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PREFERRED POINT GEOMETRY AND THE LOCAL DIFFERENTIAL
GEOMETRY OF THE KULLBACK-LEIBLER DIVERGENCE!

By FRANK CRITCHLEY, PAUL MARRIOTT AND MARK SALMON

University of Birmingham, University of Surrey
and European University Institute

A new preferred point geometric structure for statistical analysis, closely
related to Amari’s a-geometries, is introduced. The added preferred point
structure is seen to resolve the problem that divergence measures do not
obey the intuitively natural axioms for a distance function as commonly
used in geometry. Using this tool, two key results of Amari which connect
geodesics and divergence functions are developed. The embedding proper-
ties of the Kullback-Leibler divergence are considered and a strong curva-
ture condition is produced under which it agrees with a statistically natural
(squared) preferred point geodesic distance. When this condition fails the
choice of divergence may be crucial. Further, Amari’s Pythagorean result is
shown to generalise in the preferred point context.

1. Introduction. Ideas of distance in geometry have mostly been devel-
opments of the Euclidean axiom that the shortest path between two points is a
straight line. The distance between these points is then defined as the length of
this line. Following the developments which enable us to define what is meant
by a straight line in spaces more complex than Euclid’s plane, we find that
we pass through most of the history of geometry itself. The following are the
familiar axioms for 6(m, n), the distance from m to n:

1. positivity, 6(m,n) > 0 with equality if and only if m = n;
2. symmetry, (m,n) = §(n,m);
3. the triangle inequality 6(m,n) < 6(m,p) + 6(p,n).

These reflect the intuitive idea of distances being minimum pathlengths. Condi-
tion 1is self-evident. Condition 2 follows from the intuitive idea that the length
of a path is independent of the direction travelled. Condition 3 derives from
the idea that if we take the shortest path from m to p followed by the shortest
path from p to n, then we have taken a path from m to n and since pathlengths
are assumed additive we have gone at least as far as the shortest path joining
them. ‘

There has also been a natural interest in statistics in how to measure the
separation of two density functions [see, e.g., Rao (1945, 1987), Burbea and Rao
(1982), Jeffreys (1948), Bhattacharrya (1943) and Kullback and Leibler (1951)].
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The fundamental role played by Fisher’s information matrix in Rao’s notion of
distance may be contrasted with the Kullback—Leibler divergence function

du(6,60') = Ep(;, 0)[ In p(x,6) — In p(x,6")].

This function and many other proposed divergence or discrimination functions
are apparently quite different from the more geometric ideas of distance. For ex-
ample, they do not necessarily satisfy conditions 2 and 3 above. These functions
do, however, reflect the asymmetry which is fundamental to statistical infer-
ence given the singling out of some particular distribution as representing, for
example, - it’ er the true data generation process or the maintained hypothesis.

The past .35 years have seen substantial developments in the relationship
between differential geometry and statistics. See, for example, the review pa-
pers by Barndorff-Nielsen, Cox and Reid (1986) and by Kass (1989). In particu-
lar we note Amari’s (1990) construction of an expected geometry on a parametric
family of density functions. Using this geometry, Amari was able to forge links
between the differential geometric concept of a geodesic and some common di-
vergence functions, including the Kullback—Leibler measure. There has also
been work on the “Euclidean” geometry of the Kullback-Leibler divergence
[see, e.g., Cencov (1972), Csiszar (1975) and Loh (1983)]. Barndorff-Nielsen
(1989) and Blaesild (1990, 1991) use the concept of a yoke, one of which is mi-
nus the Kullback-Leibler measure, to generate very general geometric struc-
tures, and these have strong links with the contrast functions of Eguchi (1983,
1984). Marriott (1989) defined and introduced a new differential geometric con-
struction called a preferred point geometry. This has been further developed in
Critchley, Marriott and Salmon (1993), where it is shown how preferred point
geometry relates to Amari’s expected a-geometries. As Amari, Kurata and Na-
gaoka (1990) affirm, the projection theorem and the generalised Pythagorean
theorem are the highlights of the theory of dually flat manifolds, such as the
expected a-geometries.

