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An iterated bootstrap confidence interval requires an additive correc-
tion to be made to the nominal coverage level of an uncorrected interval.
Such correction is usually performed using a computationally intensive
Monte Carlo simulation involving two nested levels of bootstrap sampling.
Asymptotic expansions of the required correction and the iterated interval
endpoints are used to provide two new computationally efficient methods
for constructing an approximation to the iterated bootstrap confidence
interval. The first asymptotic interval replaces the need for a second level
of bootstrap sampling with a series of preliminary analytic calculations,
which are readily automated, and from which an approximation to the
coverage correction is easily obtained. The second interval directly approx-
imates the endpoints of the iterated interval and yields, for the first time,
the possibility of constructing an approximation to an iterated bootstrap
confidence interval which does not require any resampling. The theoreti-
cal properties of the two intervals are considered. The computation re-
quired for their construction is detailed and has been coded in a fully
automatic user-friendly Fortran program which may be obtained by
anonymous ftp. A simulation study which illustrates their effectiveness on
three examples is presented.

1. Introduction. An iterated bootstrap confidence interval may be de-
rived from the percentile method described by Efron [(1982), Section 10.4].
Beran (1987) proposed a prepivoting method to reduce coverage error, which
is equivalent to making an additive correction to the nominal coverage level
in the percentile method. Hall and Martin (1988) discuss this coverage
correction approach within a general framework of bootstrap iteration. Our
notion of an iterated bootstrap confidence interval refers to this approach. A
precise definition is given in Section 2.

When constructing an iterated bootstrap confidence interval, the need to
calculate a correction to the nominal coverage, or “calibrating coefficient,” is
usually met by a double bootstrap procedure. In principle, we can iterate the
procedure to reduce coverage error by a factor of O(n™!) successively. Hall
and Martin (1988) provide a unified account of the concept of iterated
bootstrap. In practice we seldom go beyond the second level of bootstrap
sampling, due to the increasing computational intensity rendered by succes-
sive levels of bootstrap sampling. In this paper we consider only an iterated
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1302 S. M. S. LEE AND G. A. YOUNG

bootstrap confidence interval based on double bootstrapping, that is, with one
level of nominal coverage correction.

The computational expense of the usual Monte Carlo construction, as
considered by Booth and Hall (1994), has prompted a number of authors to
develop computationally efficient procedures for approximation to the iter-
ated bootstrap confidence interval. DiCiccio, Martin and Young (1992a, b)
consider the use of analytic approximation methods to replace the inner of
the two levels of resampling required by the double bootstrap procedure. An
alternative approach described by Booth and Do (1993) uses the variance
reduction method of balanced importance sampling at the first level of the
iterated bootstrap to achieve computational savings over the standard Monte
Carlo construction. Lee and Young (1993) describe an approach which per-
forms the inner of the two levels of bootstrap sampling in a sequential
manner. This approach, while still demanding, like the method of Booth and
Do (1993), two levels of resampling, has the advantage of only requiring
simple uniform resampling. In the current paper the goal is to develop
approximations to the iterated bootstrap interval which eliminate the need
for nested levels of resampling and which at the same time require only
simple arithmetic computation.

Hall [(1992), Section 3.11.3] gives an account of the coverage properties of
the iterated bootstrap confidence interval. Asymptotic expansions are also
developed for the iterated interval endpoints, as well as for the calibrating
coefficient, under his “smooth function model.” Hall uses these expansions to
explain theoretically why bootstrap iteration works. The complicated struc-
ture of the expansions might be felt to hold out little hope for their being of
practical use. In this paper, however, we demonstrate how we may obtain
explicit expressions, in terms of population moments, for the leading terms in
the expansions of both the calibrating coefficient and interval endpoints.
These asymptotic expressions are then used as the basis of two new computa-
tionally efficient and practically feasible procedures for constructing an ap-
proximation to the iterated bootstrap confidence interval.

The first asymptotic interval replaces the need for a second level of
bootstrap sampling with a series of preliminary analytic calculations from
which an approximation to the calibrating coefficient is easily obtained. The
second interval directly approximates the endpoints of the iterated interval.
This represents, for the first time, an approximation to the iterated bootstrap
confidence interval which does not require any resampling.

The analytic computations requiréd for construction of the asymptotic
intervals are automated to provide practical procedures which are computa-
tionally extremely efficient when compared to the usual iterated bootstrap
confidence interval construction which uses two nested levels of data resam-
pling. The only input required from the user is a formula for the parameter of
interest in terms of population moments, the maximum order of such mo-
ments and the dimension of the underlying distribution. In particular, tech-
niques of exact numerical derivative evaluation are introduced to replace the
need for any symbolic computation. The resulting procedures thus consist
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only of simple numerical steps which can be efficiently implemented using a
Fortran program. The computer time required is reduced by a factor of the
order of thousands compared to a full-blown iterated bootstrap confidence
interval based on 1000 outer level and 1000 inner level resamples.

Section 2 gives a formal definition of the iterated bootstrap confidence
interval and presents briefly the forms of the asymptotic expansions to be
used in our procedure of generating asymptotic iterated confidence intervals.
Section 3 develops the theory about coverage properties of these asymptotic
intervals. There they are also compared with the theoretical iterated boot-
strap interval. A qualitative description of the practical procedures is pre-
sented in Section 4, with special attention paid to description of how they
may be implemented by use of a general package consisting of two user-
friendly Fortran programs. A simulation study has been carried out on the
mean, the variance and the correlation coefficient examples, and their results
are reported in Section 5, followed by a general discussion in Section 6. All
the analytic computations necessary for construction of the asymptotic inter-
vals are detailed in the Appendix.

2. Problem specification. Let 2= (X,,X,,...,X,) be a random sample
drawn from a d-variate distribution function F. We wish to construct a
two-sided, a-level iterated bootstrap confidence interval, based on £, for a
parameter 6. Assume that § = g(p) is a smooth function of the mean p of F.
The confidence interval is to be constructed from its sample estimate § = g(X),
where X = n7'Y" X,. Define ¥p to be the B-th quantile of the distribution of
6, so that

P(6 <) = B.

Let 2* = (X%,...,X%) denote a generic bootstrap resample drawn randomly
from 2 with replacement, and similarly let 2** denote a generic resample
from 2. The conditional probability and expectation based on such uniform
resampling from 2” and 2 are denoted by P(:2), E[:|#’], P(-2™, 2) and so on.
Let 6* and 6** be the versions of the statistic § based on 2% and 2%,
respectively. Define the Bth quantile of the distribution of §* conditional on
Z to be

Jp = sup{u: IP(@* <ul?) < B},

for 0 < B < 1. We will assume from now on that J, is the exact solution to
the equation

P(6* < 9,12) = B,

since the error due to discreteness of the sampling distribution of 6* is
negligible compared to other error terms to be met in this section [see Hall
(1986)]. Put ¢ = 3(1 + @). Let ¢ be the solution to the equation

(1) P(yl i—ty2 = 0<y§+t/2) = a.
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Similarly, the bootstrap version of ¢ is given by # which satisfies

) P(51 et < 02950p12) = @,
where
P(6* < 9xle™.2) = B,

for 0 < B < 1. The two-sided iterated bootstrap confidence interval of nominal
coverage level a is then given by

10 = [5’1—§—£/2 ’ 5’§+£/2] .
The sample-based quantity { may be termed the calibrating coefficient of the
nominal coverage level «, using the notion introduced by Loh (1987). In fact,
the interval I, resembles a two-sided percentile method interval with its
nominal coverage level « calibrated to a + 7.
Note that # can alternatively be obtained from the equation

(3) P(2U* — 1| < a + {i#) = a,
where
Ut = P4 < iz, 7).

