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A ROBUST SURVEILLANCE SCHEME FOR
STOCHASTICALLY ORDERED ALTERNATIVES
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Hebrew University of Jerusalem

We sequentially observe independent observations X, X,,... such
that initially they have distribution G,; at some unknown time v they
become stochastically larger, having distribution G,. Neither G, nor G, is
fully specified. We wish to detect that a change has taken place as soon as
possible after its occurrence, subject to a constraint on the rate of false
alarms. We derive a family of nonparametric sequential procedures based
on ranks, with noncontiguous alternatives in mind. Large-sample approxi-
mations to the operating characteristics are obtained analytically.

The proposed procedures all possess robustness of validity, because
they are based on ranks. Near-optimal sensitivity can be obtained for
specific alternatives by choosing an appropriate procedure. For example,
when observations are normally distributed with one standard deviation
shift in mean postchange, an appropriate nonparametric surveillance
scheme yields 97% asymptotic relative efficiency, as compared to the
optimal procedure when all distributional parameters are known.

Our procedures are computationally feasible. Monte Carlo experiments
confirm the applicability of the asymptotic calculations, including high
levels of efficiency, for sample sizes met in practice.

1. Introduction and summary. We consider observations X, X,,...
taken sequentially. Under the measure P, the observations are i.i.d. with
continuous distribution G,. Under the measure P{, the prechange observa-
tions X,..., X, , are ii.d. with distribution G, which are independent of
the postchange observations X,,...; the latter are ii.d. with continuous
distribution G,.

The change-point problem (in the Russian literature, the problem of dis-
ruption) is to determine a sequential detection scheme which, on the basis of
the first n observations, will raise an alarm when it is plausible that the last
few observations have the postchange distribution G,. The cusum procedures
introduced by Page (1954) are known to be optimal in a very strong sense
when the prechange and postchange distributions are completely specified,
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and are indeed the distributions from which prechange and postchange
observations are drawn.

In this paper, we study the detection problem when the prechange distri-
bution is not completely known. One reason such a problem is of substantial
theoretical and practical import is shown in Table 1, in which we give
Siegmund’s [(1985), Theorem (10.17) and page 225] approximation to the
average run length (ARL) to false alarm of a cusum procedure appropriate for
detecting a shift from .#(0, 1) to .#(1, 1), when the prechange distribution is
actually 210, 02?). [We denote the normal distribution with mean u and
variance o2 by .#(u, 02).] To facilitate comparison with published simula-
tions, the cusum we select has nominal ARL to false alarm equal to 792. The
procedure is extremely sensitive to misspecification of the prechange stan-
dard deviation, which causes a substantial nonrobustness of validity. The
derivative (d/d o) of the ratio of actual ARL to false alarm as a fraction of
nominal ARL to false alarm is about — 10 when o = 1; a 5% underspecifica-
tion in prechange standard deviation results in a procedure having actual
ARL to false alarm 30% less than nominal. Van Dobben de Bruyn [(1968),
Section 2.4] remarks on the nonrobustness of two-sided cusum procedures to
small misspecifications of variance.

An extensive study of robustness appears in Lucas and Crosier (1982).
They present approximations to ARL to false alarm and expected lag to
detection for a number of robust alternatives to the standard cusum process,
with emphasis on contamination models for normal shift alternatives. Their
computational method is to approximate the random process of cusums as a
finite-state Markov chain with one or two absorbing states. Results again
show a substantial nonrobustness of validity (i.e., a decrease in ARL to false
alarm) when the parametric cusum tuned to detect a shift from .#10, 1) to
M1, 1) is truly confronted with i.i.d. observations from a contaminated normal
distribution having greater variability.

To remedy this nonrobustness, we look for a family of nonparametric
procedures with the hope that some member of the family might have
acceptably high postchange sensitivity. Work of Pollak and Siegmund (1975)
suggests that average lag to detection is relatively insensitive to misspeci-
fication of postchange distribution, depending mainly on the postchange ex-
pectation of the log-likelihood. Inspired by the robustness of the Wilcoxon
statistic, we consider procedures based on ranks. Because the procedures are
based on ranks, they all possess robustness of validity. Because our problem
is sequential, we use the sequential ranks (formally defined in the next

TABLE 1
ARL to false alarm for a cusum M0, 1) versus #(1, 1) with nominal ARL to false alarm
792 when the prechange distribution is really /0, o 2)

True o 098 099 100 101 102 1.03 1.04 1.05 1.10

E.{Npeum)}/790 120 109 100 092 084 077 071 066 046
E. ANoueum) 951 865 790 723 663 610 563 521 364
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section, where we present our main results). Our statistic (a sum of likelihood
ratios computed under various hypotheses of time of change) and stopping
rule (the first level crossing of the statistic) follow the original treatments of
Shiryayev (1963) and Roberts (1966). Our work is couched in a frequentist
context and does not use a prior distribution for the time of change.

2. Main results. In this section we first give the likelihood ratio upon
which we base the Shiryayev-Roberts detection procedure. Next we present
the major theorems which yield asymptotic approximations for the procedure’s
operating characteristics. Proofs are deferred until the end of the paper.

It is natural from invariance considerations to choose the first n of the
sequential ranks p, = X7_, [, x,< x,) s the basis for a detection procedure for
n =1,2,... . The vector of the first n sequential ranks is denoted p,.

It is sometlmes more convenient to describe our results in terms of
the ranked observations relative to data seen by time n, denoted p(i,n) =
Lj.1lix < x) Note that p, = p(n,n). We define the o-fields based on the
ranks of the first 7 observations to be G, =olp,) =oalpli, )l <i <j<n}
where the equality of the two o-fields follows by induction on n. Because we
work with continuous distributions, we may take p(1, n), ..., p(n, n) to deter-
mine a permutation on the first n integers. Its inverse permutation has
elements 7(1,n),...,7(n, n), so that 7(p(j,n),n) =j. In a slight abuse of
notation, we will refer to both nonrandom and random permutations by the
same notation; the context will make the distinction clear.

Our procedure is based on nonparametric likelihood ratios for sequen-
tial ranks generated by distinguished prechange and postchange distribu-
tions F, and F,. We study the operating characteristics of the procedure
when the actual prechange and postchange distributions are G, and G,. Note
that the invariance of the ranks under strictly increasing transformations
causes the ARL to false alarm to be identical for any continuous G,,.

Let fy(x) denote the density exp(—|x))/2. Let f,(x) denote the density
paexp(—ax)l, . + qBexp(Bx)I, ., where p = 1 — g. The distributions
F, and F, correspond to f, and f;. We choose positive parameters p €
[1/2,1), @ <1 and B = 1. Under the measure PF, the observations are i.i.d.
with density f,. Under the measure P}, the prechange observations X, ...,
X, _, are iid. with density f, independent of the postchange observations
X,,..., which are ii.d. with density f;. (We exclude from consideration the
special case p=1/2 and a = 8 =1 in which prechange and postchange
distributions are identical.) '

We use ES, [Eg and so on for expectations computed with respect to the
correspondingly indexed measures. When it is convenient and unambiguous,
we sometimes write P, and E, for P¢ and E¢. The validity of our procedures
turns on the observation that PF(A) = PS(A) for all A €.7,.

The choice of representative distribution f; as the postchange distribution
is important. We argue in Section 3 that appropriate choices of tuning
parameters «, B8 and p lead to appealing alternatives to parametric proce-
dures.
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Of fundamental importance is the following explicit computation of a
likelihood ratio based on ranks. The theorem generalizes an identity of
Savage (1956). This identity was used as the basis for a nonparametric
sequential test of hypothesis by Savage and Sethuraman (1966).