In this paper we show how preferred point geometry gives rise to an asym-
metric geometric structure which is particularly relevant to statistics. In par-
ticular, we develop both key theorems of Amari mentioned above. The added
structure of a preferred point geometry gives a clearer picture of the paral-
lel between metric-based geometric distances, such as proposed by Rao, and
statistically based divergence functions. Further, a number of model selection
procedures such as Akaike’s information criterion [Akaike (1973)] are based on
the Kullback—Leibler notion of distance and hence our development clarifies,
to some extent, how the use of these discrimination measures may be related
to formal statistical hypothesis tests and decision theory.

In Section 2 we introduce the necessary geometric and statistical back-
ground, including a statement (Theorem 1) of the two key results which we
develop. In Section 3 we introduce a new (preferred point) geometric structure
and prove (Theorem 2) a general equivalence theorem between divergences and
preferred point geodesic distances. For the rest of the paper we concentrate
on the widely used Kullback-Leibler divergence and a particular, statistically
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natural, preferred point geometry. Theorem 3 characterises a strong flatness
condition under which the two measures are compatible, thereby yielding a
stronger form of Amari’s projection theorem. Theorem 4 gives a partial classifi-
cation of the parametric families which fulfil this condition. Section 4 uses the
preferred point geometry to generalise the Pythagorean result of Theorem 1(ii).
It would be of interest to perform a similar study of other divergences [see, e.g.,
Rao (1987)].

2. Geodesics and divergences. Throughout {p(x,8)} will denote a p-
dimensional parametric family (or manifold) of probability density functions
obeying the regularity conditions of Amari [(1990), page 16]. Further, we will
denote the coordinate system by 6 = (61, ..., 6°).

2.1. Riemannian geometry.

DEFINITION. A Riemannian manifold (M,g(0))is a manifold M and a metric
tensor g(6). See Amari [(1990), page 26].

ExAMPLE 1 [Rao(1945)]. LetM = {p(x, )} be a parametric family of density
functions and g(6) the Fisher information matrix, that is,
K
067
Then (M, g()) is Riemannian manifold [see Amari (1990), page 27].

(g(9)) ij =g,-j(0) = Ep(x, 9) [6_3—’ lnp(x, 0) lnp(x, 9)] .

In a Riemannian manifold we define a path « to be a smooth map,
~¥@): [a,bl CR > M,
t— (Y@),...,7P®),

and its length from ¢ = a to b by

b
L(a,b) = / \lZgij('y(t))dit'yi(t)ad;'yf(t)dt.
a l,j

This length will be invariant to a change of parametrisation on M due to the
tensorial nature of the metric.

DEFINITION. A geodesic between two points in a Riemannian manifold is
defined to be a curve joining them of minimum pathlength, and this length is
called the geodesic distance between them.

In this paper we work purely locally, which removes any complications for
this simple definition. For a detailed discussion on the general existence and
uniqueness problem, see Postnikov [(1967), page 95]. Assuming (as we always
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shall) the existence and uniqueness of the geodesic, then the geodesic distance
obeys conditions 1, 2 and 3 above.

It will become important to know when a Riemannian manifold has no
curvature.

DEFINITION. A Riemannian manifold (M, g(9)) is defined to have zero curva-
ture or to be flat if there exists a coordinate system 6 in which g(§) is independent
of 6, that is, a constant G, say, [see Dodson and Poston (1977), page 418]. These
coordinates are then called affine.

Under these circumstances the geodesic from 6; to 6; is given by ~(¢) =
(1 — )6; + t6, and the squared geodesic distance by (8; — 6,)G(6; — 65), an
exact quadratic function of (§; — 6;). For details see Dodson and Poston [(1977),
page 374].

2.2. Divergence functions. We make the following definition.

DEFINITION. A divergence function d(61, ;) is a smooth function on pairs of
points in a parametric family M = { p(x, 6)} for which the following hold:

(i) d(64,0s) > 0, with equality when and only when 6; = Ba; .
(ii) 0;d(61,62)le, =0, = 0;d(81,02)l6, =0, = 0, Where 9, = 3/06;; and 8/ = 5/965;
(iii) 6;0;d(61,02)l6,=6, = &ij(61), the Fisher information matrix.