In practice, the sample-based interval I, may be approximated by double
bootstrap resampling. An inner level of resampling is required to approxi-
mate U* from the conditional distribution of 6**, while an outer level of
resampling is used to approximate the distribution of U* itself. Such a double
bootstrap scheme is usually very time-consuming and computationally inten-
sive.

Asymptotic formulae of £ and Js are, however, available under some mild
conditions on g and F. Suppose for the time being that both ¢ and y, admit
Edgeworth expansions as follows:

(4) t=2n_1771(z§)¢(2§) +2n_2772(z§)¢(2§) 4 e
and
(5) Yp= 0+ n_l/2a{zﬁ +n72p1(2) + n 7 pa(zp) + },

for 0 < B < 1, where the 7/’s are odd polynomials, the p;;’s are polynomials of
degree at most j + 1 and are odd for even j and even for odd j; o? is the
asymptotic variance of n'/2(§ — 9); ¢ is the standard normal density func-
tion; and z; = ®~1( B) is the usual Bth standard normal quantile. A detailed
derivation of expansions (4) and (5) is given in Hall [(1992), Chapter 3]. Full
explicit expressions for ¢ and y,; are detailed in the Appendix. Since o and
the coefficients of the 7;s and p;,’s depend only on moments of F up to a
certain order, we can easily write down the corresponding expansions for
their bootstrap versions  and Fp:

(6) t=2n"(2,)d(2;) + 2n *y(2,) P(2,) +
and

(7) =106+ n_l/z&{zﬁ +n72p(25) + 07 Pgy(2g) + },



ASYMPTOTIC CONFIDENCE INTERVALS 1305

where 7, p;; and & are obtained by substituting sample moments for
population moments in the definitions of 7;, p;; and o, respectively. Define

(8) t= 2’1_1%1(%)4’(25)
and
(9) o= 0+ n V% {2, + n 12py(2) + 0 Pu(25) )

Both expressions (8) and (9) can be evaluated exactly from sample moments,
without simulation. By this means we arrive at two possible sample-based
asymptotic confidence intervals, namely,

I = [5’1—§—E/2,5’§+Z/2] and I, = [5’1—§—f/2,5’§+£/2]‘

Note that the interval I, still involves the sample quantity j,, which has to
be approximated by one level of bootstrap resampling. However, the inner
level of resampling is avoided by use of #, which is computed directly without
resampling. For the interval I,, no resampling is required at all.

The next section investigates the asymptotic properties of all three inter-
vals I, I, and I,.

3. Theory. First we establish some notation. Define, for any vector
x € R™,

m
x® = the ith component of x and |[ix[*= ) (x(i))2.
i=1

We may sometimes for convenience write x*) as x;, provided no ambiguity is
introduced in the context.

Throughout this section we shall make free use of Edgeworth expansions
up to some order as deemed necessary in the context. Conditions for their
validity are described in full detail in Hall [(1992), Chapter 5]. Briefly,
sufficient conditions for the results derived in this section to hold can be
summarised as follows:

1. g has eight bounded continuous derivatives in a neighbourhood around p.;
2. for some sufficiently large v > 0, E[|X||"] < o
3. F satisfies Cramér’s condition, that is,

lim sup xz(t) <1,
[l — e

where x,(t) = Elexp(it”X)] is the characteristic function of F.

In particular, Cramér’s condition holds if F has a nondegenerate absolutely
continuous component. In order to facilitate development of theoretical re-
sults about the asymptotic intervals we will assume conditions 1-3 from now
on.

For convenience, append to the random vector X products of the form

X(il)X(iz), X(il)x(iz)x(ia), e, X ... X(ip),
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up to a suitable order p, which must be at least the maximum order of
moments of ' we come across in this section. For reasons explained in the
Appendix, it suffices to take p = 6.

Suppose now that X has this extended form, with dimension d', say, and
that u = EF[X] € R?". Noting that the original X and P are exactly the first d
components of their respective extended versions, we can redefine the func-
tion g(x) on the more general domain R? in an obvious way so that g
depends on the first d components of x only. Define also

Moy, = E[(X = )@ (X = )@ o (X = )],
where i; = 1,2,...,d". X
The asymptotic variance of n'/2(§ — ) may then be obtained as

Z_

i = 1 0%;

g

X= uax}

Mije

X=p

It is easy to see that o2 is a function of  if the dimension d' of w is large

enough. We can therefore define functions # and B on R%' such that
g(x) —g(m)
h(x)
Then n'/2B(X) = n'/%( — 0)/6 represents a standardized version of 6

where & is the sample version of o.
Define also

h(p) =0 and B(x) =

d"B(x)
biios, = 5 T an |

i i lx=p

for i; =1,2,...,d". It is easily seen that

(10) Z b;bjm; =
i,j=1

We now consider the coverage error of I;,. It may be shown using the general
arguments of Hall and Martin (1988) that the coverage error of I, is of order
O(n~%). Martin (1990) provides an explicit expression for this leading O(n~?2)
term, defined in terms of coefficients of an expansion of the joint density of

[n/2(6 - 6) /5, n1?2(%l(z) - m(2))].

We present here a different approach to obtaining an explicit leading term for
the coverage error of I,, which depends only on derivatives of the smooth
function g. In fact, this approach may be used for any form of interval with
endpoints expressible in terms of a known Edgeworth expansion, as will be
appreciated later in this section. A detailed comparison can then be made
between I, and its asymptotic competitors, I; and I,, through explicit
evaluation of the leading terms of their respective coverage errors.
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The coverage error of a nominal a-level confidence interval I for 6 is
defined simply as P(8 € I) — . Set T, = n'/%(§ — 6) /6. Using (7) and noting
that

i—t= Zn_l(%l(zg) — ﬂl(zg))d>(z§) + Op(n_5/2),
we may write
IP(O 55’5+£/2) = P(Sn = 24402 T n_1/2ﬁ11(zﬁ+t/2) - )
+ 0O(n5/2),

(11)

where S, =T, + §, and

5, = ¢(Zﬁ)_l¢(zf){nﬁl(%1(zf) - 771(2.5))
+n_3/2p,11(zﬁ)(73'1(2§) - Wl(zg))}-

The order term O(n~%/2) is deduced via the delta method [see Hall (1992),
Section 2.7]. We first detail a few lemmas before we establish an Edgeworth
expansion of the distribution of S,,.

LEMMA 1. For any statistic A, = 0,(n~2/?) under distribution F, define
W,=T,+A,.

Let «; and «; be the jth cumulants of T, and W,, respectively. Then the
difference (k; — k;) is gwen up to order 0,(n~ 5/2) by the coefficient of
Gt)=1/jlin the power series expansion in (it) of the function

E[A, exp(itT,)]
El[exp(itT,)]

Q,(it) =

PrOOF. Note that «; and «; are given by coefficients of (it)//j! in the
power series of log E[exp(itW, )] and log E[exp(itT,)], respectively. Consider

log E[ ¢/Ws] = log{ y U ( t)J Z (j)[E[T'{‘—kAlz]}
Py N e

= log E[e"»] + itQ,(it) + O(n~?).