THEOREM 1. Let prechange and postchange densities be hypothesized to
be f, and f, as defined above. Given the permutation p(j,n) with inverse
permutation 1(j, n), the corresponding likelihood ratio function is

(o) = PHX, 0w < <Xww) ~ i X (o)
k - - k, ’
" PxF{Xf<1,n)< <Xr<n,n)} moo "

where, for 1 <k <n, we define Uy(m,n) =L} 1 ;i 1> m let Vi,(m,n) =
(n +1— k) — U,(m, n) and write
1\" pa U,(m,n)
n —|n - s 9 n+1l-k
e = (2)(3) (55) @am)
m V,(i,n) -
M <1 (1+ 222 6 - )
i-
n U,(i —1,n) !
X 1+ ————(a-—-1 .
,.J,,]“( niioi ))
Our procedure is to compute the Shiryayev—Roberts statistic R, = X;_ A}

and to stop at that time N, when R, first achieves or exceeds the critical
level A. Because R, — n is a zero expectation P, -martingale, we can always
bound the ARL to false alarm by A < E_{N,}. In fact, the ARL to false alarm
grows asymptotically linearly in A as the critical level becomes large. The
following theorem identifies the constant of proportionality.

THEOREM 2. Let p €(1/2,1), a €(0,1) and B €[1,©) with pa>qpP
determine the non parametric stopping rule N, = inf{n|L?_, A}, > A}, which is
based on the likelihood ratio of ranks determined by f, and f, and is used
to detect a change from G, to G,. The ARL to false alarm has limit
lim, _,, ES(N,/A} = A(fy, 1), where A(fy, f1) has the same value as the limit
computed in Gordon and Pollak (1994a). Specifically, if 2pa <1, then

Alfo, 1) =1/a.

That E.{N,}/A is finite and has a limit expressible in renewal-theoretic
terms is a consequence of the general theorem proved in Gordon and Pollak
(1994b). We verify its hypotheses and so prove Theorem 2 in Section 4.4.

The expected lag to (true) detection is the subject of Theorem 3, proved in
Section 4.5. We say the distribution G, is stochastically greater than G, and
write G; >,, G, when 1 — G,(¢) > 1 — G(¢) for all ¢.
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THEOREM 3. Assumep € (1/2,1), a € (0,1) and B € [1,®) with pa > qB.
Define

Fi'(Go(X,
ot~ o LG

Let B, denote the set (log(6¢), —4¢) U (4e, —log(6¢)). Let v(A) and £(A) be
functions such that, as A — =, the following hold:

(a) (log A) Pl{F(;l(GO(Xl)) & Be(A)} - 0;
(b) (log A)s(A)log(e(A)) — 0;
v(A)e*(4A)
(c) —_—— 5 ®
log A
If ©» > D(G,,Gy; fo, 1) > 0 and G, >, G,, then
. [EE{NA - VlNA Z V} 1
limsup sup <

A->o  p>p(A) log A ~ D(Gy,Gy; fo, 1) '

We believe the new mixing technique used to prove Theorem 3 (see
Lemmas 12 and 14) is of technical interest. A common difficulty in proving
results like Theorem 3 stems from the need to analyze conditional expecta-
tions in which the conditioning event can have vanishingly small probability.
Hence it is not enough to prove convergence in distribution; one must also
have some form of uniform integrability. By suitably randomizing the change-
point with a binomial prior and by making use of the hypothesized stochastic
ordering, we are able to bound certain F%-expectations by [E,-expectations,
thereby controlling a number of vexing remainder terms. We believe the
technique will be useful in other similar situations.

We have only proved an asymptotic upper bound on the average lag to
detection. We conjecture that the upper bound is in fact a limit, but have only
been able to verify the conjecture in special cases. We discuss the technical
difficulties in proving equality at the end of Section 4.5.

Theorem 3 may be specialized to the case typically analyzed in the
literature: the problem of detecting a shift in normal mean among observa-
tions with constant variance.

COROLLARY 4. Assume p € (1/2,1), @ €(0,1) and B € [1,%) with pa >
g B. Let the prechange distribution G, be standard normal, and let the
postchange distribution G, be #/ wu,1) with p > 0. For any ¢ > 0,

y ES{N, — vIN, > v} 1

imsup sup < ’
A-®  y>loglti A log A D(G07G1;f0;f1)
whenever © > D(G,, Gy; fo, f1) > 0.

Numerical integration yields D(#10,1),/11, 1), f,, f;) = 0.4854 for the pro-
cedure with a = 0.53, B = 1.7 and p = 0.8413. The corresponding quantity
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for the parametric cusum statistic (the postchange expected value of the
log-likelihood ratio) is 0.5. The ratio 0.4854 /0.5 = 97% provides a measure of
the relative speed with which the nonparametric and parametric procedures
detect a change, and it is the basis of our claim of high asymptotic relative
efficiency for our nonparametric Shiryayev—Roberts procedure.

Much stronger conclusions can be had with stronger hypotheses. Lorden
(1971) shows that if G, and G, are completely known and if the correspond-
ing cusum detection scheme is chosen, then the conditional expectation of the
ARL to detection given the entire past history before the change is asympto-
tically best possible. Moustakides (1986) and Ritov (1990) strengthen this
characterization of cusum procedures as minimax.

Under less stringent criteria (conditioning only on the event of no false
alarm and not on the entire prechange history), Pollak (1985) shows that
Shiryayev—-Roberts procedures possess asymptotic minimax properties. Yakir
(1994) shows that Shiryayev—-Roberts rules are minimax in a plausible
decision-theoretic setting. Our Theorem 3 is stronger in that we hypothesize
different prechange and postchange distributions from those used to generate
the procedure; it is similar to Pollak’s (1985) result in that we condition only
on the event of no false alarm and not on the entire history before the
change-point.

Pollak and Siegmund (1991) consider the problem of Corollary 4 in which
one wishes to detect a change from #( u, 1) prechange to #( u + §,1) post-
change when the initial mean wu is unknown. They analyze the behavior of a
number of procedures, including the parametric version of the Shiryayev—
Roberts procedure for unknown initial mean. They obtain rates of growth
beyond the leading constant of proportionality.

There are two other approaches available to the problem we treat. McDon-
ald (1990) uses the prechange uniform distribution of the sequential ranks to
specify a cusum procedure for detection to a stochastically larger alternative;
ARL to false alarm for this procedure is obtained by numerical methods.
We compare expected lag to detection by Monte Carlo experimentation in
Section 3.

In contrast to our procedures, whose large-sample analysis is based on
renewal theory and large-deviation inequalities, alternative procedures can
be based on the theories of weak convergence and contiguity. An example of
such is Lombard (1983), where a stopping time (say, N*) is suggested. Weak
convergence there yields approximations to probabilities P{N* > (1 + §)v}
for various values of 6 > 0, valid as v — « and as the postchange measure G,
converges at a suitable rate to the prechange measure. For these procedures,
results giving approximate expected lag to detection like those of Lorden
(1971), Pollak and Siegmund (1991) and our Theorem 3 do not appear to be
available in the literature.

3. Implementation and simulation. In this section we present results
of several Monte Carlo experiments. All relate to the performance of our
nonparametric Shiryayev—Roberts procedures in the case of a positive jump
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in mean for normal distributions with the same variance prechange and
postchange. These suggest that the large-sample results given in the previous
section yield insight useful in predicting the behavior of our procedure in
situations of practical interest. We refer to the procedure as NPSRI, for
invariant nonparametric Shiryayev—Roberts procedure. All simulations were
done using the MATLAB programming language, version 3.5h, running on
Sun Sparcstation computers [see MathWorks (1989)].

