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We thank Professor Flury for his insightful remarks. In particular, we are
glad that he pointed to a Gnanadesikan—Wilks reference that fell by the wayside
as we shortened the paper. Since points of disagreement often expose critical
ideas, we first take up Flury’s assertion that comparisons between smallest
additive principal components and principal curves are unavoidable. Here is a
comparison of the major points of difference between the two methodologies:

Applicability.

o Principal curves and surfaces are successful if applied to data that are close
to a smooth manifold of dimension 1 or 2.

e Smallest APCs are successful if applied to data that are close to a smooth
manifold of low codimension, typically 1 or 2, sometimes 3, but rarely higher.
In addition, it must be possible to describe the manifold by additive equa-
tions.

Output.

The output of principal curves and surfaces is a parametrized representation
of a curve or two-dimensional surface, with no constraint on the parameter-
ization other than smoothness.

e The output of smallest APCs is a small number of implicit equations that
are of an additive, and hence highly interpretable, form.

Uses.

e The main use of principal curves and surfaces is for visualization. They
therefore provide in J. W. Tukey’s terminology a “sharpening” tool that ex-
poses geometric features of multivariate pointscatters.

e Smallest APCs have two uses: first as an analytical tool for fitting additive
implicit equations to data; second as an adjunct of additive regression for
diagnosing concurvity—the analog of collinearity in additive regression.

There is a narrow window where both principal curves/surfaces and APCs
could be used: namely when the dimension is 1 or 2, the codimension is small
and the manifold underlying the data is additive. Under these conditions both
a principal curve/surface and a set of additive equations can be fitted. This
may apply in three and sometimes even four dimensions, but any problem
with a larger number of variables does not permit meaningful application of
both methods.

An even crisper divergence occurs in the use of the methods, as parametriza-
tions and implicit equations serve very different purposes. For example, the
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parametrization of principal curves is quite useless if the problem is to diagnose
additive degeneracies among the predictor variables of an additive regression.
On the other hand, implicit equations from APCs are not helpful if the prob-
lem is to capture nonlinearities in basically unidimensional data. As a general
rule, if a problem asks for the application of one of these methods, it probably
excludes the application of the other.

Having clarified the relation between APCs and principal curves (hopefully),
we are still left with the nagging suspicion expressed by Flury: that, between
these two methods, APCs may have a harder time catching on because of the
horseshoe effect. Flury’s reaction to artifactual parabolic and other nonlinear
transforms is identical to reactions we observed after we pointed out the horse-
shoe effect for the ACE method [Buja and Kass (1985)]. To some, this seems to
invalidate the approach as a whole, and the method is summarily dismissed. To
us, this is a prime example of how we can be led astray by the study of theory
alone. Unhappily, we do not seem to have put this theory in proper perspective.
Below, we explain why we think that horseshoes are an entirely manageable
problem in practice and give concrete rules for handling this phenomenon.

First, we relate some interesting new work in the theory of principal curves.
Recent results by Duchamp and Stuetzle (1993) show that the population theory
of principal curves is even more intricate than that of APCs. Similar to APCs,
simple bivariate distributions such as the uniform on a rectangle can have
multiple principal curves, some of which are nonlinear and as artifactual as
horseshoes. Thus the conceptual advantage that Flury presumed for principal
curves is nonexistent.

We return to the discussion of the horseshoe problem in APCs. The most im-
portant point is that horseshoes can be diagnosed in practice. Here is a multi-
step procedure that will pinpoint and eliminate the vast majority of horseshoes
in real data:

1. Restrict attention to strongest APCs and ignore those whose eigenvalues
are too large, that is, too close to 1. Weak APCs are more likely to have
horseshoes.

2. Compare the transforms for a given variable across smallest APCs. If the
variable has a very strong monotone transform in one APC, it is more likely
to have horseshoe transforms in other APCs.

3. Use strong but uninteresting APCs for variable elimination: they point to
relations among variables that destabilize the interesting APCs. Then re-
compute APCs of the remaining variables.

Each of these steps can be illustrated by the analysis of the full set of variables
of the ozone data in subsection 3.2. Comparing Figures 1 through 3, one sees
immediately that the number of parabolic transforms increases as the order of
the APC goes up. Some of these parabolas are likely to be horseshoes. Compar-
ing the transforms of Sandburg temperature across Figures 1 through 3, we find
two strong monotone transforms in the first two APCs, hence our suspicion falls
on the parabola for this variable in Figure 3. Similarly, the extremely strong
showing of inversion base temperature in the first APC would indicate a horse-
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shoe for the parabolas in the remaining figures. Elimination of some of these
variables (in particular inversion base temperature which is highly related with
Sandburg temperature) gets rid of most of these horseshoes as can be seen from
Figures 5 and 6.

The third step of variable elimination is of course analogous to variable elim-
ination in regression. When APCs are used for analysis of data dependencies,
rather than for diagnostics in additive regression, the goal is again fitting stable
equations so variable elimination may be desirable.

As a final point, note that the nonmonotonic transforms of the day of year
variable are real on subject matter grounds: they reflect yearly periodicities in
climate. Arguments of this kind are needed to establish the reality of nonmono-
tonic transforms.

Although the rules listed above serve well in practice, any data fitting method
will always pose questions of adequacy of particular data descriptions. For ex-
ample, a degenerate uniform distribution on the unit circle is well described
by the equation X2 + Y2 = 1 (which is found by smallest APCs with an eigen-
value 0); on the other hand, a bivariate standard normal is not well described
by any equation (as reflected by APC eigenvalues that are all identically equal
to 1). Consider now a family of distributions that interpolates these two cases:
plx,y) o< (1 —x2 — 22~ for x%2 + y2 < 1 and 0 otherwise, where 0 < a < oo.
(this is the circular family of Pearson Type II distributions. It was used to illus-
trate the horseshoe effect for the alternating least squares and ACE methods
[Buja (1990)].) For @ — oo the family approaches the degenerate uniform on the
unit circle, and for @ — oo it approaches (after suitable rescaling) the bivariate
standard normal. The smallest APC eigenvalue is A = a/(a + 1/2) and the cor-
responding additive implicit equation is X2 +Y 2 = 1 for all a [Buja (1990), page
1054 ff, and Section 4.6 above]. The questionis: at what point do we consider this
equation an adequate description of the data? Clearly, for values of a close to 0,
that is, distributions close to the uniform on a circle, this is a good summary. For
valuesa > 1, we may agree that it is worthless since the corresponding densities
are bell-shaped. But for a = 1 (corresponding to the uniform on the unit disk),
A = 2/3 is still not a convincing smallest eigenvalue. How far do we need to go?

There is of course no single answer to this question. For comparison, in re-
gression problems, there is no single recommended value of R? that would as-
sure a meaningful regression either, yet this vagueness does not invalidate
regression as a data fitting method. We have become used to testing, diag-
nosing and otherwise assessing regression equations, and similar efforts are
necessary to validate APC equations.

REFERENCES

DucHAMP and STUETZLE (1993).

BELLCORE

Box 1910

445 SOUTH STREET

MORRISTOWN, NEW JERSEY 07962-1910



