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ESTIMATING THE SCALE PARAMETER OF THE EXPONENTIAL
DISTRIBUTION WITH UNKNOWN LOCATION!

By JAMES V. ZIDEK

University of British Columbia

Let Xy, - -+, X» be i.i.d. random variables each with a density which is
a-texp (b — x) or 0 according as x = b or x < b where —oc0 <b < o0,a>0
are unknown constants. Let X = n~1 Y} X; and M = min X;. The maximum
likelihood estimator of a is X — M and is, if quadratic loss is assumed, the
best affine equivariant estimator of a. It is shown that if loss is measured
by any member of a large class of ‘‘bowl-shaped” functions which includes
quadratic loss, the best affine equivariant estimator is inadmissible. The
proof entails an examination of the conditional expected loss given the
maximal invariant under the scale group. It is carried out by exhibiting a
superior alternative. In the case of quadratic loss, for example, the result
is as follows.

Given any estimator u = (X — M)T[M(X — M)-1], let T*(y) = T(y) if
y < 0 and T*(y) = min {T(y), n(n + 1)"Y(1 + y)} if y > 0. If T* = T with
positive probability, then the estimator, obtained from « by replacing T by
T*, has uniformly smaller risk than u.

Using a generalization of the author’s conditions for admissibility [Ann.
Math. Statist. 41 (1970) 446-457] a class, B, of generalized Bayes estimators
within D, the class of scale equivariant estimators, are obtained with each
member of B admissible in D. The improper measures determining mem-
bers of B have densities on the orbit space R, created in the parameter space
by the action of the group of scale changes. These prior densities, g, satisfy
§5° (e2g(e)-tdr = (2, (129(0) 1 dt = oo

1. Introduction. Let W be a real valued random variable with a density func-
tion which is 6~ exp (—(w — g)/o) or 0 according as ¢ < w or ¢ > w. Here p
and ¢ are unknown constants with —co < ¢ < oo and ¢ > 0. Let X, -, X,
denote a sample consisting of independent copies of W. The joint density of
these observations, evaluated at (x,, - - -, x,), is 6-" exp (—n(X — p)/o) or 0 ac-
cording as ¢ < m or ¢ > m, where nx = x, + --- + x, and m = min x;. We
suppose ¢ is to be estimated on the basis of the sample values.

A possible estimate is that given by the method of maximum likelihood, x — m.
The same result can be obtained, as we show below, by invoking the principle
of invariance. ‘

Define X and M by nX = X, + --- + X, and M = min, X;, respectively.
Clearly (X, M) is a sufficient statistic. If @ is an estimator based on this statistic,
f is called equivariant under the affine group, J, provided O(cx + d, cm + d) =
cﬂ(x m) + d for all values of ¢ > 0, d, x and m. This implies that @ has the form
6(x, m) = K(x — m) for some constant K. If loss is measured by (a — 0)*/0®, an
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examination of the risk of @ reveals that the best choice for Kis K = 1. There-
fore the best affine equivariant estimator under squared error loss is the same as
the maximum likelihood estimator. >

More generally suppose loss is measured by, say W(as™") with E, ,W(s7%(X —
M)) < oo, for all y, 6. Then the risk function of K(X — M) is independent of
¢ and o. Choose K = K, so that

(1.0) E, \W{K(X — M)} = inf E, ,W{K(X — M)} .

DeriNiTION 1.1. If K| is chosen as in (1.0), K(X — m) will be called the best
affine equivariant estimator of ¢.

The invariance of the problem, not under J, but under a subgroup of J yields
the framework which is intrinsic to the results of this paper. This subgroup, &,
acting as a transformation group, consists of the multiplicative group of positive
reals. A more useful version of the sufficient statistic, for this case, is X = (G, Y)
where G = X — M and Y = M/(X — M). Then the action of & on the problem
can be summarized as

(1.1) X—(cG,Y), (o,p)—>(ca,cp), O—cb,

if 4 is an equivariant estimator and 0 < ¢ < oo.

In Section 2 it is shown that the maximum likelihood estimator, X — M, is
inadmissible whenever loss is being measured by any one of a general class of
loss functions which includes squared error as a special case. And since for that
special case the best affine equivariant and maximum likelihood estimator are
identical, the result is, perhaps, not surprising in view of the work of Brown [5],
which although inapplicable in the present case, does show thaf the best affine
equivariant estimator is inadmissible for a general class of estimation problems
with varying loss function and underlying distribution.

The inadmissibility of the maximum likelihood estimator is a consequence of
Theorem 2.1. This proves for the particular case of interest here, the assertion
of Brown’s result [5]. Brown’s arguments rely on the conditional expected loss
given that the maximal invariant under the scale group (defined in (1.1)) lies in
a symmetric interval about the origin. We condition instead on the maximal
invariant itself.