In Table 2, we present simulation results related to our Theorem 2.
Specifically, we give a summary of 1000 realizations of ARL to false alarm
under the P.-measure in which a change never occurs. A detailed description
of the simulation procedures is deferred to the end of this section. Sample
means for ARL to false alarm are presented for various critical levels A using
NPSRI with parameters p = 0.8413, @ = 0.53 and B = 1.7. These values are
derived in Gordon and Pollak (1994a) as the optimal choices for detecting a
shift from .#10, 1) to #(1, 1) and are applicable here as well. Because 2pa < 1,
Theorem 2 yields A = 1/a = 1.89.

The simulation results yield ratios for F,{N,}/A that are consistently
lower than the limiting value 1.89; the observed values do appear, however,
to be increasing as the critical level A increases. For A < 500, use of the
limit A leads to setting a critical level 5-15% too low, yielding a procedure
which tends to give false alarms somewhat more often than desired. More
simulation work clearly needs to be done.

In Table 3, we compare the performance of NPSRI with that of McDonald’s
(1990) nonparametric cusum procedure, denoted NPCusum. The procedure is
also based on sequential ranks and so is invariant to strictly increasing
transformations of the data. We base our comparisons on his Table C. Both
NPSRI and NPCusum are tuned for detecting a shift from (u, o ?) to
Mu + o, 0?), a positive shift of one standard deviation from the unknown
baseline u.

NPCusum is tuned with parameters & = 0.6428 and 2 = 1.203, yielding a
procedure with ARL to false alarm approximately 500. Because of the results
presented in Table 2, we choose an NPSRI with A = 300, tuned with parame-
ters a = 0.53, B = 1.7 and p = 0.8413, to provide us with procedures having

TABLE 2
Average run length to false alarm for various critical levels A of the NPSRI
procedure with parameters a = 0.53, B = 1.7 and p = 0.8413 (sample mean plus or
minus standard error, 1000 simulations)

A 200 266 2795 300 400 419.8 425 450 475 500

Eo {N4} 3289 449.1 4625 5124 6879 7262 733.8 7919 8565 896.0

ts.e. 6.2 9.1 92 104 136 142 144 153 190 196
E, {N,}/A 164 169 168 171 172 173 173 176 180 179
ts.e. 0.03 003 003 003 003 0.03 003 003 004 0.04

Truncations at
N, > 3500 0 0 0 2 5 7 7 10 15 22
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TABLE 3
Expected lag to detection for various stopping rules and change-points by simulation
(sample mean plus or minus standard error); ARL to false alarm greater than or equal to 500

Actual distributions

prochange and EJAN - (v = DIN > v}

postchange Procedure v =21 51 101 201 501 E, (N}

Gy =Mpuoc?), NPCusum — — — — 34.0 530
G, =Mu+050,02) ts.e. 0.6 5
NPSRI4, 154.6 88.3 499 340 289 512

+s.e. 9.7 74 3.1 1.7 14 10

NPSRI,,,  329.3° 1657 874 479 349 896

ts.e. 21.0 14.0 6.9 2.6 1.3 20

Gy =Mu, a?), NPCusum — — — — 9.5 530
G, =Mup+o,0?) +s.e. 0.1 5
NPSRI,, 218 106 91 91 87 512

+s.e. 1.8 0.3 0.2 0.2 0.3 10

NPSIR, 36.1 12.6 10.5 10.5 9.9 896

ts.e. 3.7 0.3 0.2 0.2 0.2 20

Gy =M, o?), NPCusum — — — — 4.0 530
G, =Mp+20,0?) +s.e. 0.0 5
NPSRI,, 59 44 40 38 36 512

+s.e. 0.1 0.1 0.1 0.1 0.1 10

NPSRI,,, 7.0 50 45 41 39 896

ts.e. 0.1 0.1 0.1 0.1 0.1 20

“Average includes eight truncations at 3500, each imputed to contribute 4500 to average.
PAverage includes four truncations at 3500, each imputed to contribute 4500 to average.

comparable ARL to false alarm and comparable optimization for sensitivity to
prechange and postchange distributions. In light of the remarks following the
statement of Theorem 1, we could also conservatively specify A = 500, guar-
anteeing ARL to false alarm above 500.

Performance under three different circumstances is presented in Table 3.
The table’s upper third illustrates performance when a shift of half a stan-
dard deviation occurs at times 21, 51, 101, 201 and 501. Because the baseline
is unknown, there is no discrimination possible between P¢ and I]:Df . Included
are McDonald’s (1990) simulation results for ARL to false alarm and for
average lag to detection, available only for v = 501.

Following the NPCusum results are averages for the NPSRI with the two
critical levels A = 300 and A = 500. Each column summarizes the results of
applying NPSRI to 1000 sequences of observations with specified change-point
and postchange distribution. Included in each average are only those simula-
tions which did not signal a false alarm prior to the change-point, thus
yielding an estimate of the average lag to detection, conditional on a false
alarm’s not having been signaled. The same format is repeated in the middle
third of the table, in which the postchange distribution is shifted right by one
standard deviation, and the bottom third of the table, in which the postchange
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distribution is shifted right by two standard deviations. Each third of the
table represents simulation results independent of the other two thirds.
Simulations resulting in no signal after 3500 observations were truncated,
and an average run length of an additional 1000 observations was imputed.
(The correction ought to be conservative, if one believes approximate expo-
nentiality of the stopping times.)

When a long history of prechange observations has been built up, NPCusum
tends to have slightly higher expected lag to detection relative to NPSRI,,,
and slightly lower expected lag to detection relative to NPSRI;,. The advan-
tage of NPSRI;,, over NPSRI,, is apparent when a moderate-sized change
occurs early in the sequence of observations; the expected lag is greatly
reduced in the former case relative to the latter. The reduction in lag to
detection is striking, for example, when » = 21 or » = 51, indicating the
utility of Theorem 2 in approximating the appropriate critical level A when
using NPSRI.

The middle third of the table represents the situation for which both
NPCusum and NPSRI are tuned: normally distributed observations with a
postchange shift upward in mean by a single standard deviation. The NPSRI
does a little better than the NPCusum, perhaps because the family of shifts
allows us three parameters with which to tune the likelihood ratio, as
opposed to a single parameter for the NPCusum. Note that average lag to
detection is fairly stable for as few as 50 observations prechange, but there is
substantial deterioration in sensitivity for » = 21. These general conclusions
remain the same for both the one-half and two standard deviation shifts, save
that sensitivity deteriorates more rapidly with more recent change-points
when the true shift has small magnitude.

In Table 4, we present comparisons of NPSRI versus several parametric
procedures. The table is structured similarly to Table 3. As in Table 3, all
procedures are tuned for detecting a change from standard normal to a
postchange normal distribution with unit positive shift in mean. Comparison
values for the parametric procedures are taken from Pollak and Siegmund
(1990). As with Table 3, this table is divided into three sections representing
first a small shift, then the shift for which the procedures were all tuned and,
finally, a shift of larger magnitude than anticipated by tuning. All procedures
have comparable specificity, yielding nominal ARL to false alarm approxi-
mately 800. For the NPSRI, we use Table 2 to choose A = 450, with tuning
parameters as before.