The last equality holds because Q,(it) is of order O(n~?/?). Thus «j and «;

differ by the coefficient of (it)’ /j! in itQ,(it) plus an error of order O(n~3). O

COROLLARY 1. Define m; = E[T}] for j = 1,2,... . Then we have

K= k; = E[ f(T,)A,] + O(n"%?),
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where the f(T,)s are polynomials in T,. In particular, we have the following:

@ f(T) =1,

() fo(T,) = 2T, — my);

(i) f3(T,) = 3T2 — 6T,m, — 3m,;

Gv) fAT,) =4T? — 12T m, — 12T, m, + 24m,m, — 4my;

W f(T,) = 5T} — 20T m, — 30T >m, + 120T, m;m, + 30m3
—20T,m3 — bmy;

(vi) fi(T,) = 6T} — 30T m, — 60T>m, + 360T2m,m, + 180T, m?
—540m;m3 — 60T,’m4 + 120m,m, — 30T, m,
+60m m, — 6m,;.

Proor. The proof is a tedious exercise of expanding @,(it) in a power

series in (i) and using the fact that m; has order O(n~'/?) for odd j and
O(1) for even j. O

COROLLARY 2. The following hold for the polynomials f;:

Q) E[f(T)] =1,
G E[f(T)l = O(n™"), forj=2,3,....

Proor. For any statistic Y and nonrandom constant C, the second- and
higher-order cumulants of Y and Y + C coincide. The result follows by letting
A, =n"32C in Corollary 1. O

LEMMA 2. Let w(x) be a smooth function on R?'. Suppose w has three
bounded continuous derivatives in a neighbourhood of . Set

= 9" (X)
I, =n"?(wX) - and w;; .; =————— ,
n (w( ) O)(M)) l wtllz i, axil 336,', -

fori;=1,2,...,d". Then

Al
O HATILI=n % Y wm;+ 02

i,j=1

Al
() EHATIL]=2 Y bou;+ 0,

i,j=1
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df
(i) Efo(TIT,] =n"123{ Y bbjw, p
i,j, k=1

+ Y @bby oy g +bb oy )
i k=1

+0(n=3/2),
Gv)  HfTOL,1=0(0n"") forj=4,5,6.

Proor. Again, the results are obtained by expanding f(T,) and T,
Taylor series with terms (X — p)X — p)@2) - (X — p)¢), using Corollary 1
and identity (10), and taking expectations. O

Now recall that 7,(z) is a polynomial inz with coefficients depending on 2
only. Therefore, m,(2) can be generalized to a function 7,(z;x) on R X R%",
with 7,(z; p) = 7(2). Define

d"my(z;x)

dx; <+ dx

131

Miig - i,( z) =

i |x=p

for i;=1,2,...,d". For convenience, we write n; .; =, .,(z,). Letting
A, =8, in Corollary 1, and setting ’

w(x) = n_3/2771( zg;x) é( zB)_1¢( Zg)

and

w(x) = n2ph(25) ™23 %) $(25)  B(2)
successively in Lemma 2, we deduce
ki =k = n P 3md(2)  d(2,) + O(n72),
Ky — Ky = 2(n_3/2 + n_zpl11(z/3))72¢(213)_1¢(Z§) +0(n=%?),
Kp = kg = 1 375(25) " b(2) + O(n”?),
Kj—k;=0(n"%?) forj=4,5,6,

(12)

where k; and «; denote the jth cumulants of T, and S, respectively, and
Al
™= Z Mij Mij»
i,j=1
df
(18) 7, = X bmmy; and
i,j=1
Al

Ta= ) by, mij + > (28;bj,m; 1y may + b, Dmpy i 1)
i,j,k=1 i,j,k,l=1
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Note that P(7,, < x) admits an Edgeworth expansion
P(T, <x) = ®(x) + n"2q,(x)$(x) + n""gy(x) d(x)
+ 7% 2q5(x) d(x) + n7Pqu(x) p(x) + O(n°"%),

where each g; is a polynomial with coefficients depending on cumulants of F,
and g; is odd for even j and even for odd ;. In particular, we can show that

q:(x) = _{km + W},

(14)

(x) = —x (k%Z + k22) " (4kygky; + kyy)(x* = 3)
P 2 ”
| Rh(x? — 1027 +15) |
72 ’
as(x) = —{k13  Bhakn Ra)(e? - 1
+ ko kg(x* — 6x% + 3) }
1
(15) 2

+ra(x; ki, Ry, Rars ks1),

() = —x (2k19k 13 + ko3)
q4 9

N (6kiykyy + B3, + 4k ygky; + 4kykgy ) (2% — 3)

24
(12k o kgokgy + 4k g kgy + 3kypk,y)(x* — 10x% + 15)
- 144
oy k2 (x® — 21x* + 105x% — 105)
- 144 }

+ry(xskig, kg1 Ry kags Ry, ke ),
where the &;; are constants depending ‘on F such that
(16) Kj = n_(j_z)/z(kjl + n_lka + n_2kj3 + "')

for j=1,2,3,..., with £;; = 0 and k,; = 1. The remainders r,(x;k,,...)
are polynomials with coefficients depending only on those k;; included in
their brackets. In fact, the coefficients of each r; are unaffected by changes
(12) up to an error of order O(n~5/%) and so need not be considered in the
distribution of S, on the right-hand side of (11). Hall [(1992), Theorem 2.1]
verifies (16) by an elaborate proof. Knowing expressions (15) and (16), we can
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therefore incorporate the cumulant differences as given by (12) into expan-
sion (14) and obtain a corresponding Edgeworth expansion for S,

P(S, <x)
= P(T, <x) —n " 1,¢(2,) " $(2,) x()
(17) —n 31+ (Rpgmy + 375) (2% - 1)
+5kaiTa(x* — 627 + 3) + ply(24) Ty}
X d(25) " $(2,) b(x) + O(n=5/2),
Now set
8, = n_l/zﬁu(zmt/z) + n_1ﬁ2l(zﬁ+t/2) + oy,
S,=8,+8, and T, =T, + 9.
Using similar arguments as in Lemma 1, we have
(18) log E[exp(itS,)] = logE[exp(itT,)] + itQ, + O(n=5/?),

where @, = E[ 8, exp(itT,)]/Elexp(itT,)]. Thus, by similar arguments as those
leading to (12), we know that cumulants of S;, differ from those of T! by the
same differences as given by (12), up to errors of order O(n~°/2). Therefore
the distributions of S;, and T, are related in a similar way as that between
S, and T, as given by (17), with k,, and k,; replaced by the corresponding
k', and k%, for T),. Since

E[T,] = ks + n71%pyy(25) + O(n71),
we can adjust 2, to be
(19) kiy = kg + p11(25) + O(n~1/2).
Similarly, by considering the third cumulant of T, we have
(20) ks = kg + O(n"1/%).
Substituting (19) and (20) for k,, and kj, in (17), we obtain
P(S, <x) =P(T; <x) —n"%2r,¢(2,) " ¢(2;) xh(x)
- n_2<%71 + (k1o + P1a(2) 72 + 373) (2% — 1)
+ kg ma(x* — 627 + 3) + ply(25) 75 %)
X $(25) " d(z,) (%) + O(n~%?).
Setting x = —z;,,,, and using (11), we deduce
P(0<9ps1/2) = P(Ty 2 =254, ,5) — 02257, 0(2,)

+n7 A B)d(z,) + O(n=5/2),

(21)

(22)
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where
M B) =37 + (k1272 +pu(zg)7e + %73)(23 - 1)
(23) +ék317'2(z,‘31 - 623 + 3)
- Zﬁp,u( 213)72‘
Changing the signs of ¢ and  throughout, we obtain
IP(O 55'5_3/2) =P(T, = —25_,,5) + n 2 %257, ¢(2;)
—n7A(B)(z;) + O(n™%?).