Like Brown we require, apart from mild regularity conditions, that the loss
function be bowl-shaped on (0, o) as a function of ¢, the estimate selected (A
function f: (0, co) — (0, o0) is (strictly) bowl-shaped if there is a constant ac
(0, o) such that f is (strictly) decreasing on (0, a) and (strictly) increasing on
(a, 00)).

The method used in Section 2 is more fully described in [4] along with other
techniques of a similar character. Brewster [3] uses one of these techniques to
obtain, for the problem of interest here and each of a variety of loss functions,
an estimator whose risk functions is nowhere larger than that of the best affine
equivariant estimator. His estimators are equal, over much of their domains, to
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formal Bayes estimators. Another application of the method used here is given
in [11].

The main result of Section 2 is given in Theorem 2.1. Its proof entails a more
general result which is stated in Corollary 2.1 and which is in form analogous
to the result given by Stein [8].

When a quadratic loss function is used the consequence of Theorem 2.1 is an
alternative to X — M which may be regarded as a “likelihood ratio testimator”.
More precisely, suppose adopted, the likelihood ratio test of = 0 which accepts
this hypothesis if and only if 0 < M/(X — M) < 1/n. The estimator in question
is X or X — M depending on whether or not this preliminary test accepts » = 0.
The risk of the resulting estimator is uniformly smaller than that of X — M and
hence it is minimax.

While the original version of this manuscript was in its final stages of prepara-
tion its author learned that the preliminary test estimator described in the last
paragraph had been obtained independently by Arnold [2]. He proved its supe-
riority by evaluating its risk function and comparing the result with that of
X - M.

Section 4 is devoted to the problem of finding a family of estimators each of
which is formal Bayes relative to the class of all scale equivariant estimators and
admissible within that class. This family is characterized by conditions on the
densities of the prior measures corresponding to its members and the main one
of these conditions is stated in Lemma 4.2. That this condition (together with
appropriate regularity conditions) might be sufficient in the corresponding prob-
lem for the normal law was suggested to me by C. Stein. A proof for that case
is given by Brewster [3].

The general result, given in Section 3, which leads to these conditions, is related
to a recent result Portnoy [7]. He gives a theorem which, in its application to
the present problem, yields conditions under which a Bayes (not a formal Bayes)
procedure relative to the class of scale equivariant estimators will be admissible
within the class of all procedures.

The proof of Lemma 4.2 is mainly concerned with showing that for the func-
tion M(y, 2) defined in (4,2), M*(y, ) < K(1 + y?), —oo < y < oo, for some
constant K > 0. Toshow that M*(y, 1) < K(1 + y***) for some constants K > 0,
a > 1 is trivial; to reduce n 4+ a to 2, as we must in order to achieve the 4> which
appears in the statement of Lemma 4.2, requires a more delicate argument. For
brevity, only a portion of this argument is given and this reveals the role of
assumptions A3-AS5.

We have not succeeded in showing that if a procedure is admissible within
the class of scale equivariant estimators that it is admissible among all procedures.
Thus we cannot assert the stronger optimality result for the members of the class
of admissible equivariant rules found in Section 4.

In Section 5 are presented, some numerical results. A method for calculating
certain members of the class of formal Bayes admissible equivariant estimators
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is given in Section 6. This method may be used on a desk calculator, at least if
n is moderate, say n < 20.

2. Inadmissibility results. In Section 1 we defined, for n > 2, X = (G, Y),
where G = X — M, M = min,; X;,and Y = MG~; the {X;} are independent copies
of a random variable W with a density, f(w| ¢, ¢), whichise~*exp(—(w — p)/o)
or 0 accordingasw = porw < pu. It is easy to show that G and M — p are
independent random variables distributed, respectively, as };7_, W, and W, where
the { W} are independent and each W, has density f(+ |0, on~"). It follows im-
mediately that X has density f(g, y | £, 1) oc g"~* exp (—ng) X gexp (—ng(y — #/9))
if y > pg™', g > 0 and 0 otherwise. Furthermore, the marginal density of G is,
if o =1, f(g) oc g"exp (—ng), g > 0, independent of .

Assume ¢ is being estimated using X. Any scale-equivariant estimator is of
the form, GT(Y), for some measurable function T. Suppose the loss function
is given by W(do~"), where

(2.1) (i) W'(u) exists, 0 < u < oo except possibly at u = 1
(iiy W(1) = 0 and W(u) is strictly decreasing (increasing) on (0, 1)
((1, c0)) and
(iii) if ¢ = 1, E|W'(cG)| < oo forallc¢ > 0, n = 2.

We consider only scale-equivariant estimators in this paper. Their risk func-
tions depend on (z, o) only through p6~' so we assume without loss of generality
that ¢ = 1.

LemMmA 2.1. The functions, ¢ — EW(cG) and ¢ — E (W(cG)|Y = y), for each
possible p, y, are strictly bowl-shaped and differentiable with derivatives EGW'(cG)
and E(GW'(cG)|Y = y), respectively.