The first line in each segment of the table corresponds to the cusum
procedure tuned for.#10, 1) changing to .#(1, 1), with all distributional param-
eters fully specified. The second and third entries in each segment are,
respectively, to cusum and parametric Shiryayev—Roberts procedures for
detecting a shift from #(u,1) to #(u + 1,1) with unknown baseline mean
and known standard deviation. These procedures are studied intensively in
Pollak and Siegmund (1991). They here are labelled respectively Cusuml and
S-RI for invariant cusum and Shiryayev-Roberts procedures. Finally, the
NPSRI is tuned to detect shifts from / u, o02) to M u + o, o2), for unknown
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TABLE 4
Expected lag to detection for various stopping rules and change-points by simulation
(sample mean plus or minus standard error); ARL to false alarm approximately 800

Actual distributions
prechange and EAN - (v = 1IN = v}
postchange Procedure v =21 51 101 201 E,. (N}
G, =0, 1), Cusum 15.6 15.2 159 16.0 781.0
G, =0.75,1) +s.e. 0.2 0.2 0.2 0.2 15.1
Cusuml 142.5 34.6 19.7 17.3 780.8
+s.e. 7.8 2.6 0.4 0.3 15.3
S-RI 98.5 26.5 17.3 15.7 772.7
+s.e. 5.8 14 0.3 0.2 8.8
NPSRI,;, 943 310 179 164 7919
+s.e. 8.6 3.7 0.6 0.5 15.3
G, =10, D), Cusum 9.3 9.3 9.2 9.3 781.0
G, =/1,1) +se. 0.1 01 01 01 15.1
Cusuml 38.0 12.1 10.5 9.8 780.8
+s.e. 3.1 0.3 0.1 0.1 15.3
S-RI 26.7 114 10.1 9.7 772.7
+s.e. 2.6 04 0.1 0.1 8.8
NPSRI,5, 338 122 102 102 7919
+s.e. 34 0.3 0.2 0.2 15.3
G, =10, 1), Cusum 5.1 5.2 5.2 5.1 781.0
G, =#15,1) +s.e. 0.0 0.1 0.1 0.1 15.1
Cusuml 7.2 5.7 5.5 5.2 780.8
+s.e. 0.1 0.1 0.1 0.1 15.3
S-RI 7.1 5.7 54 5.3 772.7
+s.e. 0.1 0.1 0.1 0.1 8.8
NPSRI,5, 9.2 66 59 58 7919
+s.e. 0.2 0.1 0.1 0.1 15.3

baseline level of mean, and unknown variance. We have again chosen a
conservative comparison for the NPSRI, because the parametric procedures
against which we compare all require that the standard deviation is known.

In the upper third of the table we consider the case of a smaller than
anticipated change in distribution from .10, 1) to #10.75, 1). Presented in the
middle third of the table are average lags to detection for .#(0, 1) to (1, 1).
Finally, we present averages corresponding to the same procedures when the
shift is larger than anticipated [from .#10, 1) to #(1.5, 1)].

Note that the fully parameterized cusum statistic makes full use of the
known prechange baseline. Its average lag to detection is effectively constant
over all tabulated values of change-point. The three invariant procedures,
Cusuml, S-RI and NPSRI, however, are all incapable of distinguishing be-
tween PS¢ and P¢. This is reflected in the average run lengths to detection
which decrease with increasing change-point.

For change-points occurring after 100 observations, one pays little for
using the NPSRI instead of Cusuml and S-RI. For shifts 0.75 and 1, average
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lags to detection are higher by roughly 5% or less of average lag to detection
possessed by the invariant parametric schemes. For shift 1.5, added lag may
be 10%. One pays 10-15% of average lag to detection relative to the fully
specified cusum procedure, whose use requires knowledge of variance and
prechange mean. One buys with this additional lag full protection against the
cusum’s high sensitivity of ARL to false alarm, exemplified in Table 1.

For small values 21 and 51 of the change-point and smaller to moderate
values of shift, NPSRI is again comparable to (although a little worse than)
the better of the two invariant parametric procedures. Relative performance
is worst for the large-shift case, although speed of detection is still quite
rapid, giving up two or fewer postchange observations at early change-points.
We attribute the poorer performance of NPSRI relative to S-RI to the need to
estimate the prechange distribution function from the empirical distribution
and by the bounded influence a single observation has on A%,.

A related sequential procedure is studied in Gordon and Pollak (1994a), in
which the prechange distribution is known to be symmetric with known
center of symmetry. Comparison with simulations done there show compara-
ble average run lengths to detection with large numbers of prechange obser-
vations, but show that the known center of symmetry allows for much more
rapid detection in the case of early change.

Our procedure is easily implemented in the Matlab programming lan-
guage. Figure 1 presents the subroutine which is used to compute the NPSRI
statistics used in the simulations we have just discussed. The choice of
variable names closely follows the computation of the nonparametric likeli-
hood ratio presented in Theorem 1. Unfortunately the computation requires
O(n) operations to compute each A}. Hence A% requires O(n?) operations, so
that a simulation stopping at N, requires O(N,}) time, which can be substan-
tial for large N,.

A remedy is available in Lemma 9, because the sum of likelihood ratios A’}
for £ of intermediate magnitude contribute vanishingly little to R,. In
performing the simulations reported in Table 2, we used this reduced form for
most of the simulation and then estimated the effect of this reduction in a
smaller simulation. The sample correction for using the reduced form of the
statistic was of negligible magnitude, suggesting that such a scheme might be
useful in implementation.

Of greater effect on the results of Table 2 was the truncation of the
simulations at n = 3500. If a simulation did not stop after 3500 observations,
it was truncated and both N, and Ry, were imputed to have the value
3500 + 1.5A. In addition, because R, — n is a P,-martingale, it was possible
to estimate E.{N,} by the sample mean of realizations of (N, + Ry )/2,
effecting a reduction in variance. The adjustments described above had
relatively small effect. For example, the unadjusted sample means corre-
sponding to the entries A = 475 and A = 500 are 1.78 and 1.76 with respec-
tive standard errors 0.04 and 0.04. The vast majority of adjustment was
attributable to adjustment for truncation.
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% Inputs: data row of n entries

% lnbnml row of logs of binomial(n,1/2) density, n+l entries
% selectk row vector containing indices of k values for

% which lambdakn is to be computed.

% procparm row of procedure parameters: [alpha, beta, p]

% Outputs: lambdakn row of n entries, one for each non-parametric

% likelihood ratio computed; some will be zero

% unless selectk==(1:1:n)

function lambdakn = umkrnlb(data,lnbnml,selectk,procparm);

%---- get parameters ———-

n = length(data);

alpha = procparm(1); beta = procparm(2); p = procparm(3); q = 1-p;
1n2palpha = log(2*p*alpha); ln2qgbeta = log(2*q*beta);

lnratio = ln2palpha - ln2gbeta;

%---- initialize and allocate vectors —--——--
incr = 1:1:n; % 1 to n row vector
decr = [(n-1:-1:1) 1]; % n-1 to 1 then 1
reverse = (n+1:-1:1); % row vector to reverse order
lambdakn = zeros(i,n); % to hold little lambda sub kn’s
[dummy, invrankt] = sort(data’); % index of smallest in invrankt(1)
invrank = invrankt’ ; % row of inverse ranks
%---- compute vector of SR statistics --—-—-
for k = selectk, %-—- compute little lambdakn for selected k values ———
timegek =(invrank>=k) ; % time not less than k
vsubk =cumsum(timegek) ; % for i=1 to n , watch out for i=0
usubk =(n+1-k) - vsubk ;
lnvdenom =log([ 1 (1+(vsubk. /incr)*( beta-1))1);

lnudenom =log([(1+(n+1-k)*(alpha-1)/n) (1+(usubk./decr)*(alpha-1))]1);
% lnvdenom and lnudenom are n+l vectors containing log-denominators
% index of vectors is (one plus) number of putative negatives m
lnprodneg = cumsum(lnvdenom) ;

dummy1 = lnudenom(reverse) ;
dummy2 = cumsum(dummy1) ;
lnprodpos = dummy2(reverse);
usubkmod = [(n+1-k) usubk];
lambdakn(k) ...