Finally, setting B8 = £ in (22) and B8 = 1 — ¢ in (24) and then subtracting, we
have

(24)

P(6€1y) =P(0<Fi2) ~P(O<I1_c i)
(25) = P(O < [5’1—§—t/2,5’§+t/2])
+nT220(€) (z,) + O(n7?),

using the facts that 2z, , = —z, and M¢&) = M1 — £). Noting that
(31— ¢—1/2> Jer1 /2] is the correct a-level interval, we have proved the following
proposition.

ProPOSITION 1. The coverage error of I, is given by
P(oel,) —a= n‘22)\(§)¢(z§) +0(n5%),
where £ =1 + a)/2 and M ¢) is defined as in (23).

By modifying the definition of §, slightly, we may obtain the coverage
errors of I, and I, as given by the following propositions.

PrOPOSITION 2. The coverage error of I, is given by
P(0€l)) — a=n"22{A(£) — my(2;)}d(2;) + O(n"5/?),
where ¢ =(1+ @)/2, and M¢) and wy(z,) are defined as in (23) and (4),

respectively.

Proor. Take
8, = d(25)  B(z,){n H(Fi(2,) — mi(2,))

+n_3/2p'11(zﬁ)(73'1( z¢) — my( Zg)) - n_zﬂz(zg)}-
Clearly, from Corollary 2, we have here the same situation as in the case of
I,,, except that now

Ky — Ky = n_z(%ﬁ - 77'2(2.5))4’(23)_1¢(Z§) +0(n™%?)
in (12). The result follows immediately. O
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Define
4 Ips1(2;X)
(26) {(2)= X bi”’ij3;—
i,j=1 i lx-w
and
(27) Ao(B) = {k12 +p1i(2) + sha(2f - 3)>Z/3p31(23)

+ zﬁg(zﬁ) _P41(Z/3)’
where p,,(z;x) is obtained by generalising p;,(z) as in the case of 7,(z; %),
and p,,(z,) is obtained from (5).
PROPOSITION 3. The coverage error of I, is given by
P(0€1,) — a=n"22{A(£) — my(2;) + A(€)}d(2,) + O(n™5/?),
where £ = 3(1 + a), and the functions M &), m,(2;) and A (&) are given by
formulae (23), (4) and (27), respectively.

Proor. Take
5, = ¢(zﬁ)_1¢(z§){n‘1(%1(zf) - 7'rl(z'g))
+n‘3/2p'11(z,3)(7°r1(z§) - Wl(zg)) - n‘2772(z§)}
—n732pg( 2g) — n 2 py( 2g).
The changes in (12) then become
Ky — Ky = _n_3/2P31(23) + n_z(%’rl - 772(Z§))¢(2/3)_1¢(Z§)
- n_2p41(23) +0(n7%%),
and
Ky = Kg = 2(’1_3/2 + n_zplu(zﬁ))72¢(zﬁ)_ld’(zg)
- 2n_2§(z5) + 0(n5%).
It follows from (22) that
P(0 < Jg7/2)
=P(T, = —25:,/2) — n‘3/2zﬁ72¢(z§) —n"%2pgi(25) (24)
+n M B) — ma(20)}b(2¢) +n h(B)d(25) + O(n™5?).

Similarly, we may obtain an expression for P(6 < J5_;,5). The result follows
by setting B = £ in the first expression and 1 — ¢ in the second and then
subtracting, using the facts that Ao(1 — &) = —A((&), ps; is an even function
and p,; is odd. O

All three intervals I, I, and I, enjoy a coverage error of O(n~?). Among
them, I, is the most efficient to evaluate, since it requires no resampling but
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simply substitution of sample moments into formulae (8) and (9). The next
section and the Appendix describe how these formulae can be calculated in
practice through an automatic procedure requiring no preliminary analytic
calculation from the user.

It should be noted that the last term in (9) is essential for a coverage error
of O(n~2), as it corrects for kurtosis. Scrapping this term from I, results in
an extra coverage error of —2n 'py(z,)¢(z,), as can be deduced using
arguments similar to those given earlier.

A potential drawback in the use of I, is the possibility of its giving an
empty interval when §,_; ;, > J:,7,,. This problem is most significant if
the theoretical iterated bootstrap interval I, has a poor coverage in the first
place. Therefore, the interval I, may have potential use for diagnostic
purposes in validating the bootstrap method itself.

On the other hand, the interval I, requires, in general, a single outer level
of resampling and is approximated by

o ; 0 ners
(Ba-é-i/1+ 1) OBCe+i/2+ 1)

where [-] denotes the integer-part function, possibly with some adjustment to
ensure well-ordering of the end points. The details of such adjustment are
given at the end of the Appendix. The need for one level of resampling makes
I, less efficient to calculate than I,. Also, the Monte Carlo construction
introduces a simulation error of size O(n~'/2B~1/2) to its endpoints [see
Booth and Hall (1994)]. This is inherited by the coverage error as a term of
O(B~'/%), according to a delta method calculation. The analytic approxima-
tion method suggested by DiCiccio, Martin and Young (1992a, b), which
estimates ¢ by analytic means, provides an alternative to the interval I,.
The leading coverage error terms of all three of the intervals considered in
this section consist mainly of leading terms from E[T;/(f — ¢)] for j = 0,1,2,
as well as those from the mean and skewness of 7). The half-asymptotic,
half-resampled interval I, brings in an extra error term —n~22m,(z,)¢(z,),
owing to approximation of # by the leading term in its asymptotic expansion.
The coverage error of the completely asymptotic interval I, includes other
terms involving higher-order cumulants of T,. There is no straight clear
message from these coverage error expressions about the relative perfor-
mance of these intervals. Since §, = O(n~3/2) in all three cases, we have

5’§+f/2 - 5’§+t/2 = 5’§+i/2 - 5’g+t/2' = 5’§+¢'/2 - §’§+z/2 = O(n_z)’
which implies that all the intervals are third-order correct compared with the
true nominal a-level interval [§;_;_, 5, 9., /2], using terminology given in
Hall [(1992), Section 3.4].

To conclude this section, we remark that the O(n~2) coverage errors of the
asymptotic intervals, as given by Propositions 2 and 3, can be reduced further
by explicit Edgeworth correction. Hall (1983) gives an account of this ap-
proach. However, complexity of the functions A and A, makes Edgeworth
correction a formidable task. Moreover, the gain from such correction is very
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much asymptotic and dubious for small samples. Also, we know from Hall
[(1992), Section 3.8] that a two-sided normal approximation interval corrected
for skewness also has coverage error of order O(n~2). It is interesting to
compare such an Edgeworth corrected interval with our asymptotic iterated
intervals. Heuristically, the Edgeworth corrected interval tries to correct an
already poor interval, such as one obtained from normal approximation,
whereas our asymptotic iterated intervals approximate the correct a-level
interval [, _;_; 2, J¢++/2] and should therefore result in more accurate cov-
erages. We shall return to this point in the simulation study of Section 5.