This definition is closely related to that of a yoke [see Barndorff-Nielsen
(1989)], except we insist that the Hessian of the divergence is the Fisher infor-
mation, while the more general yoke allows any nonsingular Hessian.

Some well-known examples of divergence functions include the Kullback—
Leibler, the Hellinger and the Renyi a-information [see Amari (1990), page 88].
In particular we denote the Kullback—Leibler divergence by dj;(61, 6).

2.3. Amari’s geometry. Amari’s geometric structure can be seen as a de-
velopment of Rao’s Riemannian geometry in Example 1. Amari’s geometric
structure on M = {p(x,0)} is formally defined by a pair of tensors, g;;(9) and
T;x(6), where g is the Fisher information and T is defined by

2 0

0
Tij1(0) = Epy, 0) [ﬁ In p(x,0) 507 In p(x, 6’)5@; In p(x, 0)] .

The new geometric concept used in Amari’s geometry is that of a connection.
For a good basic introduction to the concept of a connection and the related
Christoffel symbols, see Dodson and Poston [(1977), Chapter 8]. In fact Amari
uses a whole family of connections parametrised by the real number o. Each
one is then called an a-connection.
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DEFINITION. The a-connections for Amari’s geometry are defined by their
Christoffel symbols

(0%

T2y =T — ETijk,
where I'),, is derived from the metric tensor g;; by

r

o _1[08jr Ogir _ 08
k= 2| 060 T 00/ 6% |’

the Christoffel symbol for the Levi—Civita or metric connection.

Similarly to the Riemannian case, each a-connection defines a set of
geodesics. In general, a geodesic is a solution of a set of differential equations de-
termined by a connection [see Dodson and Poston (1977), page 347]. Intuitively
geodesics are the “straight lines” of the geometry. The Reimannian geodesics
are produced in this way from the 0-connection. However, only the geodesics of
the 0-connection have the property of length minimisation. The other connec-
tions do not have an associated notion of geodesic distance as they can, indeed,
be defined independently of the metric.

For each a-connection there is a definition of (local) flatness which generalises
the Riemannian one.

DEFINITION. The manifold M is a-flat if there exists a coordinate system
# such that, for all §; and 6,, the a-geodesic joining them is of the form ~(¢) =
(1- t)01 + t6,.

As an example Amari proves that any full exponential family is both +1-flat
and, as he shows, consequently —1-flat.

2.4. Geodesics and divergence functions. Using this more general definition
of geodesic, Amari was able to derive a relationship between the Kullback-—
Leibler divergence and the —1-geodesic in the full exponential family case. In
fact his result was more general relating o-divergences to a-geodesics for an
a-family; however, for brevity and simplicity we concentrate on the o = —1 case.

THEOREM 1.

(1) [Amari (1990), page 90]. If M is a full exponential family and N a sub-
manifold of M, then, for any point 6 in M, the point ' in N which minimises
dp(0,8") is joined to 0 via a —1-geodesic which cuts N orthogonally in the Fisher
metric at ¢'.

(i) [Amari (1990), page 86]. Consider three points, 61,0, and 63 in a full
exponential family. Let ¢ be the —1-geodesic connecting 6, and 63 and ¢’ the +1-
geodesic joining 05 and 03. If the angle between ¢ and ¢’ at 05 is 7 /2, measured
in the Fisher metric, then

dpi(01,603) = dpi(01,62) + dpi(62, 63).
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There is a strong analogy between the first part of this theorem and the result
in Riemannian geometry which states that the point on a submanifold of (M, g)
which is closest to a fixed point in M is found by dropping a geodesic which cuts
the submanifold orthogonally [see Postnikov (1967), page 108], while the second
part is of course a direct generalisation of Pythagoras’ theorem. Thus there is
a parallel between squared geodesic distances and divergences. However, it is
important to notice that since the a-geodesics are nonmetric, whenever a#0,
there is no concept of a-geodesic distance involved in the above results. Thus
there is no connection between the divergence function and a squared geodesic
distance. To get this we must use preferred point geometry, as we demonstrate.

3. Preferred point geometry. In thissection we investigate the relation-
ship between divergence functions and geodesics using preferred point geome-
try. We first look at the general question of symmetry for distance functions, and
then, concentrating on the Kullback-Leibler divergence, extend Theorem 1(i).