= sum(exp( lnboml + (n+1-k)*1n2qgbeta + usubkmod*lnratio
- lnprodneg - lnprodpos ));
end;
F16. 1. MATLAB program for computing the statistic R,,.

‘

4. Proofs. Throughout we follow the convention that summation over a
null set of indices is 0. Consistent with the former convention, the product
over a null set of indices is by convention 1. As usual, we take ( ,’,’1) = 0 when
n <m.

Because the proofs of Theorems 1 and 2 are similar to those of Gordon and
Pollak (1994a), we omit a number of details. In particular, we sketch the
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proof of Theorem 2 by stating a number of intermediate results as lemmas,
without proof.

4.1. The nonparametric likelihood ratio function: proof of Theorem 1.
Throughout Sections 4.1 and 4.2 we treat p(-,n) as a given nonrandom
permutation on the first n positive integers, induced by the n sca-

lars x,,..., x,. Recall that 7(-, n) is the permutation inverse to p(-, n). Set
7(j,n)=01if j<O0 or if j > n. Deﬁne the following for all n >k >1, for
J = 1and for all m: o(j,m,n) =1, us m and U,(m, n) = L_, o (j, m, n).

By convention, U,(m,n) = 0 if £ > n. Let V,(m, n) = max{0, (n +1—k)—
U,(m, n)}. When we wish to emphasize the dependence of the various quanti-
ties upon the scalars, we write o (j, m, nlx,,..., x,), U,(m, n|x4,..., x,) and
similarly for other quantities.

Informally, think of o(j, m, n) as the indicator that X; is positive, given
that we knew that there were exactly m negative observations among the
first n observations and that X; had rank p(j, n). For example, 0(;,0,7) = 1
and o(j,n,n) =0, for all 1 <J < n. Similarly U,(m, n) and V,(m, n), respec-
tively, count the number of hypothetically “positive” and “negative” observa-
tions among the observations taken at times on or after the hypothetical
change-point k, through time n.

ProoF oF THEOREM 1. We need to compute

A';e(pn) {Xf(l n) <X 7(2,n) < - T(n n)}/(l/n')
Let D,, denote the event {max,_;_,, X, Gm < 0< mln X, ) for 1 <

T m<j<n T

m < n. Let D, denote the event {0 < m1n1< j<n X:(j nys and let D, denote
{max,_;_, X, <O} In words, D,, is the event that there are exactly m

T

negative observations among {Xl, , X,}; necessarily, the negative observa-
tions must have the m smallest ranks. Write

Ak m = (n')[p{ 7(1, n) < <X

(n,n

D, }PF{D,}.
Because the events D, partition the event of interest, we have A’ =
X~ 0A% m- Define functions
1, ifj<ek,
Ye(J,m,n) ={a, ifj>kand p(j,n)>m,
B, ifj=Fkand p(j,n) <m.
We first show that, for 1 < £ < n,

‘

1 k-1
/\z,m(pn) = (Z)(—z—) pUk(m,n)qVk(m,n)

n oy (e(isn) m,n)
o e Gon)omom)

" ye(2(ion), mom)
8 i=In:[+1 [1/(n +1=D)]Z) i (r(j,n),m,n)’

(2)
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Because p(-, n) and 7(-, n) are inverse permutations,

{j/ln=j>mandr(j,n) >k} ={p(i,n)lp(i,n) >mand n>i>k}.

Hence

(3) P,f{D _ (l)k—l Ui(m, n)g (n+1=k)= Uy(m, n)

Conditional on D,,, the random variables X ooy X are distributed
7(1,n) T(m,n)

as —1times exponentlal variates, respectively, with means 1/y,(7(j, n), m, n)
for 1 <j < m. By Savage’s (1956) 1dent1ty,

Y (7(i,n), m,n)
i (t(j,n),m,n) /i’

Conditional independently of the ordering of the m negative observations, the
ordering of the n — m positive observations has conditional probability

[Fblf‘{X‘r(m+1,n)< <X(n n)lD }

5) 1 % (r(i,n), m,n)
(n—m)! i1 Zioim(7(J,n),m,n)/(n+1—-1i)"

Combining (3), (4) and (5) yields (2).

To prove (1), first consider the numerators in the product terms of (2). In
the first product, as the index i runs from 1 through m, there are V.(m, n)
numerator terms B; the other numerators are 1. Similarly, in the second
product with m + 1 <i < n, there are U,(m, n) numerator terms «; the
other numerators are again 1. Consolidate these numerator terms with the
terms pUs™ ™ and ¢V« in (3).

Now consider the denominator terms in (4) and (5). A denominator in (4) is
an average of i terms among which V,(i, n) are B; the rest are 1. Similarly, a
denominator in (5) is an average of n + 1 — i terms among which U,(i — 1, n)
are a; the rest are 1. Hence (1) follows from (2). O

m
(4) ka{ 7(1,n) < e <X(m n)lD } ].:[

! i

4.2. The likelihood ratio function: identities and bounds. We shall need a
number of relations among the U,(m, n). These are collected in the following
lemma. We have already used (6) in proving Theorem 1.

LEMMA 1. Assume 1<k <n+1 If m <0, then U,(m,n)=n —k + 1.
If m > n, then U,(m, n) = 0. In addition, the following hold:

(6) Uk(m’n) Z {r(J, n)>k)’
Jj=
(7) U,(m,n) — Uy,(m + 1,n) = I'r(m+1 n)> k>
(8) U, (m,n +1) — U,(m,n) = I(T(m ek T I(f(m n)<k}I(pn+1>m)’

(9) U(m+1,n+1) - U,(m,n) = (‘r(m+1,n)<k)I

{ppy1>m+1}

(10) Vi(m,n +1) = V,(m,n) = L, . <myloom, ny<iy
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We finish the section with a number of properties of the nonparametric
likelihood ratio (1). The values A} ,, were defined in (1). Consistent with our
conventions and with (1), we define A}; ,(p,) = (,’,’1)2_" for n <k <« We use
(1) and (7) to prove Lemma 2. It is then used to prove Lemma 3.

Lemma 2 tells us that very little contribution is made to A7, by those A; ,,
having m sufficiently far from n /2. Specifically, for these m, the contribu-
tions decay uniformly geometrically rapidly in m.

LEMMA 2. Let pa>qB. If n>m>2n/3 and n+ 1>k >1, then
Nem Z 20 i1 If 0 <m < qn/3, then Aj ,, = 2A; ,_1.

If the prechange density were known to be symmetric and if the putative
change-point 2 were large but smaller than the true disruption time, then we
would expect that the center of symmetry of the prechange distribution would
be close to the median of the first 2 observations. If & is also close to n, then
the median of the first 2 observation should be little different from the
median of all n observations. The next lemma makes this heuristic precise in
terms of the likelihood function.

LEMMA 3. Assumepa>qBandn >6/q. Let 6 =(n — k + 1)/n.

There exist positive constants b = b®(«a, B, p), for i = 1,2, which depend
only on the tuning parameters such that, for all 6 <(0,1/4) and 8 €
(0,2/8), we have o - 1)1y AL (92 < bF expln(Ph - 3HING(p,).

For all 0 <k<n and all >0, we have L 5.5, <m<n b n(P,) <
b® exp(—n82)A%(p,). The bounds are uniform over all realizations of p.,,.

n+1

We write A;' N (p,, p,. 1) for A;"(p, ). The proof of the next lemma
involves the identities established in Lemma 1.