4. Practical evaluation of asymptotic iterated intervals. In this
section we give a user-oriented qualitative description of an automatic proce-
dure, which we have programmed in Fortran and which takes care of all the
lengthy algebra and calculations necessary for obtaining the endpoints of I,
and I, for a general parameter. Special attention is paid to a built-in
automatic derivative evaluation routine for computing the exact numerical
values of any required derivatives, and by use of which the need for execution
of symbolic operations is avoided. No separate software such as Mathematica
is needed. To set the program running, the user needs only to enter a few
trivial parameter values and the formula of the function g(u) in a compre-
hensible coded form. The detailed calculations involved in the automatic
procedure are described in the Appendix. The Fortran programs, which also
simulate coverage probabilities under any predetermined underlying distri-
butions, are available by anonymous ftp. Details of how to obtain the pro-
grams are given at the end of this section.

We first set up some notation. Suppose G is an r-variate distribution and
Y =(Y,,Y,,...,Y.)T is a random vector from G. The parameter of interest
6 = g(p) is assumed to depend only on moments of G up to order s. For any
positive integer m, we can, by means of a recursive algorithm, list all the
distinct r-sequences

(Z1529,---51,)

such that ¥_,i; = m, with the i; being nonnegative integers. For instance, if

m = 2 and r = 3, then we have a list
{(2,0,0),(1,1,0),(1,0,1),(0,2,0),(0,1,1),(0,0,2)}.

Define d(r, m) to be the number of such r-sequences corresponding to order
m, and define p(r,m) to be the ith sequence in this list, for i =
1,2,...,d(r, m). Define also YU iz~ to be the product Y{1Yj2 -+ Y. We
can then extend the random vector Y to some X, say, so that

X = (Ypl(r,l),sz(r,l)’ o YPae oD oy e

T
Ypd(r,2)(7',2), . ,Ypl(r,Gs), . ,Ypd(r,Gs)(r!GS)) ,
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that is, X is a sequence of products Y;t -- Y’ up to order 6s. Let F' be the
distribution of X under G. Define

s 2s 3s
d= ) d(r,m), d' = Y d(r,m), d’"= ) d(r,m)
m=1 m=1 m=1
and
6s
d" = Z d(r,m).
m=1

Also, set p = E[X] and extend the domain of g to R?" so that g(pn) = 6. In
fact, g depends on p only through its first d elements.

The preliminary Fortran program prelim.f computes automatically the
values of d, d’, d”, and d", which are stored, respectively, in the variables
NDO, ND1, ND2 and ND3. The extended vector X is also printed in terms of the
defining Y products. This is particularly useful for later reference when we
feed into the main program the formula of g(p) in terms of the X compo-
nents. The only input required by prelim. f from the user are

(28) NVAR=r, NORD=s and NORD6 = 6s,

defined via the PARAMETER command line.

The generality of this setup lies in the fact that the parameter of interest
g(p) in a smooth function model usually has a closed-form algebraic expres-
sion in terms of moments of G up to a certain order. The program prelim. £
orders the moments systematically to form the vector X and so eliminates
any ambiguity in the definition of g(pn) via moments. The trivial input NVAR,
NORD and NORD6 also makes prelim. f extremely straightforward to imple-
ment.

Next follows the execution of the main program asymp. f. Its basic input
includes the variables mentioned above, namely,

(29) NVAR, NORD, NORD6, NDO, ND1, ND2, ND3,

as well as the formula of g(j), the parameter of interest, which is entered
through the command

(30) CALL EVAL(g(IxX(1),IX(2),...,IX(NDO)), VECTOR).

Here the function g(1x(1),...,IX(NDO)) stands for a Fortran coded form of
g(p), where IX is a Fortran integer array to be identified with the first d
components of X. To specify g(-), we first break up its definition into a
sequence of basic algebraic operations such as addition, subtraction, multipli-
cation, division, logarithm and so on. To each basic operation corresponds a
Fortran user-defined function: for example, the addition operation goes with
the function IADD(:,:), multiplication goes with IMUL(:, ), logarithm goes
with ILOG(-) and so on. These user-defined functions constitute a kind of
routine library which enables us to define most common parameters with
algebraic formulae. A fairly comprehensive library of algebraic operations is
already attached to the program asymp. f. See the comments in the program
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for more details about this library. Here we illustrate its use with the
variance case in which g(x,, x,) = x, — 2% so that g(EY,EY?) is the vari-
ance of the random variable Y. The corresponding Fortran instruction (30) is

CALL EVAL(ISUB(IX(2),IMUL(IX(1),IX(1))), VECTOR).

The subroutine EVAL evaluates the exact numerical values of g(x) and its
partial derivatives up to the third order, all evaluated at the sample mo-
ments, and stores the output in a Fortran real array VECTOR. The details of
this automatic derivative evaluation procedure are discussed in Kagiwada,
Kalaba, Rasakhoo and Spingarn [(1986), Chapters 1 and 2] and follow the
approach described by Wexler (1988). We have generalised the procedure to
deal with any user-input dimension of the domain of g and any partial
derivatives up to the third order. The automatic differentiation done by EVAL
makes any preliminary symbolic calculation unnecessary. The output, which
is stored in VECTOR, is used in subsequent straightforward algebraic calcula-
tions in asymp. f to produce the endpoints of the asymptotic iterated inter-
vals. The Appendix details step by step the calculations carried out by the
program.

The program asymp. f is applicable to a variety of smooth function models
and no problem-specific recoding is necessary. The programs prelim.f
and asymp.f may be obtained by anonymous ftp from
ftp.statslab.cam.ac.uk. Give anonymous as your user name and your
full e-mail address as your password. Then type cd pub / CI: the two pro-
grams are fetched by typing mget prelim.f asymp.f.

5. Simulation study. A simulation study was conducted to investigate
coverage properties of the asymptotic intervals I; and I,. Three examples of
smooth function models were studied: mean, variance and correlation coeffi-
cient. In all examples, I, and I, were compared with the percentile method
confidence interval Ip. Because of the extremely intensive computation in-
volved in its construction, the “full-blown” standard iterated confidence inter-
val I; was only included for comparison in the mean example and for small
sample sizes in the variance example. A variety of other asymptotic confi-
dence intervals were also studied alongside I; and I, in the three examples.
These include the Edgeworth-inversion-based confidence interval Iy of With-
ers (1983), the two-sided Edgeworth, corrected confidence interval I, the
approximate bootstrap confidence (ABC) interval I,;. and the asymptotic
“short” confidence interval Igy. See Hall [(1992), Section 3.8] and DiCiccio
and Efron (1992) for details of Iy, and I,gc, respectively. The interval Igy
was taken to be the asymptotic version of the “short” interval proposed by
Hall (1988), namely,

A

Iy = [0 - n_l/zoA'(z§ +n"1%4, + n_léz),

6— n"17%(—z, + n" %, - n7lay)),
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where the endpoints are obtained by asymptotically expanding the theoreti-
cal “short” interval endpoints up to order O(n~3/2). Finally, the accelerated
bias-corrected confidence interval I , which requires one level of bootstrap
resampling, was also included together with I, for interest. See Efron
(1987) for details of its construction.

It should be remarked that all the confidence intervals thus far mentioned
were constructed in such a way that they have coverage error of order
O(n~2), except for I, and Igy, which have coverage error of order O(n~1).

Perhaps we should emphasize here that it is our main interest to demon-
strate in the simulation study the practical feasibility and advantages of
approximating the standard iterated bootstrap confidence interval by asymp-
totic expansions, while maintaining its desirable accuracy. We do not attempt
in this paper to provide a thorough comparison involving all the existing
competing confidence intervals of the asymptotic kind. However, our simula-
tion results are encouraging in that they show the asymptotic intervals I,
and I, to outperform many existing asymptotic forms of confidence interval.