DEFINITION. Let M be a finite-dimensional manifold with a parametrisation
6. A preferred point tensor T*(6) is a smooth function of (¢, ) € M x M such
that, for each given ¢, T%(9) is a tensor on M. We call ¢ the preferred point.

Preferred point tensors are particularly suited to the analysis of parametric
families of distributions where the preferred point ¢ could be the true, or the
hypothesised, distribution. This can be considered fixed, whereas 6 denotes
a general member of the family. The geometry of this family, defined by the
tensor structure, will then be conditional on which distribution is chosen as the
preferred one.

DEFINITION. Let M be a manifold with a parametrisation 6. A preferred
point tensor gf.(e) is a preferred point metric if, for each ¢ and all § in an open
neighbourhood of ¢, gf’j(e) is metric tensor as a function of 6.

If the preferred point ¢ is fixed, (M, g¢(9)) is (locally to ¢) a Riemannian
manifold. We can therefore define the preferred point distance between ¢ and 6
to be the geodesic distance between them for the g# metric. As before this will
be well defined for all points # in an open neighbourhood of ¢. We denote the
squared preferred point distance from ¢ to 6 in the g¢#-metric by D( ¢, 6).

Squared preferred point distances share the same basic characteristics as
divergence functions. They do not have to be symmetric. [Consider D( ¢, §) and
D(6, ¢). The first is the squared geodesic distance from ¢ to 8 as defined by the
metric g%, whereas the second is defined in the g% geometry. In general geodesic
paths and pathlengths will be different due to the different metrics.] Further,
the triangle inequality does not have to hold for preferred point distances. Also
they obey conditions (i) and (ii) of the definition in Section 2.2 and they can
be shown to be yokes. In fact we now show that any divergence function can
be interpreted locally as a squared preferred point geodesic distance. This is
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not, however, a one-to-one correspondence since there are a great number of
compatible preferred point metrics for each divergence function.

THEOREM 2. Let M be a p-dimensional manifold with a parametrisation 6.
Let d(, ) be a divergence function. There exists a preferred point metric g*(6) such
that if D(¢, 0) is the squared g¢-geodesic distance from ¢ to 6, then D(¢, 8) = d(¢, 6)
for all 0 in some open neighbourhood of ¢.

The proof is given in the Appendix.

This existence result holds for any divergence function. However, for the
rest of this paper we concentrate on the relationship between the widely used
Kullback—Leibler divergence and a particular set of preferred point tensors
which have a direct statistical interpretation.

There is a basic property of the Kullback—Leibler divergence which is not re-
flected in the axioms of Section 2. These define the properties of a divergence on
a (finite-dimensional) parametric family, but the Kullback-Leibler divergence
is in fact well defined on a much larger family.

DEFINITION. LetS = {p(x)} be the set of all mutually absolutely continuous
regular density functions on a sample space X with respect to a dominating
measure P.

On S it is well known [see Loh (1983) or Kullback (1968)] that the
Kullback—Leibler divergence is well defined, nonnegative and, for all p,q € S,

du(p,q)=0 iffp=qa.e.

We now compare the Kullback—Leibler divergence with a preferred point
geometry. Consider the triple (M, u%(6), g%()), where u? and g* are a preferred
point 1-tensor and metric, respectively, given by

0
1l (0) = Epr, ) [ﬁ Inp(x, 9)] )

9

' 007

0
gz(@) = COVp(x, ®) [%{ lnp(x, 0)

In p(x, 0)] .

In Critchley, Marriott and Salmon (1993) these tensors are shown to relate
closely to Amari’s geometric structure. Statistically they are nothing more than
the mean and the covariance of the score at 6 taking expectations with respect
to p(x, @).

The parametric family M is embedded in the infinite-dimensional space S.
This simple observation highlights a clear distinction between the Kullback—
Leibler divergence and the geodesic distance induced by the preferred point
metric g¢ defined above. The geodesic distance between two densities is a func-
tion of the particular, finite-dimensional, family in which they are considered
to lie. However, the Kullback—Leibler divergence is purely a function of the two
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A
M2

geodesic in M

geodesicin N

6=0 1]1

Fic. 1.

densities and is independent of the choice of family. This distinction is demon-
strated in the following example.