LeMmMA 4. If 1<k <n+1and 0 <m <n, then

Azfr&(pn’ pn+l)

Ak, m(Pr)
1 n+1 pa )\ lemmzntlem n<nlip.>m
= — 2
2n+1—m(q/3) (2¢8)
m I, g—1\""
{r(i,n)<k}
11 X 1+ - ; : p
() i=I;;[+1 1+ [Vi(i,n)/il(B-1) i )
pn+1_1 I . a — 1 -
% l——[ 1+ : {r(i,n)< k) : X :
isme1 1+ [U(i,n)/(n+1-)](a—1) n+1-1
U(m,n+1 -1
w1+ Dl Dy
n+l-—-m
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In addition,

A;el,+rr}+1(pn’pn+1)
AE m(Pr)
1n+1 po I(7(m+1,n)<k)I(p,,+,>m+l)
T 3wt 1(;/3) (228)
m L. B—1\""!
12 X 1+ rem<h - — )
(12) H( T+ Valiom) il (B=D) i
. Vi(m +1,n + 1) . -
x|1+ -
m+1 (B )
1= 1 _ -1
Xpl—ll 14 . Lot iny<ny ‘ @ 1 . .
i=m1 1+ [O(i,n)/(n+1-D)](«-1) n+1-i

4.3. The likelihood ratio function: monotonicity. A crucial observation is
that the nonparametric likelihood ratio is a nondecreasing function of the
most recent observations. The simplest manifestation of this monotonicity
is Lemma 5, which is used to prove Theorem 2. The exact contribution of
stochastic ordering is made precise in Lemma 6, which generalizes the former
lemma. Lemma 5 follows from (8); Lemma 6 is proved from first principles by
a counting argument.

LEMMA 5. If pa > qp, then the likelihood ratio Ny(p,_1, p,) is a mono-

tone nondecreasing function of p, when the first n — 1 sequential ranks Pn_1
are held fixed.

Assume that the true prechange and postchange distributions are stochas-
tically ordered. Write ¢/(x) = G '(G,(x)), so that X ~ G, implies y(X) ~ G,.
Observe that G, >, G, implies ¢ is nondecreasing and x > (x).

LEMMA 6. Let () be a strictly increasing function such that y(x) < x for
all x. Assume {x,,...,x,} and {x4,..., x;_ 1, Plx)), ..o ¥(x,)} are both sets of
n distinct scalars. Then

U.(m,nlx,,...,x,) > Uk(m, nlxg,..,x_, ¥(x)),. .., w(xn)),
foralll<j<n,alll1<k<n+1,andall 0 <m <n.
Lemma 7 allows us to bound the contributions of integrals over sets of

small P probablity by using stochastic ordering to allow integration with
respect to PC. Its proof depends on Theorem 1, Lemma 5 and Lemma 6.
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LEMMA 7. Assume G, >, G, and let y(x) = Gy (G{(x)). If pa > qB and
a<1<pB,then, forallk <n+1landallj>1,
PE{AL(Xyseos Xo) 2 A (X, Xy, (X)), 0(X,)) ) = 1
and PN, > n} < PN, > n} = P.{N, > n}.

Note that we do not claim P{N, > n} is monotone in j < n. Indeed such an
assertion cannot be true because B, = P,.

4.4. ARL to false alarm: Proof of Theorem 2.

LEMMA 8. Let 6=(n—k+ 1)/n. For all §>0, all 1 <k <n and all
0<i<n,
E. (Uy(i, m) = (n - )0,
P.{U,(i,n) — (n —i)6 > 8(n — i)} < exp[—2(n —i)8?],
E.{V,(i,n)} = i6,
P.{V,(i,n) —i0 < —8i} < exp(—2i82).

ProoF. Under P,, the random variables X;,... are exchangeable, and so
U,(i,n) and V,(i, n) have hypergeometric distributions. From Kemperman
(1973) the binomial distribution is a dilation of the hypergeometric. There-
fore, the usual exponential bounds for the tails of the binomial distribution
apply also to the hypergeometric. O

The next lemma tells us that likelihood ratios for hypothetical change-
points a small distrance from the most recent observation time make negli-
gible contribution to the NPSRI statistic. The proof uses Lemma 2 and
Lemma 8.

LEMMA 9. Assume pa>qf and n > 3(q + 3)/q% Let t <n/3 be an
arbitrary positive integer, and let n be positive. Write 0 = (n + 1 — k)/n. If
3n/q < 6 <1 — n, then with P, probability at least

exp(—tn?/8
(1) TR G )y
1 — exp(—n°/8)

we have the inequality

g)t(g)nnexp(;2n0(1 - 9)(p - %)2),

holding simultaneously for all k in the specified interval.

(14) AL <2

Given scalar x and nonnegative integers - and [/, we define the modified
rank function as

(15) r.(x,h,1l)= A(n+1+1).

n
1+h+ Y Ix oy
j=1




ROBUST CHANGE-POINT DETECTION 1367

Note that p,,; = r,(X,,,0,0), generalizing the notion of sequential rank.
Given the n-vector of integers p,,, the /-vector of integers s, and the integer ¢,
we write (p,,,s;, ¢t) for the concatenated (n + [ + 1)-vector of the elements of
P, s; and ¢, with similar definition of the (n + I)-vector (p,,s;). In a slight
abuse of notation, we write A}"!*(p,,s,,t) for A% [*1((p,,s,, t)), with simi-
lar conventions for A} "/ (p,,s)), A} " X(p,,s;,¢) and A% (p,,s).

Lemma 10 tells us that the change in nonparametric likelihood ratio is a
good approximation to the change in parametric likelihood. The approxima-
tion is robust, in that it is insensitive to the values of the last few sequential

ranks. The proof uses Lemmas 3 and 4.

LEMMA 10. Given & € (0, a A 3), let B, = (log(6¢), —4g) U (4¢, —log(6¢)).
Let S; be the set of l-vectors of integers s, = (s, ..., s;;) such that s;; € [1,
n+jl forj=1,...,1, write

A (P sy, (2, B, 1)) /N (R 810)
fi(x)/fo(x) .

There exist positive constants b{!¥, b8 and b§® such that

Ly(s;, x,h) = log(

PF{ sup sup sup sup |L%(s;, x, k)l

%€B, h<ne? 8,€8, 0<n+l+1-k<ne?
> b(lm)(—s log(&) + é)i?n} < b8 exp(—b§%%*n),
whenever Il V 38V 6/q < ne? and pa = qp.
The proof of the next lemma requires Lemmas 1, 2, 4 and 5.

LEMMA 11. Let M be a stopping time adapted to the o-fields #,. Let
Q, = L}y 1A%, and let NY be the first index at which Q, > A.
If pa > q B, there exists a constant k > 1 such that

E. {erti'i’/2|pn ande{” =n + ]_} < KA“'“/Q,

forall A > 1.

We are now ready to prove Theoreni 2. To do so, we verify the hypotheses
of the following theorem proved in Gordon and Pollak (1994b).

THEOREM A. Suppose that the following three conditions hold:

(a) Let 0 < &, &, <1 be given. There then exist positive constants a,, a,

and a4 depending on &, and &, such that, for all n > 1,

P. { sup A%, > exp( —aln)} < a,exp(—agn).

ne;<k<n(l-egy)



1368 L. GORDON AND M. POLLAK

(b) Let 0 < £ < 1 be given. There then exist positive constants 6 < 1, by, b,
and a set B,, all depending only on & such that, for all n > 1,
. }
and P{X,,, € B,} < e.