Proor. The proof, using assumptions (2.1), is a straightforward adaptation
of that given in [6] Lemma 2 (iii) page 74. []

As a consequence of Lemma 2.1, EW(cG) and E,(W(cG)|Y = y) are uniquely
minimized as functions of ¢, by say ¢ = ¢, and ¢ = ¢(y, p), respectively. More-
over, EGW'(cG) < 0(> 0)for ¢ < ¢, (> ¢,) while E (GW'(cG)|Y = y) < 0(> 0)
for ¢ < ¢(y, ) (> ¢(y, )). The best affine-equivariant estimator is given by

(2.2) ¢,G ..

THEOREM 2.1. The estimator given in (2.2) is inadmissible when W in any loss
function satisfying (2.1).

Proor. Observe that EGW’'(c,G) = 0 is equivalent to {y g"~'exp(—ng) X
W'(c,9)dg = 0. It follows that {5 g"exp (—ng)W'(c,g)dg > ¢, {5 9" X
exp(—ng)W'(c,9)dg = 0. But F(c) = {5 g" ' exp(—ng)W(cg)dyg is strictly bowl-
shaped, so we deduce that there exists ¢* such that ¢* < ¢, and F(c*) =
inf, F(c) < F(c,). This is readily interpreted to mean that c(y, 0) = c*(1 + y),
for y > 0, with ¢* < ¢,. By similar reasoning it is easily shown that ¢(y, ) <



268 JAMES V. ZIDEK

c(y,0), —co < 4 < oo. Let

T(y) =¢, y <0
= min {¢,, ¢(y, 0)}, y=0.

Then it follows that E(W(GT(Y))|Y = y) < E(W(c,G)|Y = y) for all p,y,
with actual inequality for all # when y is such that y > 0 and ¢(y, 0) < ¢,. The
last event has, for each p, positive probability. The conclusion now follows.

CoROLLARY 2.1. For any scale-equivariant estimator GT(Y), let T*(y) = T(y)
if y <0 and T*(y) = min {T(y), ¢*(1 + y)} if y = 0. Then, if (2.1) holds
E,W(GTX(Y)) < E,W(GT(Y)) with inequality for all p if for p = 0, P(T*(Y) #
I(Y))>0.0

COROLLARY 2.2. The maximum likelihood estimator of ¢, G, is inadmissible when
the loss function satisfies (2.1). []

Particular loss functions considered by Brown [5] are W,(u) = (u — 1),
Wyu) =u — 1 — Inu and Wy(u) = (Inu)*. The corresponding values of ¢*, and
¢, are, respectively, ¢* = n(n + 1)*and ¢, = 1, ¢* = 1 and ¢, = n(n — 1)~'and
c¢* = nexp(Elog U;!))and ¢, = nexp(ElogU,!,), where U, denotes the random
variable with density function which is oc g= exp (—g) for g = 0 and 0 if g < 0.
Observe that for W, n(n — 1)7' < ¢* < n(n — 2)'and, if n = 3, n(n — 2)' <
¢ < n(n — 3)7L

3. General sufficient conditions for admissibility. Let X denote a random variable
whose range is a measurable space (-2, €”). Suppose X is distributed by a unique
but unknown probability measure which is an element of {P,: § ¢ ®}). Let %
denote a set (the action space) from which an element is to be chosen after X is
observed. If action a e .o is selected when X is distributed by P,, a loss,
L(a,0) = 0, is incurred. Assume .%”" and © are endowed with g-algebras, the
former containing all the singletons of .27, We consider only nonrandomized
decision rules d: 27— %7 where ¢ is measurable. The risk of a decision rule,
d, when X is distributed by P,, say r(3, ), is defined as r(d, ) = E,L(3(X), 6).

Assume (27, &, p) is a o-finite measure space and that P, is absolutely con-
tinuous with respect to p for every 6. Let p, = dP,/dy, and assume p,(x) is
jointly measurable in x and 6.

Suppose & is a locally compact Hausdorff topological transformation group
acting on the left of .27, Let [ denote the left invariant Haar measure on <.
Assume 27 = ©|F x Z°|< where 57 is a compact subgroup of &. Here
©|2¢ denotes the space of left cosets of 57" and .27/ < is the quotient space of
2 under the equivalence, x, ~ x, if and only if x, = gx, for some ge &. For
simplicity let ©* = /27 and 27* = 27/ <. Denote by r* the canonical mapp-
ing of & onto *. If x = (g9,*, y) € 22, assume the action of g ¢ & on x is de-
scribed by gx = (g99,*, y) where if g,* = 7*(g,), gg,* is defined by gg,* = t*(gg,).
The random variable, X, is of the form X = (G*, Y).
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The assumption that the problems remains invariant under & entails the ex-
istence of measurable transformation groups ([11]) & and 4 acting on the left
of © and .©7, respectively. These groups are required to act in such a way that
if g and § denote the homomorphic images of g ¢ & in < and &, respectively,
then P,,(g9A4) = P,(A) and L(ga, gb) = L(a, 0), g€ &, aec 7, 00, AecZ.
Assume 57 acts trivially on .%7.