We now describe in detail the setting of our simulation study. In all
examples the coverage probabilities of the various confidence intervals were
approximated from 1600 random samples, so that each figure has a standard
error of approximately 0.01. Intervals I;, Ip and Iy;_ were constructed using
B = 1000 bootstrap resamples. The full-blown iterated interval I, was con-
structed using C = 1000 inner level bootstrap resamples. The asymptotic
intervals I,, Iy, Igc, Iypc and Igy generally require no resampling. How-
ever, in cases of erratic asymptotic endpoints where, for example, the lower
limit exceeds the upper limit, certain kinds of bootstrap intervals were
substituted for those erratic asymptotic intervals. To be specific, we replaced
any erratic I, by I,, any erratic Iy, by Ip, and any erratic I ¢ by Igc,. For
any erratic Iy, or Igy, B = 1000 bootstrap resamples were drawn and the
interval rectified to [0(1), 0( ‘3y]. This adjustment is largely pragmatic, as
the theoretical bootstrap interval is likely to undercover in this situation and
the widest interval possible is given by the extreme pair of bootstrap quanti-
ties 0(1) and 0( ) Throughout the whole study, the nominal level a was taken
to be 0

ExaMPLE 1 (Mean). In the mean example, the parameter of interest 6 and
its estimate 6 were taken to be the population and sample means, respec-
tively. For input to the automatic procedure described in Section 4 we have
NVAR = NORD = 1. Our asymptotic iterated intervals I, and I, were com-
pared with Ip, Iy, Iy, Iypc and I . Four different underlying distributions,
normal, folded normal, negative exponential and lognormal, were studied
using sample sizes n = 15 and 30. The results are tabulated and shown in
Table 1. In the cases of I,, Iy and I,gq, the proportions of adjustments by
bootstrap resampling required out of the 1600 simulations are given in
parentheses following the corresponding estimated coverage probabilities.

It is found that the full-blown standard iterated interval I gives the most
accurate coverage probabilities in all cases. The asymptotic intervals I; and
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TABLE 1
Example 1—estimated coverage probabilities for mean, based on 1,600 random samples of sizes
n = 15 and 30 drawn from each of four different distributions. Intervals I,, Ip and I, are

based on 1,000 outer level bootstrap resamples. For asymptotic intervals I, Iy and Ipc,
bootstrap intervals Iy, Ip and Ipc  are substituted respectively if their endpoints turn out

to be faulty. The frequencies of such adjustments are given in parentheses following the
corresponding estimated coverages. The full-blown iterated interval I is based on 1,000

outer and 1,000 inner level bootstrap resamples

Interval: I, I, I, Iy Iy I,gc Iyc

Normal data N(0, 1)

n=15 0.891 0.894 (0.000) 0.860 0.897 0.875 (0.000) 0.862 (0.000) 0.859
n =30 0.901 0.903 (0.000) 0.892 0.902 0.899 (0.000) 0.893 (0.000) 0.889
Folded normal data |N(0, 1)|
n=15 0.876 0.873 (0.000) 0.839 0.883 0.866 (0.000) 0.861 (0.000) 0.855
n =30 0.885 0.881 (0.000) 0.869 0.888 0.879 (0.000) 0.875 (0.000) 0.882
Negative exponential data exp (1)
n=15 0.862 0.867 (0.004) 0.819 0.874 0.834 (0.000) 0.826 (0.000) 0.824
n =30 0.896 0.898 (0.000) 0.876 0.901 0.881 (0.000) 0.875 (0.000) 0.876
Log normal data exp (N(0, 1))

=15 0.813 0.811 (0.048) 0.765 0.829 0.780 (0.000) 0.788 (0.000) 0.783
n =30 0.847 0.846 (0.016) 0.815 0.853 0.827 (0.000) 0.819 (0.000) 0.826

I, are excellent approximations to Iy. They are more accurate than Ip, Ipc,
and the other asymptotic intervals by a considerable margin. Also, their
coverages are consistently smaller than those of Iy, although by a very small
magnitude. No adjustments by bootstrap resampling due to erratic endpoints
were recorded, with the exception of a few cases related to I,.

ExaMPLE 2 (Variance). We consider next the variance example studied by
Schenker (1985) and DiCiccio, Martin and Young (1992a). The parameter of
interest 6 is the population variance, and the estimate 6 is the (biased)
sample variance. Here we set NVAR =1 and NORD = 2 in our automatic
procedure. Intervals chosen for study in parallel with I; and I, included Ip,
Iy, Iy, Iyc and Igy. Four different underlying distributions with various
degrees of skewness and kurtosis were used: the standard normal N(0, 1),
with no skewness and no kurtosis; the folded normal |N(0, 1), with high
skewness and low kurtosis; the double exponential of unit rate with no
skewness and high kurtosis; and, finally, the lognormal, exp(N(0, 1)), which
has high skewness and high kurtosis. The variances are, respectively, 1,
1—-2/m, 2 and e(e — 1). Three different sample sizes were taken: n = 20,
35, and 100, respectively. The full-blown iterated interval I, was not con-
structed for n = 100 due to its immense computational demands in this case.

The simulation results are reported in Table 2. Again, for those asymptotic
intervals which might need bootstrap adjustments, the proportions of such
adjustments are given in parentheses. We observe that the full-blown inter-
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TABLE 2
Example 2—estimated coverage probabilities for variance, based on 1600 random
samples of sizes n = 20, 35 and 100 drawn from each of four different distributions:
intervals I, and Ip are based on 1000 outer level bootstrap resamples; for the
other asymptotic intervals, outer level resampling is carried out only if the asymptotic
endpoints turn out to be faulty; the frequency of such failures is given in parentheses
following the estimated coverage; the full-blown iterated interval Iy is based on 1000
outer and 1000 inner level bootstrap resamples

Interval Coverage, n = 20 Coverage, n = 35 Coverage, n = 100

Normal data N(0, 1) (no skew, no kurtosis)

I, 0.833 0.854 0.883
1, 0.832 (0.161) 0.853 (0.014) 0.884 (0.000)
Ip 0.727 0.793 0.857
Iy 0.848 0.859 —
Iy 0.804 (0.000) 0.843 (0.000) 0.883 (0.000)
Igc 0.802 (0.000) 0.841 (0.000) 0.883 (0.000)
Igy 0.821 (0.000) 0.853 (0.000) 0.887 (0.000)
Folded normal data | N(0, 1)| (high skew, low kurtosis)
I 0.803 0.821 0.874
1, 0.800 (0.285) 0.819 (0.101) 0.880 (0.003)
Ip 0.686 0.753 0.843
Iy 0.815 0.834 —
Iy 0.759 (0.000) 0.800 (0.000) 0.868 (0.000)
Igc 0.779 (0.000) 0.810 (0.000) 0.874 (0.000)
Igy 0.799 (0.000) 0.824 (0.000) 0.881 (0.000)
Double exponential data 3 exp(—|x|) (no skew, high kurtosis)
I; 0.811 0.846 0.869
I, 0.809 (0.304) 0.848(0.118) 0.872(0.013)
Ip 0.698 0.776 0.834
Iy 0.826 0.854 —
Iy 0.746 (0.000) 0.806 (0.000) 0.855 (0.000)
Igc 0.771 (0.000) 0.832 (0.000) 0.868 (0.000)
Igy 0.787 (0.000) 0.844 (0.000) 0.879 (0.000)
Lognormal data exp{N(0, 1)} (high skew, high kurtosis)
I, 0.526 0.602 0.696
1, 0.526 (0.533) 0.602 (0.393) 0.696 (0.216)
I 0416 0.504 0.608
Iy 0.544 0.630 —
Iy 0.430 (0.000) 0.523 (0.000) 0.662 (0.000)
Igc 0.485 (0.000) 0.559 (0.000) 0.659 (0.000)
Isy 0.510 (0.000) 0.576 (0.000) 0.681 (0.000)