ExAaMPLE2. Consider the curved parametric family defined by Efron (1975).
Let M be the two-dimensional parametric family of bivariate normal distribu-
tions with covariance matrix I, the identity, and parametrised by their mean
values (11, 12). Let N be the one-dimensional subfamily parametrised by 6 such
that the mean vector of a point of N is given by (6, (y0/2)8?). See Figure 1. Let
the point 6 = 0 be the preferred point. In M the preferred point metric g and
the Fisher information are easily shown to be I. Both metrics are a constant in
the parametrisation (1;,73). The geodesic in M between 6 = 0 and 1 is a straight
line. On the other hand the geodesic in N between the same two points is the
relevant chord of the curve N itself. The geodesic distance in N reduces to the
relevant arc length of N inside M. This is clearly a different distance. In con-
trast the Kullback-Leibler divergence between the two points is independent
of the manifold in which they are considered to lie. In fact an easy calculation
shows that it agrees with half the squared geodesic distance as measured in M.
This result will be generalised in Theorem 3.

For this example there is the intuitive remark that the distance measured in
M will equal that measured in N if and only if N is straight (has no embedding
curvature) in M.

Consider now a general parametric family M embedded in the function space
8. Due to its dependence on the choice of manifold it is clear that in general the
g%-geodesic distance will not equal the Kullback-Leibler divergence on M. It is
the aim of this section to produce a flatness condition analogous to that in the
example above under which the two measures will agree.
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Consider Theorem 1(i) in the light of this intuition. In S we have the concept
of minimising the Kullback-Leibler divergence, while in M we have that of
projecting along geodesics. We can now interpret Theorem 1(i) as stating that
the two concepts coincide because of a particular flatness (or zero curvature)
property of the full exponential family.

In Critchley, Marriott and Salmon (1993) it is shown that for a full expo-
nential family the preferred point g?-geodesics are the same as Amari’s +1-
geodesics. We describe a strong flatness condition, related to +1-flatness, under
which the Kullback—Leibler divergence will equal half the squared preferred
point geodesic distance. This exactly mirrors the intuitive observation for our
finite-dimensional Euclidean example. Further, minimising geodesic distances
is well known to be equivalent to geodesic projection [see Postnikov (1967)].
Hence the strengthened flatness condition produces a strengthened version of
Amari’s projection theorem.

Recall that a Riemannian manifold (M, g) is called flat if there exists a coor-
dinate system 6 such that the metric g(9) is constant for all 6. We now generalise
this condition for the preferred point geometry (M, u#(6),g%(9)).

DEFINITION. For each ¢, the preferred point geometry (M, u%(6),g%(9)) is
g®-flat if there exists a coordinate system for which g?(6) is constant for all 6.
The #-coordinates are called g¢-affine. Further, M is totally flat if there exists
a coordinate system 6 for which g¢(9) is a constant and also u?(9) is a linear
function of § — ¢.

ExAMPLE 3. Consider the family of p-variate nonsingular normal distribu-
tions with constant covariance matrix ¥ which are parametrised by their mean
values = (..., nP). Apart from a constant, the log-likelihood is given by

3 — S Nax — 7).
Simple calculations then show
pm)= -2 n—¢) and g¥(n=x"".
Thus the space is totally flat.

This flatness condition gives a simple correspondence between the Kullback—
Leibler divergence and the g#-geodesic distance.

THEOREM 3. Let the preferred point geometry (M, u®(9), g%(9)) be g?-flat,
and let the 0-coordinates be g*-affine. Then the following three statements are
equivalent:

(1) The manifold M is totally flat (locally to ¢).
(ii) The Kullback-Leibler divergence dy(¢,0) (locally to ¢) equals half the
squared g®-geodesic distance.
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(iii) The Kullback-Leibler divergence is (locally to ¢) an exact quadratic func-
tion of the -coordinates given by

diu(e,0) = 3(6 — $)g( )6 — ),

where g is the Fisher information metric.

The proof is given in the Appendix.

It is natural to ask if a more direct characterisation of total flatness can be
found. Below we give a solution to this problem for full exponential families.