Assume 1 = [* X p where p is an arbitrary ¢-finite measure on the Borel subsets
of 27* and I* is the positive, left invariant, Borel measure induced on the Borel
subsets of &/2# by [ through the canonical mapping of & onto &* (the com-
pactness of 57 is used here). Let ¢ denote a 1:1 mapping of 0/% = 0%, the
quotient space of ® under an equivalence relation (~) analogous to that defined
above for .77, into ©® which satisfies the requirement that if 6,* = 6,*, ¢(6,*) ~
#(0,%), 0, ©*, i = 1,2. Assume {ge Z: gp((0*) = ¢(6*)} is compact for every
point 6* ¢ ©®*. For convenience, and with no danger of confusion, we write 6*
for ¢(6*) in the sequel.

A nonrandomized procedure {: 27— %7 is called equivariant if §{(g,*, y) =
£(g9,*, y), g € & and (g,*, y) € &2 (the assumption that 97 acts trivially on %
is necessary here). Itfollows thatif{ isany equivariant nonrandomized estimator
is equivalent to an estimator of the form GT(Y) where T: .27* — .7 is some
measurable function. We now assume that % C R™ and that

L(a, 0) = c(0)lla — w(O)]I*,

where ¢(0) > 0, w(f) e % for all ¢ © and denotes a norm on R™. Let
8(G*, Y) = GT(Y) denote an arbitrary, equivariant nonrandomized estimator.
Then the risk of d, r(d, 0), is

E,c(0)||GT(Y) — w(0)|]* = E,c(G10)||T(Y) — w(G0)||*,
because of the assumed invariance of the loss. It follows that
r(d, 0) = E,c(Y, 0)||T(Y) — w(Y, 0)|]* + b(9) ,

where ¢(Y, 0) = Ey(c(G-'0)|Y), w(Y, 0) = E,(c(G0) x w(G~0)|Y)/c(Y, 6) and
b(0) = E,(c(G0)||w(G0)||) — E,(c(Y, 0)||w(Y, 6)]*). Of course,

(9, 0) = r(d, ¢(z(9)))
as it must since ¢ is equivariant. ‘

If the choice of decision rule is restricted to the class of nonrandomized equi-
variant procedures, say D,, a reduced problem is obtained which can be described
as follows. A random variable Y with range 27* is observed. The distribution
of Y is a unique but unknown member of {P,,.,: 6* ¢ ©*}. The action space for
the problem is % and loss is measured by L*(a, Y, 6*) = ¢(Y, 6*)|la—w(Y, 6*)|]* +
b(0*), where for convenience we write 6* for ¢(6*). The class of decision rules
available, D*, consists of all measurable functions, T: .2* — .. We state for
future reference the following obvious results.
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LEMMA 3.1. The equivariant procedure GT(Y) is admissible in D, when loss is
measured by L(+, +) if and only if for the reduced problem, T(Y) is admissible in D*,
when loss is measured by c(+, «)||« — w(~, +)||*

LEMMA 3.2. The procedure GT(Y) is Bayes in D, with respect to a prior measure,
II', when loss is measured by L(-, +) if and only if, for the reduced problem, T(Y) is
Bayes in D*, with respect to II' o =" when loss is measured by c(«, +)||+ — w(+, *)[|*

Assume in the reduced problem whose structure is supposed in Lemmas 3.1
and 3.2 that ©* is a possibly unbounded subinterval of the real line with upper
and lower endpoints, 6, and 6, respectively. Let II’ denote a prior probability
distribution on © and II = II’ o ~* the induced prior probability distribution on
©*. Then according to Lemma 3.2 GT(Y) is a Bayes procedure with respect to
I’ relative to the class of equivariant procedures if

(3.1 T(y) = E(e(y, 0*)w(y, 0| Y = y)[E(e(y, 07)| Y = y)
except for values of y in a measurable subset 4 — 27 for which

Va §8 p(y|0%) dI1(6%) do(y) = O
Here (Y, 6*) is a random variable with joint distribution determined by

p(y]6*) dIL(6*) dp(y) and p(y|6*) is the density of ¥ with respect to p when its
distribution is determined by P,,.,. More explicitly,

P 10%) = o Pyion(9™, ) dI*(g7) -

It is useful to consider measures, II, which are required only to be o-finite and
such that E[{c(y, 0%)||w(y, 0%)|* + 1}|Y = y] < oo, a.e. [p]. “E” is used here
and in the sequel as a convenient notational device, even though (Y, 6*) is not
necessarily a “proper” random variable. For such a measure, II, we can define
an estimator GT(Y) through (3.1). Such an estimator will be called a formal
Bayes estimator with respect to I1, relative to the class of equivariant estimators.
Let r*(T", «): ©* — [0, co) denote the risk, in the reduced problem of the
estimator, T’ € D* when loss is measured by ¢(«, «)||+ — w(e, *)|?