N AX)
Ay [ Fo(Xpin)
(¢) Fort > 1 there exist finite functions A,(t) and k(t) such that x(¢) = 0
as t — » and such that if M > 0 is any stopping time adapted to Z, and
NY = N = min{n|S?_,,, 1A% > A}, then

!

uniformly for all A > Ay(¢), all t > 1 and all stopping times M.

P.{X,.. € B, and max 1

" (1-n<k<n+1

< b,exp(—b,n)

N
> A]Z]I(ELMHAI}{Z,L&:)’?M} <k(t)A,

k=M+1

Suppose also that the log-likelihood ratio log(f(X)/f(X)) has a continu-
ous distribution when the prechange density is f,(-). We may then conclude

Condition (a) is obtained from Lemma 9 by setting ¢ = 6n for some small
constant & > 0, and choosing n small relative to the desired range of values
0. Condition (b) follows from Lemma 10 by setting [ = A = 0. Condition (c) in
strengthened form is exactly the statement of Lemma 11. The form required
by Theorem A is obtained from Hoélder’s inequality. See Gordon and Pollak
(1994b) for details. The form of the constant is that computed in Gordon and
Pollak (1994a), where the case 2pa A 268 < 1 is treated.

4.5. Conditional bounds for postchange ARL: Proof of Theorem 3. In this
section, we study the postchange behavior of our nonparametric Shiryayev—
Roberts statistic. The chief tools are Lemma 10, used previously to prove
Theorem 2, and a new mixing technique, which will enable us to use Lemma
11 in bounding the postchange average run length.

Throughout this section we assume G, >,, G,. Given ¢ € (0,1), we write
G: = (1 - ¢)G, + £G,. Note that G, >, G, >, G,.

Let v and »"> v be given. Define the binomial change-point model
BCP(»*, v/v") as follows. Choose oJ distributed as binomial(v*, v/v*). Condi-
tional on J, let X;,..., X, be distributed i.i.d. with prechange distribution
G, independent of X, ,,... which are distributed ii.d. with postchange
measure G,. Denote the associated probability measure and expectation by
Ppcp and Egep, respectively. The crucial observation is that, under BCP(v*,
v/v"), the empirical distribution of X,..., X,+ is that of »* observations
iid.as G, ,+
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LEMMA 12. Let v*> v > 0 be given, and let G, >,, G,. Then
ES{N, — v*; Ny > v} < 8k(1)AVv — vPyep{ N, > v'}.

PrROOF. Write ¢ = v/v*', and assume ¢ > 3. From Stirling’s formula,
P{bionomial(n, k/n) = k} > 3k~ 1/2,
for integers 0 < 2 < n. Use the bound to show
E¢{N, — v*; N, > 1/+}

<3Vrt—w Z ( )§ (1 - &) *E{N, — v*; N, > v*)

= 3VV - V‘EBCP{IEBCP{NA - V+L%+}; NA > V+}
< 3Vv' — vEgep{Epep(TulF+}; Ny > v*},
where T, = infln > 1[£}2}, - A%*" > A}. Note that T, depends on the first

v+ observations only through their empirical distribution. Let y.(x) =

G;'(G(x)). By hypothesis, ¢ (-) is nondecreasing and ,(x) <x. Let

(77(1) ..., m(v*)) be a uniformly distributed random permutation of the first
v* indices chosen independent of all other random variables. Let
. X, if j < vt

X; = U (X;), ifj> vt

Observe that under Pg.p the sequence of X is iid. as G¢ and that the
empirical distribution of {X,..., X,.} is 1dent1cal to that of {Xl, X }. Let
p, and T, be sequential ranks and stopping times which are analogous to p,
and T, computed using Xl, . instead of X,... . From Lemma 7, A%(p,) >

%(p,) pointwise for all »*< & < n. Hence we obtam the coupling TA >T,,
from which follows

ES{N, — v Ny > v} < SmIEBCP{[EBCP{TAL%“‘}; Ny > V+>,
< 3\[17::_;[5301:{[!500 {TALZ+}; N, > V+},
< 3K(1)4\/Z+_—7PBCP{NA > vt}

proving the lemma. O
LEMMA 18. Letp €(0,3) and |le| < 1. Then

H((1+ &)p,p) > 1&%p,

where H(a, p) = alogla/p) + (1 — a)log((1 — a)/(1 — p)) is the relative en-
tropy of the Bernoulli(a) distribution relative to the Bernoulli( p) distribution.

Proor. Bound the second partial derivative of H((1 + £)p, p) with re-
spect to £ and apply a Taylor expansion with remainder. O
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The function D was defined in the statement of Theorem 3.

LEMMA 14. Let G, >, G, be, respectively, the postchange and prechange
distributions. Let B, denote the set (log(6¢), —4¢&) U (4¢, —log(6¢)). Choose
£(A) and v(A) such that conditions (a)—(c) of Theorem 3 are satisfied. Given
© > D(G,,Gy; fo, f1) > 0, there exists a constant A such that A > A and
vt = v+ [8(log? A)/D(G,, Gy; f,, f)] implies

sup PBCP{NA > V+} SA_I(].Og_2 A)Py{NA > V}.
v=v(A)

PROOF. Write £ = v*/v and 6" = v*— v = [8(log? A)/D]. From Lemmas 7

and 13,
8+
(16) lv+s*/21 -
+ Y (I;e )fk(l—e)y_ P{N, > v'}.
k=[v—8*/2]

Write D = D(G,, Gy; fy, f1); by hypothesis, D > 0. Now let u(x) =
Fy '(Gy(x)), so that u(X;) ~ F, under the P{-measure, when j < k. Let

¢ fi(Fa ' (Go(X)))) ~log fi(u(X;)) )
fo( Fo 1 (Go( X)) fo(u(X;))

denote the parametric log-likelihood of the transformed data after applying

u(*) to all the observations.

Write v, =v— 68" and [, =n — v,. Let S, denote the set of positive
integer /,-sequences s; = (s, 1>+ 8, ) such that s;,j < vy +j. In prepara-
tion for applying Lemma 10, deﬁne the random variable
+1(pv* ’sl,,’ rv*(Xn+1’ h’ ln))
Ar;e( pv* ’ sl )

I

{w(X,11) € Bya)*

Ly(h,s,,) = log = Zpia

Note that L} 2(h,s ) is measurable with respect to the o-field generated by 7,
and X, _ ;. For j >0, let vi=[(v+ v*)/2] + jl21log(A)/D]. Now define the
events

By(Jj) = {log(A”*”;) > log A},

Bz(j)={ Z Z, >—log(A) and n {u(Xi)eBg(A)}},

i=l+vf i=1+wf

Bs(Jj) = ﬂ

[2log(A)/D1-1
i=0

vy +i D
sup sup LJ*+1(h’sl,,;+i) < T

05h51v}"+L l,.+tesuj*+L
)
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with respective complements B,(j) through B,(j). Define also the event
= {N, > v}. Recall that A? ,; = 1 identically. Hence,

[2log A1-1 _
(Ny>v)c N BB
(17) /-0
[2logA]—1_ [21log Al-1 _
C B, N By(J) [ U  BoBs(J)|
j=0 j=0

For the rest of the proof we only consider £ € (v — 67 /2, v + 6*/2). From
the strong law of large numbers and hypothesis (a), P,{B,(j)} > 1 —e!
whenever A exceeds some A*. Because k < v{, the events B, and B,(j) for
J=0,1,... are independent under any measure P,. Hence

[21og Al-1

(18) Pk{BO DO B,(J)

the last inequality from Lemma 7.
From hypotheses (b) and (c), there exists A** > A* such that

D

< P,{B,}exp(—2log A) < A™2P.{N, > v},

1
b0 —e(A)l A)) + ————
1 ( E( ) Og(é‘( )) V(A)E(A)
for all A > A**,
Let ¢(x) = G;'(G4(x)); by hypothesis ¢(x) < x. Consider now the se-
quence of random variables

X, if j <k,
(19) X ={v(X), ifk<j<v,
X, if v <j.

