for the first term from Lemma 4.2 (iii), we need
concentrate only on the quantity Y}/L, & tr[Fy ;,(0,) — Fy 1, (@) Itis straight-
forward to prove that the latent roots of X, are bounded, above by A and below
by 2. Thus, from Lemma 3.1,

(4'31) 2L Etr [FX ZL(wl) Fy zG(‘Uz)]
< (DRt ), - By

+ 2 X050 25 ZEaa [t (B, — Ze)(Ej X Q)] -

Now
tr (3, = 50" = 2 5 Bey, 20w (L) — 6 (D)
< 2T @n )7 Doy, @t (K (2) - F(2D))
(4.32) < 2 i max, gt [0S0, T70 |u| R(u)e= o™
+ X uar R(u)e=#rreiT]?
< 2MT-1Ct.
Also,
[tr (2, — Ze)(Ej X Q(@)]
(4.33) — 2(27)*(2n + 1)—2( Sren tr <KT (2;’> — F<2_;’)) Ejk>2

S 22005 T uf|tr RME| + X uper [tr RGE,|] < 2T71C?,
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and thus

(4.34) 12 D5 Dk [tr (21 — Z)(Eje X Qo))
= 2MT 0 Dk (D 1} [tr (R)E,|) < 2MT-'pC?..

Assuming that Condition (1.4) holds, (4.29) is now a direct consequence of
(4.30), (4.31), (4.32), and (4.34). This completes the proof of the theorem. []

5. Concluding remarks. Although in this paper, we use a somewhat different
series of block circulant approximations to X than does Wahba (1968), this
difference does not account for the difference in results (i.e., the relaxing of
Wahba’s conditions). Using Lemma 3.1, we could have used the series of block
circulant approximations to £ used by Wahba (1968) and still have come up
with the same conclusions. Our method of successive approximation was chosen
to reduce the amount of work we had to do with infinite sums (note that infinite
sums only appear in Section 4.3) and to exhibit an interesting set of alternative
approximations (the results in Sections 4.1 and 4.2) to Fy(w), [ = 1,2, ..., M.
The key devices that allow us to relax Wahba’s conditions are: (i) Lemma 3.1,
which provides a useful generalization to Wahba’s Lemma 5 and enables us to
remove her condition that log, M < n, and (ii) elimination of consideration of
the metric ¢(4 — B), introduced by Wahba on page 1852 of her (1968) paper,
in favor of a more direct analysis of the quantities involved (this enables us to
replace Condition (1.3) by Condition (1.4)). It should be noted that the methods
of analysis of the present paper can be used to show that Condition (1.3) implies

(5.1) T &t (FX((UL) — Fx,za(‘”z))z
0

- <min{T, (lzn n 1)2}> =0 (rL)

as n, M — oco.
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