DEFINITION 3.1. An estimator T’ ¢ D* is called almost admissible with respect
to a measure II, if for any procedure T* e D* for which r*(T*, .) < r*(T", ),
r(T*, 0%) = r<(T", %), a.e. [II].

Lemma 3.1, below, gives a sufficient condition for the almost admissibility of
a formal Bayes procedure, T, with respect to II when II has a density . To
facilitate the statement of this result, we define a function M?: Z7* x O* —
[0, o) by
M(y, 0%) = ||§5* c(y, DIT(y) — w(y, O]p(y| )= (?) at||?
X (e(y, 0%)p(y | 0*)m(6%))* .

We set M? equal to zero when its denominator is zero. Also, let A(6)* =
E[MX(Y, 6*)|6*]. Assume
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Al. m(0*)h(6*) is bounded away from 0 on compact subsets of ©* and
A2. {t: p(y|t) > 0} is an interval a.e. [p].

LemMmaA 3.1. Under assumptions Al and A2, T is almost admissible with respect

to 11 if

§0u[m()h(1)] 1 dt = oo when (0vr*(T, Hr(t)dt = oo
and

§5, [(n)h(1)] 1 dt = oo when §5 r*(T, H)yr(t)dt = oo,

where c e (0,,0,).
Proor. This theorem is a restatement of Theorem 3.1 ([10]) (the latter result

assumes ¢ and w are independent of y but no difficulty is encountered in showing
that it applies in the present case as well).

4. Formal Bayes estimators admissible among equivariant estimators. To apply
Lemma 3.1, we need to identify the objects appearing in Section 3, in the problem
of interest here.

The groups &, 7, and  are defined by (l.1)and 27" = {1}, the identity element
of 2. Furthermore:

0% = (—oc0, 00), H(0*%) = (1, 6%), ATF = (— o0, 00)
di*(g) = dl(g) = dglg ,  do(y) =dy,  pys(9,) = flg,y]0%, 1).
If we let ¢*(y, 2) = §;° gp,(9, y) dg, then
w(y, 2) = §¢ pag, y) dg/c*(y, 2)
and
(4.1) h(4) = §Za €*(y, HAM(y, 2) dy .
Define M: (— oo, c0)* — (— o0, c0) by

(42) My, 2) =7 =(1) § (9T(y) — Dpulg, y) dg dr{a(t) §7 9p:(9> y) dg}™!
unless y < 0 < 6* when the denominator in (4.2) becomes zero and we define
M(y, 2) to be zero. Then M*(y, 2) = (M(y, 4))*.

Finally T(y), defined in (3.1), is given by

(4.3)  T(¥) = §2 §5 palg, v) dgm(2) dA{§=. §5 9pa(9, y) dgm(A) da}~ .

In order to obtain a usable consequence of Lemma 3.1, we assume of = that
it satisfies ‘

A3. n(1)/z(f) < a, + ay|t — 6| for some positive constants a,, a,, a, and for
all 0, ¢.

A4. n(10)/z(0) = ct~*for constants 3 < 2and ¢ > Oand forall#and 7€ (0, 1).

AS. 7 is non-decreasing (non-increasing) on (— oo, 0] ([0, o0)).

We note that assumptions Al and A2 are satisfied in the present case, and in
particular that A4 implies 7(2) > 0 forall 2. A family of prior densities {z,: ¢ = 2}
for which A3, A4, and AS are satisfied is defined by z,(4) = (1 + [4]*)7".

The proof of the following lemma is straightforward.
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LemMma 4.1, If assumptions A3-AS are satisfied and T is defined as in (4.2), then
T is bounded.

LEMMA 4.2. Suppose assumptions A3 A5 are satisfied. Then T, defined in (4.2),
is almost admissible with respect to 11 provided

{9 [A2n(2)]71dA = \ZL [2n(A)] 1 dA = oo .
Proor. The proof consists of showing that for any function, =, satisfying
A3-A5
(4.4) MYy, ) < K'(1 + %), —co <y <L oo, A >1,
for some constant K’ > 0. It follows that for |2] > 1,

MO < k47 55 0 expl—ng(1 + I+ [ + YgP) dy dg

or
h() < K22, 12 >1,

where K > 0 is used here and in the sequel to denote a generic constant whose
precise value is of no relevance to the argument. The conclusion is then a con-
sequence of Lemma 3.1.

Evaluating w(+, ) explicitly we obtain

w(y, 1) = {5, 9" exp[—ng(l + y)] dg/§5, 9"  exp [—ng(l + y)] dy ,

t>0,y>0
=n(l + y)(n + 1), t<0,y=0
= §¢7 gnexp[—ng(1 + y)]dg/§i 9"  exp [—ng(1 + y)]dg ,

1<£0,y<0.