val I gives the most accurate coverage and is consistently undercovering.
Our asymptotic intervals I; and I, offer close approximations to Iy. They
have virtually the same coverage and generally outperform the other asymp-
totic intervals Iy, Iyc and Igy, especially when n is small or the underlying
distribution is of the lognormal type with high skewness and high kurtosis.
The percentile method interval I is noticeably poor in coverage. It should be
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noted that the coverage of Iy, is quite similar to that of I, or I, for large
sample sizes, despite its having a coverage error of greater order asymptoti-
cally. This observation, of course, demonstrates the inadequacy of using
asymptotic theory alone in an assessment of different confidence interval
construction procedures. With the lognormal distribution, all seven confi-
dence intervals display very poor coverage properties. However, it is in this
case where the most pronounced difference between performances of the
intervals can be observed: here the asymptotic iterated intervals I; and I,
clearly approximate the full-blown I best.

Another point should be made about the proportions of adjustments by
bootstrap resampling required by the intervals I,, Iy, Iz; and Igy. Asymp-
totic endpoint failures are reported only in the case of I, where the failure (or
adjustment) proportions reflect remarkably the general coverage error of the
bootstrap confidence intervals. A poor coverage generally results in a higher
chance of getting a faulty pair of endpoints for I, and having to adjust by
resampling, as pointed out in our discussion at the end of Section 3.

To appreciate the huge impact on coverage error made by different under-
lying distributions, we computed the theoretical leading terms of the expan-
sions of the calibrating coefficient ¢ and coverage error, for the theoretical
iterated bootstrap confidence interval I,. These are, respectively,
27T1(z§)¢(z§)n ! for ¢, as given by (4), and 2/\(§)¢(z§)n“2 for the coverage
error, as given by Proposition 1. The results are listed in Table 3. We can
easily understand why the lognormal distribution yields relatively huge
coverage error and why the asymptotics are hardly revealing in this case.

ExamMPLE 3 (Correlation coefficient). We repeated the simulation study
conducted by DiCiccio, Martin and Young (1992b) concerning the construction
of confidence intervals for a correlation coefficient. Our parameter of interest
0 and its corresponding estimate 6 were taken to be the population and
sample correlation coefficients, respectively. The input parameters for the
automatic procedure were therefore NVAR = NORD = 2. Intervals I,, I,, Ip,
Iz and Igy were constructed in this example. The much more computation-
ally intensive full-blown interval I; was not examined here. Nevertheless,

TABLE 3
Example 2—theoretical leading terms in asymptotic expansions of calibrating coefficient
and coverage error corresponding to the standard iterated bootstrap confidence interval I,
under distributions studied in the variance example

Calibrating coefficient Coverage error
True distribution t POcl) -«
Standard normal, N(0, 1) 3.109 n1 —1.499 X 10%2 n~2
Folded normal, | N(0, 1)) 6.498 n~1 —1.370 x 10 n=2
Double exponential, exp(—|x[)/2 1.206 X 10 1 —1.240 X 10* n~2

Lognormal, exp(N(0, 1)) 1411 x 106 n~t —2.488 X 1020 p -2




1322 S. M. S. LEE AND G. A. YOUNG

our conclusions are not compromised very much by such omission, as we
observe coverage results for I, and I, which, compared to the other exam-
ples, are relatively accurate, and the full-blown figures might therefore
reasonably be expected to be close to those of the asymptotic intervals in this
example. Six different underlying distributions were combined with four
sample sizes n = 15, 20, 30 and 50 in the complete simulation study.

Let W;, W, and W; be independent standard normal variates. The under-
lying distributions were taken to be, respectively, as follows:

1. Y =|W,| and Z = |[W,] so that (Y, Z) are independent folded normal vari-
ates;
2. Y =|W| +|Wg| and Z =|W,| + |W,| so that (Y, Z) are correlated folded
normal variates with p = 0.5;
. Y =W, and Z = W, so that (Y, Z) are independent normal variates;
.Y=W, +V3W,)/2 and Z = (- W, + Y3 W,)/2 so that (Y, Z) are corre-
lated normal variates with p = 0.5;
5. Y = exp(W,) and Z = exp(W,) so that (Y, Z) are independent lognormal
variates;
6. Y = exp{(W, + W;)/v2} and Z = exp{(W, + W,)/ 2} so that (Y, Z) are
correlated lognormal variates with p = (e®/2 — e)/(e? — e).

W

Table 4 reports the complete simulation results, with proportions of adjust-
ments by bootstrap resampling given in parentheses. It is clear that our
asymptotic iterated intervals I; and I, outperform the other three methods
by a considerable margin. The coverage of I, slightly dominates that of I, in
all but a few rare cases. Also, our asymptotic iterated intervals result in
coverage rather stable against the various sample sizes considered in the
study. The percentile interval I, performs moderately well, quite unlike the
poor coverage revealed in the variance example. Its dependence on sample
size is only token. The Edgeworth corrected interval Iy, and asymptotic
short interval Igy turn out to be the poorest in terms of coverage error,
especially for lognormal data or for small to moderate sample sizes such as
n = 15 or 20. Their coverage depends more strongly on sample size and thus
enables them to regain some advantage over I, in a few cases when n = 30
and 50. Again, the asymptotically more accurate interval Iy is, contrary to
expectation, always outperformed by the interval Iy, which is asymptoti-
cally much inferior. .

As in the variance example, the failure proportions of intervals I,, I; and
Ig; have an apparent diagnostic quality concerning coverage accuracy.

6. Comments. The simulation study reported above suggests that, in
terms of coverage accuracy, the asymptotic iterated intervals I, and I,
approximate the standard iterated bootstrap confidence interval excellently
and are more effective than the percentile method and many other existing
asymptotic methods.

We note also that the improvement in coverage accuracy made by I, and I,
over the percentile method is similar to that which results from the analytic
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Example 3—estimated coverage probabilities for correlation coefficient p, based on 1600
random samples of sizes n = 15, 20, 30 and 50 drawn from each of six different distributions:
intervals I, and Ip are based on 1000 outer level bootstrap resamples; for the asymptotic
intervals, outer level resampling is used only in case the endpoints turn out to be faulty;
the proportion of using outer level resampling is given in parentheses following the estimated

coverage probability in this case

Interval n =15 n =20 n =30 n =50
Folded normal data, p = 0

I, 0.889 0.882 0.892 0.893

I, 0.877 (0.0000) 0.879 (0.0000) 0.893 (0.0000) 0.893 (0.0000)
I, 0.866 0.857 0.872 0.877

Ige 0.841 (0.0006) 0.844 (0.0000) 0.866 (0.0000) 0.878 (0.0000)
Isy 0.850 (0.0006) 0.855 (0.0000) 0.874 (0.0000) 0.883 (0.0000)

Folded normal data, p = 0.5

L 0.874 0.873 0.890 0.895

I, 0.864 (0.0006) 0.868 (0.0000) 0.887 (0.0000) 0.897 (0.0000)
I, 0.841 0.840 0.868 0.872

Iy 0.810 (0.0000) 0.824 (0.0000) 0.856 (0.0000) 0.883 (0.0000)
Iy 0.820 (0.0000) 0.833 (0.0000) 0.867 (0.0000) 0.888 (0.0000)