Let P, be a p-dimensional full exponential family with canonical parameter
# and with representation

dPs ) _ Bxexp| 3 (#42) — (6)
—p (®) = B(x)exp Z( i(x)) — (@),

i=1

relative to some dominating measure P.

THEOREM 4. Consider the above full exponential family Pg. The following
three statements are equivalent:

(i) The family Py is totally flat.
(ii) The covariance of the canonical statistic t(x) does not depend on the
canonical parameter 6.
(iii) The log-likelihood is a quadratic function of the canonical parameter.

The proof is given in the Appendix.

This last characterisation is of particular interest. Taking P to be Lebesgue
measure \(x), then the totally flat exponential families are those whose canon-
ical statistic has a normal distribution N,(Af + b, A) for some A and b inde-
pendent of the canonical parameter 6. Further denoting the density of #(x) by
p(t), then the totally flat full exponential families themselves have densities

B(x)p(x)),

where B(x) has the same support as B(x). In the particular case B(x)=1and
t(x) = x we recover Example 3, the p-variate nonsingular normals with constant
covariance matrix parametrised by their mean values.

An important corollary is that when a manifold is not totally flat minimising
the Kullback-Leibler divergence will not in general be equivalent to minimising
the g?- (or, equivalently, the Fisher-) geodesic distance. The choice between
these measures will then matter. Clearly the former enjoys certain robustness
properties being independent of the parametric family considered, while the
latter might be expected to be more efficient when the data generation process
lies in the manifold.
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4. The preferred point Pythagoras theorem. We turn now to the gen-
eralised version of Pythagoras’ theorem, Theorem 1(ii), proved in Amari (1990)
and Cencov (1972) for full exponential families.

We have already calculated the preferred point structure for such a family.
For any full exponential family, p(x, 6) = exp[X?_,6°¢;(x) — ¢(0)] in +1-affine, or
canonical, coordinates 6,

0%y
06'96/

where g is the Fisher metric. Thus g#(6) is independent of §. Hence the +1-affine
coordinates are also g?-affine. Further,

g0 = 2 -(d) = £i(#),

2 M o ; ;
2(0) = 89‘(¢) 560 7 (0) =n'(¢) — ' (),
where 7 are the —1-affine, or expected, coordinates. Thus there is clearly a
strong relationship with the +1-dual structure of Amari.

We have defined preferred point distances to be measured from the preferred
point; however, the Pythagorean result involves the distances dp;(61, 62), dy; (81,
03) and dy;(63,03). Thus two different preferred points are used. Hence, to un-
derstand the preferred point geometry of such a triple, it is necessary to see
how the preferred point tensors vary with alternative preferred points. For the
case u® we consider the tensor

A(9) = AL 8(6) = () — u*(9).

Before we can use this tensor we need the following definition.

DEFINITION. If A is defined as above we define a null path, v:[0,1] — M, of
A to be such that

ZA‘ dt

By standard results on the existence and uniqueness of solutions to differential
equations a null path will pass through 6 if A(9) is a smooth nonsingular tensor
field in a neighbourhood of 4.

Using the concept of a null path we can define a Pythagorean result for our
preferred point geometry.

THEOREM 5. Let 61,65 and 63 be three points in a finite-dimensional paramet-
ric family M. If A1 9 is nonsingular at 0,, there is a Pythagorean relationship
for the Kullback—-Leibler divergence:

dri(01,02) + dpy(62, 03) = dpi(61, 63),
if 63 lies on a null path of A®%) through 6,.
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The proofiis given in the Appendix.
For the full exponential family,

A1 02)(g) = 1(61) — 1(6s),

which is a constant, independent of § and a linear function of the —1-affine
coordinates of 6; and 6. Then for a full exponential family the null paths can
be easily calculated.

LEMMA 1. A null path of A®1:%) through 0, is a +1-geodesic through 6, which
is Fisher orthogonal to the —1-geodesic joining 6, and 0.

Combining Theorem 5 and Lemma 1 we get the following corollary, which is
equivalent to Theorem 1(ii).

COROLLARY. In the case of the full exponential family,
dri(01,02) + dpy(02,03) = dpi(61, 63),

if 03 lies on a +1-geodesic through 6y which is Fisher orthogonal to the —1-
geodesic joining 61 and 0,.