It is easily shown that w(y, «) is strictly decreasing (increasing)on [0, co) ((— oo, 0])

when y > 0 (y < 0).
From (4.3) it follows that if y > 0

(4.5)  T(y) = 12 Vaiw PULGs Y)7(1) 49 AH{§ 7o 55000 9PAG> Y)7(2) dg At}

where H(u) = max (0, #), —oo < u < oo, and if y <0

(4.6)  T(y) = {2u 8" pug, y)=(2) dg dr{§.. §i gp.(9, y)n(t) dg di}™ .

Equivalently, (4.5) and (4.6) may be written in the form of the following useful

identities:

(4.7) §7. 2O (7, DIT(Y) — w(y, H]dt = 0, y>0

(4.8) {2 () (3, DIT(Y) — Wy, 0] de =0, y<o0.
Since T(y) — w(y, ») is strictly increasing on [0, co), for y > 0, and constant

(> 0) on (— oo, 0] we conclude from (4.7) that T(y) — w(y, «), for y > 0, must
have a unique zero, say y*, in (0, o0), that T(y) — w(y, ) > 0 (< 0) for ¢ > y*
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(r < y*) and consequently that

(4.9) V7 m()e*(r, OIT(y) — w(y, H]dt >0, y >0, —co <2< oo
Similar reasoning implies
(4.10) Vi 2(0e*(, OIT(y) — w(y, )] dt >0, y <0, —c0 <2<0.

By (4.2), and inequalities (4.9) and (4.11),

T(D)e* (s HIM(y, D] = §7 7()e*(y, OIT(y) — w(y, n]dr,
y>0, —c0 <2< o0
(4.11) =0, 2A=20,y<0
= §Le 7 (O)c*(y, O[T(y) — w(y, O] dt
y <0, —co <A< 0.
That z(2)c*(y, 2)M(y, 2) = 0 for 2 = 0, y < 0 is a consequence of ¢*(%, y) = 0
(in this case) and the definition of M.

The proof of inequality (4.4) is carried out by considering the separate cases
which naturally arise from the requirement that gy > 2in order that pig,y) > 0.
These cases are, (i): 4 > 1,y > 0, (ii): 2 < — 1,y > 0, and (iii): 2 < —1, y < 0.
For technical reasons (iii) is most easily handled by considering the subcases
(iia): T4y =0, 2< —1, (ilib): 1 +y <0, 2< —1, [2/y||l 4+ y| < 3, and
(iic)y: 1 +y <0, 2 < —1, |Ay||]l + y| > L. The proof in case (iiic) is similar
to that involved in case (i). Whereas in case (i) we rely on identity (4.7), (iiic)
requires (4.8). Cases (ii), (iiia), and (iiib) are straightforward so for brevity
we present only the proof of case (i).

For convenience we define a function G: (— oo, 00)* — [0, co) by

(4.12) Gy, 4) = m()e*(y, HIM(y, 2)] .
Equation (4.11) implies
Gy, ) = 7 =T ) 7, 9pA9, ¥) dg — 3, P9, y) dg) dr .

After integrating by parts the first integral which appears in the integrand of the
last expression, we obtain

G(_V, /1) = ‘TL S‘;° ﬂ-(t)e—nt/'y(t/y)n-i—l dt

n(l 4 )
DT ) - i
" < n(l 4 y) §5=() §5, pe(g, y) dg dr .
Since 7 is non-increasing on [0, co) and T(y) < n(1 4 y)/(n 4- 1) for all y > 0,
(4.13) G(y; 2) < yT(y)r(2) §5, e+ dr .
But

(v, A) = e {5, exp [—ng(l + v)]g"+' dg
= e " exp [—ng(l + »)l(g + 2/y)"+'dg
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so that

(4.14) *(y, A) =z e fyy (1 + y)] T

Tbgether inequalities (4.13) and (4.14) imply

(4.15) IM(y, D) = yT(y) 5 €0+t dife= (2 y)*+1}1

But by Lemma 4.1, T is bounded and hence, inequality (4.15) implies

(4.16) |M(y, 2)| < Ky, A1,y > 1.