Note that X; = X ; identically if k& > v, that X ; < X; always and that under
P, the observations X,,..., X,_; are ii.d. with distribution G,. Let A}, N,
and the events B3( 7) denote the nonparametric likelihood ratio, stopping
time and events computed using the (X, j} instead of the {X }. By construction,
By(j) = By()). Because the likelihood ratios are invariant to (almost surely)
strictly increasing transformations, we may use Lemma 7 to conclude B, C B .

Use the coupling (19) and apply Lemma 10 6* /2 times to conclude that

[2log Al _ [21log Al .
Pk{ U ByBs(J) slPk{ U BoBa(j)}
j=1 j=1
[21log Al _
=P ByBy(Jj)
(20) { jyl o }

[2logA]_
=[EV{PV{ U B3(j)‘91/—1};B0}
j=1

< 598" exp(—b4O(v(A) — 5%)s*(A))R,{By}.



1372 L. GORDON AND M. POLLAK

Finally, combine (16), (17), (18) and (20) using hypothesis (c) to choose
AP g0 that A > A®® implies P,{N, > v*} < A~ *(log™2 A)P{N, > v}. O

LEMMA 15. Let v(A) and £(A) satisfy hypotheses (a)—(c) used in Lemma
14. Let © > D = D(G,,Gy; fo, f1) > 0 and pa > qB. Given { € (0,3), there
exists AY(¢) such that A > A®®(¢) and v > v(A) imply

log A
ES{N, —v;v<N, < s(1+§)T[F"VG{VsNA}.

Proor. Let 8 € (0,3) be some constant whose value is to be specified
later. Let u(x) and Z, be as in the proof of Lemma 14. In preparation for
applying Lemma 10 to the sequence u(X,),..., let [, =n — (v — 1) and let
S, denote the set of all positive integer sequences s;, =(s;15---58,, ), Where
s;,; < v +Jj — 1. Define the random variable I to be

A (PV 1981, 7 (Xni1, Ryl ))

I"}];(h’sl") B AL (p,-1,8;)

log = Zyiq

I(U(Xn+ 1€ B,a)*

Note that L (h, S, ) is measurable with respect to the o-field generated by
_; and Xn+1 For j > 0, let v, = v+ jl(1 + 38)log A)/D]. Let

By = (N, = v},
By(j) = {log(A771) > log A},

i= v; i= v;

vie;—1 vigi—1
Bz(j)={ Y Z>(1+28)gAand {u(X»eBs(A)}},

Ba(j) = ﬂ

[(1+38)log A)/D]-1
i=0 {

sup sup l';:fi—l(h,slw_l) < SD},

0Sh£l,,}+i_1 sl,, +,_1ESVJ+L—1

with corresponding complements B,(j) through B;(j). Recall that A", =1
identically.
Choose A*(8) so that A > A*(8) implies that

PVG{Ez(j)} <8,

1
10| _
b ( e(A)log(£(A)) + 8(A)VA) <s,
[21log(A)-1
IPVG U BS(J) v—1 <A—2’
Jj=0

the last inequality from Lemma 10, applied once for each observation taken
between times » and v + [8(log? A)/D].
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Note that B,(j) € B,(j) U By(j) and that the events B,(j) are indepen-
dent under the PS-probability. Hence, when A > A*(§),

log?( A)
5

[E,?{NA—V;VSNAS v+

logA [2log A1-1 j=1_

<(1+ SS)T Y U+ 1)Pf{BoB1(j) n N Bl(i)}
j=0 i=0
1o 2 A [210gA]—1_
+[8—§—1—§—)‘ﬂj’f{30 NN Bl(i)}
i=0

log A [2log A1-1 j—l__

<(1+36)g— ) [P’f{Bon nB2(i)}
D j=0 i=0

[2log A1-1
"'PVG{ U Boﬁa(i)}]

i=0
logz(A) [21og A]—l_ [21og A1-1 _
+|8———||P7{B, N By(i)} + B U BoBy(i)
D i=0 i=0

1+35logA [8(log? A)/D]
+
1-8 D A?

Choose and fix & sufficiently small, then choose A sufficiently large to
complete the proof. O

PS{v < N,}.

To prove Theorem 3, combine Lemmas 12-15.

In a similar problem studied in Gordon and Pollak (1994a), we did estab-
lish equality in an analog of Theorem 3. The source of the additional technical
difficulties in the current problem is that PS¢ = P¢, making it much harder to
show the negligibility of contributions attributable to an hypothesized early
change.

In attempting to strengthen Theorem 3, we must condition on {N, > v},
whose probability tends to 0 as v — «. One can show for 0 < ¢ < » that
liminf, ., P.{N, > cA} > 0. Therefore, if v(A) can be chosen to be of the
order of A or less and still be consistent with hypothesis (c) of Theorem 3, one
may then obtain equality in that theorem. [For example, »(A) = log?*“ A for
o > 0 suffices to establish the lower bound when G, =.10,1) and G, =
#(1,1).] One needs an analog of Lemma 3 valid for small values of k. This is
possible if one observes that since most observations are hypothesized to
behave like F; when £ is close to 1, the pivot for m should be nq instead of
n /2. The rest of the proof is similar in concept to proofs given above.

4.6. Sensitivity to a shift in normal mean: Proof of Corollary 4. We prove
Corollary 4 by establishing the conditions of Theorem 3. We first find a
candidate for £(A).
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LeEmMA 16. Let V ~410,1) have the standard normal distribution ®(-),
and let u > 0. Let B, be the set (log(6¢), —4e) U (4¢, —log(6e)).
Choose & > 0, and let e(A) =log= 1+ A, As A — o,

(log A)P{F;'(®(p+V)) &B, )} — 0.

ProOF. Write ¢(-) for the standard normal density. Because the family
¢(x — ) has monotone likelihood ratio, and because ¢(-) is unimodal and
symmetric,

P{Fo'(®(n +V)) B}
<P{®(V) <3¢} + P{V e [0 (Fexp(—42)), D (1 — § exp(—4¢))]}
+P{®(pn+V)=>1-3e}.
Hence P{F;Y(®(u + V)) & B, 4} <8+ 4c+P{8e>1—-®(u+ V) We

now use Birnbaum’s (1942) inequality 1 — ®(x) > 2(x + Vx2 + 4) %¢(x) for
x > 0 to obtain

P(36>1—-d(u+V))

1 2
< P{3e> n V)2 = exp( 5 )exp(—,uV)(,b(V)}
n

and then use that (2 + (x + v)?) /2 exp(— uv)$(v) is decreasing in v > 0 to
show

P(8e>1-®(u+V)) < P{V > 1/~ 2log(32) — 4uy/— log(32) }
for & sufficiently small. Hence, for A sufficiently large,
log( A)P{F; ' (®(u + V)) & B,4))

< Tlog~é(A) + 8log~¢( A)exp(2uy/ — log(3log™ 5 A))

<log €24,

proving the lemma. O

To complete the proof of Corollary 4, observe that £(A) (as given in the
preceding lemma) and »(A) = log®*%¢ A satisfy the conditions required by
Theorem 3.
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