APPENDIX

PROOF OF THEOREM 2. Let us fix ¢ and treat the divergence function as a
function of 6. By the positivity of the Hessian of the divergence function at ¢ we
can apply Morse’s lemma [see Poston and Stewart (1976), page 15]. We choose
coordinates ¥(9) = (¥1(8), .. .,¥P(9)) such that, locally,

d(¢,6) =3 &/ (S (O (0),
i, J
where g;(¢) is the Fisher information at ¢.
Thus we can use this coordinate change to define a map from © to R? by

U: 0 — (0).

Let us put the constant metric %g(q&) = @G, say (remember ¢ is fixed), on R” in its
standard coordinates. We now define a metric on M by pulling back this metric
on R” via the map ¥; that is to say we define g¢ by

g*(v1,v9) =Y glviv] =" Gi(T v} (T*v,Y,
iJ iLhJ

where U*(6): TMy — RP? is the lift by ¥ to the relevant tangent spaces. By
construction, the squared geodesic distance in (M,g?) from ¢ to  will equal
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that in (R?, Q) from 0 to (6). Since R? has a constant metric this squared
distance will be

Y GO o),
iJ
which equals the divergence. O

PRrROOF OF THEOREM 3. First we see that:

statement (i) <  p®(9)is linear in (6 — ¢)
%dkl((b, ) is linear in (6§ — ¢)
dii(¢,0) is quadratic in (6 — ¢)

(0 =3 %A,- 40— Y6 - Y + 3 Bio - ¢¥ +C
ij i

r ¢

where A, B and C are independent of 6.

From axioms (i)—(iii) of a divergence we have A = g and B = C = 0. Hence in
the theorem we have statement (i) & statement (iii).

Since M is g?-flat, and using the result on Riemannian distances in Section
2.1, we immediately have statement (ii) < statement (iii) in the theorem. O

PROOF OF THEOREM 4. From Theorem 3 we have that statement (i) =
uf’(e) =3, — &i/(¢)(6 — ¢)/. Thus for any totally flat family we have

u?
ggg-(e) = —gi(9),

where g( ¢) is the Fisher information at ¢.
In the full exponential family example a direct calculation shows that

0867

However, for such a family g;;(6) = —[6%/86°0671(9). Thus for all § we have

__
0) = —W(G)'

oy
~ 5079610 =~ gia67 ?"

Thus the second derivative of 1, which equals the covariance of the sufficient
statistic for a full exponential family, is a constant. Thus in the theorem we
have statement (i) => statement (ii).
To complete the proof, it immediately follows that if
0%

- W(G) = A;; = a constant,
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then the log-likelihood is
Dot + 1> A067+ B+ C,
i i,Jj i

where A, B and C are independent of §. This directly implies that ¢ will then
be linear. Thus statement (ii) = statement (iii) = statement (i). O

PROOF OF THEOREM 5. If 03 equals 6,, then we clearly have the result. In
general, write the above equation in the form

dpi(01,02) = dpi(61,03) — dpi(62,03).

The left-hand side of this equation is constant with respect to 3. If 3 moves
along a path ~(¢), then the rate of change of the right-hand side with respect to
tis

dy' 0
dt 80‘

Z A(91, 62)

Thus since the required equation holds at 83 = 6, it will hold as 63 moves along
the null path of A®1:6), O

d
—= (dri(61,03) — dpi(62,63)) = Z (dri(61,63) — du(62, 63))

dt

ProoF OoF LEMMA 1. Now A is constant in #-coordinates. Hence the null
line is a ¢-affine line or a +1-geodesic through 6. Its direction is defined by its
tangent vector at 65, which satisfies

D
[6)) ZA a =0.

~.
[ury

The tangent to the —1-geodesic joining §; and 6, is most easily calculated by
using the change of basis matrix, which is the inverse Fisher information g*/(6,)
[see Amari (1990), page 80], on the tangent vector in n-coordinates. This will
be n(63) — n(61). Thus in §-coordinates it will have the tangent vector

= Zg” n(62) —1(61)); Zg”A

Combining with (1) shows that the tangent vector of the null line is Fisher
orthogonal to the —1-geodesic at ;. O
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