Using identity (4.7) a bound for M will be obtained in the case where 1/y < 1.
From this identity we deduce that

G(y, 2) = §2e 7(t) $5ier PG DI — 9T ()] dg dt .
As a result, if ¢/ = n! {°_ e™zn(t)dt and w = 4y,
G(y, 1) < ¢[n(1 + p) =+
n F(%V_) 1 m(At)em §o e <Wi—y) n wt>" dg dt .
Thus,
4.17)  G(3, 2) < c(w/2y™
+ w/nlcyw/A)" \§ n(ANe "t dt 4 cyo™ \§ T(A)e ™ dt]
for some positive constants ¢;, i = 1, 2, 3 which depend on n. Since 7 is bounded
and, by A4, n(At) £ cr(A17#, 0 < t < 1, inequality (4.17) implies
G(y, ) £ Ko™ 27" 4 27" + n(2)] -

But A4 also implies 7(1) < cn(2)4%, 2 > 1. Thus, G(y, 1) < Ko"*'z(1). Combin-
ing the last inequality with (4.14) we obtain

(4.18) IM(y, )] = K(1 + y), Ay =1, 4> 1.
Together (4.16) and (4.18) imply (4.4).

THEOREM 4.1. If T is defined by (4.2) and the hypotheses of Lemma 4.2 are
satisfied, then GT(Y) is admissible in D, as an estimator of o.

Proor. Suppose GT(Y) is not admissible in D,. By Lemma 3.1, T is not ad-
missible in D*. Therefore, there exists T* ¢ D* such that r*(T*, 2) < r¥(T, 4),
2 € ©* with actual inequality for at least one point,say 2 = 4,. Let B = {ye .2 *:
T*(y) #+ T(y)}. It follows that §, p(y|4,) dy > 0.

Define an estimator ¢ by ¢ = 1T* + 1T. Then (¢(y) — w(y, 4))* < ¥(T*(y) —
w(ys ) + 3(T(y) — w(y, A, yeB, 2 ©* and (4(y) — w(y, 1)) = (T(y) —
w(y, 2))}, A€ ©*, ye B°, the complement of B.

Now r(T, 2) — r*(¢, 2) = §5 ¢(y, DUT(y) — w(y, D)’ — ($(y) — w(y, )} X
p(y|A)dy. Let

A ={2:§ap(y[2)dy > 0}.
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Then if II(A) > 0, the conclusion of Lemma 4.2 is contradicted. But, with
C={9g,ne 79y > 2,

Vol A)dy = Keho§ 0, § 9" exp[—ng(1 + y)]dgdy > 0,

Since C;, c C), 2 < 2, §5p(y|A)dy >0, 2 < 2,. This implies II(A) > 0 and
the proof is complete.

5. Numerical results. In this section we evaluate numerically, the risk function
of the minimax estimator obtained in Section 2 under quadratic loss and of each
of three members of the class of scale admissible equivariant estimators obtained
in Section 4. This evaluation is carried out when n = 4and —2 < plo < 2.

Consider the subclass of all possible choices of 7 given by {z,,:a > 0, b6 > 0}
where 7, (1) is (1 + a|t])~* or (1 4 &]#[)"" according as r > O or r < 0. Denote
by T, ., the function obtained from the (4.3) by setting r = =, ,.

In Figure 1 we represent T,., for n = 4 and various values of a and b. Also
represented there is 7,* = T, the function obtained in Section 2 when T(y)=1.
Figure 2 indicates the manner in which T, ,, varies with n. Finally in Figure 3
the risk functions for T, o4, (a,b)=(4,1), (4, 4), (20, 200), and T,* are represented.

It is clear at a glance that use of the preliminary test estimator of Section 3
will not result in a large reduction in mean square error. At best the reduction
is about 6%, and this is achieved when #/o is about .2.

t (20,200)

t(4,4)

t(4,.1)

; 4
t T + -

.5 | 1.5 2

j
— L : + {
o]

-2 -15 -1 -5
Fic. 1. Tw* and Ty,q,5 = t(a, b) for n = 4 and (a,b) = (4, .1), (4, 4), (20, 200).
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FI1G. 2. Ty,4,4 for n = 4,8, 14, 20.

.03

V(20,200) g

Va4 -.01)

-.021

-.03{

-.04 J

Fic. 3. V* = ¢(Ty*, 2) — 4 and v(a, b) = I'(T:n,a,b, 2) — % when n = 4 for various values of

(a, b) = (4, .1), (20, 200), (4, 4).

Arnold [2] is incorrect in asserting that for any #, the maximum improvement
occurs when 1 = 0 as can readily be seen by examining his computed risk for
the case n = 2. There the maximum relative reduction occurs when pfois 8.
The maximum relative reduction itself is about 994. Using the admissible equi-
variant estimator 7, ,,, when n = 4, will result in a maximum relative reduction
of about 99 when p/c is about .5. On the other hand this estimator is not
minimax and there is a relative loss of about 2.59, when ¢/o is about —.2,
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6. Computing T, , ,. We adopt the following notation:

V(x, r;m) = [(r — D! {5 exp (— )¢ ~'n(xt) dt —o0 < x < o0
VA, r) = [(r = DT §Pexp (=01 + yo)~dr yz0.
Denote by 7, ., the function given in (4.3).

Then for —c0 < y < o0,

(6.1) T,(y) = n(l + y)(n + 171 + (1 + p)**

X V(y[n,n+ 25 2){U (n, y; 7)} ']
where

U ym)=V(—n Lir) +y Zio (1 4+ )Wy k + 1 7).
Moreover, if —2 <y < —4%, T, .(y) can be approximated, to any prescribed

degree of accuracy by choosing K =0, 1,2, - - large enough in
(6.2) n(n + 1)7[1 + y + V(y/n, n + 2, 7)| Wi(n, y; 7))
where

We(n, y; m) = L& (1 + y)e " V(y/n, k 4 1; @) .

Now (6.1) and (6.2) may be applied for any choice of z satisfying the condi-
tions determined in Section 4. But difficulty may be encountered in computing
the function ¥ which appears in both of these expressions. We describe below;
methods which may be used when = = #, , as defined in Section 5.

Observe that

(6.3) Vix, r;m,,) = V*ax,r), x=0

= V*(b|x|, 1), x<0.
Moreover

Ve(y, 1) =y exp ()EIY™)

where Ei(x) denotes the exponential integral, {7 exp(—#)¢r'df,x > 0. Thus
with the help of existing tables (for example, [1]), V*(y, 1) is easily computed.
If y > 1 V*(y, r) can be computing recursively without roundoff or loss of sig-
nificant figures due to cancellation from

6.4) V¥(y, r) = [(r — Dy [1 — V¥, r—1)], r=2,3...,y>1.

When 0 < y < 1 the recursive method suggested above is unsatisfactory. An
approximation, ¥, *(y, r), to V*(y, r) based on a continued fractional expansion
of V* is preferable. It is

(6.5) VE(y, 1) = 1 1+ L (m 1_+1))’ (r +1m+— 1) myfu(y)

where 0 < y < 1, and

fay) = [2(m + Y7 [1 = (r = Dy + {[1 = (r — Dy + 4(m + LyH].
Numerical results indicate that |[V*(y, r) — V,*(y, )] < 107%ifm =9,0< y <
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Sandr>4,ifm=13, S<y<landr>6,0r, ifm=21,.5<y<1and
r<6.

In summary the computational procedure calls for the use of (6.1) if y¢
(=2, —4) and (6.2) if ye (—2, —3). The required values of V are obtained
using (6.3). This necessitates the computation of V*(z, r) for certain values of
z>0and r. If z > 1, (6.4) may be employed to that end, while if 0 < z < 1,
(6.5) may be used.

Our numerical results indicate that the procedure given above, while generally
satisfactory, may encounter difficulties if —2 < y < —3or —3 < y < 0. There
(6.1) may fail because of a loss of significant figures due to cancellation and (6.2)
may be unsatisfactory because an unduly large number of terms is required.

Acknowledgment. I am indebted to Professor C. Stein who informed me of the
necessary condition for admissibility which is stated in Theorem 2.1. Iam grate-
ful to Dr. G. Johnson for some helpful comments regarding the numerical analysis
of Sections 5§ and 6. The suggestions of the referee have resulted in an improve-
ment in the presentation of our results. This paper was revised at University
College London where facilities were generously provided during my leave of
absence in 1971-72.

REFERENCES

[1] ABrRaMOWITZ, M. and STEGUN, 1. A. (1965). Handbook of Mathematical Functions. Dover,
New York.
[2] ArNoLD, B. C. (1970). Inadmissibility of the usual scale estimate for a shifted exponential
distribution. J. Amer. Statist. Assoc. 65 1260-1264.
[3] BREWSTER, J. F. (1972a). On the admissibility of scale and quantile estimators, Ph. D.
dissertation, Univ. of British Columbia.
[4] BREWSTER, J. F. and ZIDEK, J. V. (1972b). Techniques for improving on equivariant esti-
mators. Unpublished.
[5] BrowN, L. (1968). Inadmissibility of the usual estimators of scale parameters in problems
with unknown location and scale parameters. Ann. Math. Statist. 39 29-48.
[6] LeHMANN, E. L. (1959). Testing Statistical Hypothesis. Wiley, New York.
[7] PorTNOY, S. L. (1971). Formal Bayes estimation with application to a random effects
analysis of variance model. Ann. Math. Statist. 42 1379-1402.
[8] STEIN, C. (1964). Inadmissibility of the usual estimator for the variance of a normal dis-
tribution with unknown mean. Ann. Inst. Statist. Math. 16 155-160.
[9] Zipek, J. V. (1969). A representation of Bayes invariant procedures in terms of Haar
measure. Ann. Inst. Statist. Math. 21, 291-308.
[10] ZipEk, J. V. (1970). Sufficient conditions for the admissibility under squared error loss of
formal Bayes estimators. Ann. Math. Statist. 41 446-456.
[11] ZipEek,J. V. (1971). Inadmissibility of a class of estimators of a normal quantile. Ann. Math.
Statist. 42 1444-1447.
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRITISH COLUMBIA
Vancouver 8, B.C., CANADA