Normal data, p = 0

L 0.901 0.895 0.901 0.896

I, 0.892 (0.0000) 0.893 (0.0000) 0.897 (0.0000) 0.893 (0.0000)
I, 0.873 0.873 0.875 0.874

Ine 0.849 (0.0000) 0.856 (0.0000) 0.878 (0.0000) 0.889 (0.0000)
Isy 0.863 (0.0000) 0.871 (0.0000) 0.888 (0.0000) 0.894 (0.0000)

Normal data, p = 0.5

I, 0.884 0.889 0.904 0.898

I, 0.871 (0.0006) 0.887 (0.0000) 0.899 (0.0000) 0.894 (0.0000)
I, 0.853 0.869 0.883 0.887

Ine 0.824 (0.0000) 0.858 (0.0000) 0.876 (0.0000) 0.887 (0.0000)
Isy 0.839 (0.0000) 0.865 (0.0000) 0.895 (0.0000) 0.893 (0.0000)

Lognormal data, p = 0

I, 0.873 0.863 0.862 0.859

I, 0.836 (0.0031) 0.835 (0.0019) 0.846 (0.0025) 0.849 (0.0006)
I 0.851 0.839 0.841 0.845

Igc 0.705 (0.0013) 0.723 (0.0006) 0.750 (0.0006) 0.786 (0.0000)
Iy 0.706 (0.0019) 0.728 (0.0006) 0.760 (0.0006) 0.789 (0.0000)

Lognormal data, p = 0.377541

L 0.863 0.849 0.852 0.857

I, 0.834 (0.0081) 0.821 (0.0069) 0.843 (0.0069) 0.856 (0.0044)
Ip 0.815 0.806 0.812 0.819

Iy 0.689 (0.0050) 0.718 (0.0050) 0.748 (0.0019) 0.779 (0.0019)
Iy 0.697 (0.0050) 0.723 (0.0056) 0.753 (0.0025) 0.791 (0.0025)
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approximations proposed by DiCiccio, Martin and Young (1992a, b). More-
over, the problem of overcovering by analytic approximations in the correla-
tion coefficient example reported by DiCiccio, Martin and Young (1992b) does
not exist for our asymptotic iterated methods.

The relative performances of I, and I, depend on the particular parameter
of interest. Since it is the computationally more efficient method, the interval
I, is very attractive when both I, and I, have similar coverage error. The
need for bootstrap resampling typically renders construction of I; slower
than that of I, by a factor of around 100 on an HP9000 workstation,
depending on the number of bootstrap samples drawn. Nevertheless, both
intervals I, and I, are far quicker to compute than the standard full-blown
iterated bootstrap confidence interval, which requires two levels of bootstrap
resampling. For example, in the case of constructing a confidence interval for
the mean based on a sample of size n = 15, an HP9000 workstation took
about 0.0012 second to compute I, using the automatic package described in
Section 4, and about 155 seconds to compute Iy, the full-blown iterated
confidence interval based on 1000 outer and 1000 inner level bootstrap
resamples. Here the automatic package outruns the double bootstrap proce-
dure by a factor of almost 130,000. Of course, the above comparison might
have exaggerated the general computational savings offered by the automatic
procedure, given that the population mean is a particularly simple parameter
of interest. Nevertheless, the computational savings may still be expected in
most problems to be as dramatic as a factor of thousands. Moreover, the
automatic procedure has been packaged by means of a single Fortran pro-
gram which takes care of all analytic calculations. The simple input require-
ments of the program makes construction of the asymptotic intervals practi-
cally feasible for general use.

It should also be remarked that the built-in exact derivative evaluation
routine utilised in our automatic procedure for construction of asymptotic
iterated percentile bootstrap confidence intervals can in fact be incorporated
into any asymptotic confidence interval construction procedure, especially
those based on the smooth function model. Its numerical yet exact nature
makes any symbolic calculation or numerical approximations unnecessary. It
thus opens up the possibility of packaging many existing confidence interval
construction methods for general application, in a way that demands no
analytic calculation from the user.

Finally, as observed from our simulation results, the interval I, is more
likely to be erratic (and to require adjustment by the method described above)
if the coverage of common bootstrap intervals fails to approximate the
nominal level accurately. In this case, the real fault is not due to the
asymptotic nature of I,, but rather to the general failure of bootstrap
intervals. Therefore, the use of bootstrap resampling to substitute for the
asymptotic endpoints does little to rectify the coverage error. Nevertheless,
such need for resampling adjustment may be seen as a sign of bootstrap
inadequacy and is therefore of some diagnostic value. Further research in
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this direction may be beneficial to our general understanding of bootstrap
methods as applied to confidence interval construction.

APPENDIX

Detailed calculations for constructing I, and I,. We now give a
complete account of calculations coded in the program asymp. £. The notation
follows that introduced in Section 4.

Consider first the infinite list . of sequences of the p,(r, j),

Z= {pl(r,l), P27, 1),y par 1y(7, 1), po(7,2),...,
Par,2)(T52), -y pi(7ym), sy pag (T, m), )

Let p,(r) denote the ith sequence in .Z. Define an operation ® on N X N such
that, for any i, j € N, we have

i ®j=Fk if p(r) + p;j(r) is the kth sequence in .#.
Therefore, we have
XOXW = xaen)

provided i ® j does not exceed the dimension of X. To perform this operation
we set up an initial list

2o = {pl(r’l)’ pz(r,1),...,pd(r’1)(r,1), pi(7,2),...,
pd(,’z)(r,2),...,pl(r,68),...,pd(r’Gs)(r,Gs)}

as the basis underlying the operation. An order of 6s is adequate for the
entire range of moments likely to be encountered.

Suppose now we observe a random sample Y,,...,Y, from G. Let X,
denote the extended vector X corresponding to Y;. Our automatic procedure
operates as follows:

1. Calculate

- 1 i
X = - Xl’
ni-1
2. Partially differentiate g(x) up to the third order. Define
98 (x) 9%g(x) 9°g (x)
(x) = , (%) = d g, (x) = —————
gt(x) &xi glj(x) axi (9xj an gz]k(x) &xi &xj &xk

fori,j,k=1,2,...,d". _ _ _ _
3. Evaluate the sample values of g(X), g,(X), g,/X) and g,;,(X).
4. For x € R?", define the following functions:

r“'ij(x) =Xigj T X%,
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fori=1,2,...,d" and j =1,2,...,d"
/J“ijk(x) =Xigjer ~ XigjXp T XjgrX; — Xpe;X; + 2xixjxk’
fori,j,k=1,2,...,d'; and
ru'ijkl(x) = Xigjorel ~ XiejerXi T XjgkeiXi ~ XreleiX; T Xigie; Xk
+ Xi9;%X%; + XigpXiX; + Xig1 X%}, + Xigr X1 %; + Xig1 XXy
+ Xy X% — 3xixjxkxl,

for i,j,k,l=1,2,...,d.
5. Partially differentiate u;; and w;;, to get the following:

Iy (%)
(%) =
L J 3xl
fori,j=1,2,...,dand [ = 1,2,...,d’; and
Iy jp (X)
Iy (X) = ————,
L Mijk &x,

fori,j,k=1,2,...,dand 1 = 1,2,...,d".
6. Evaluate the sample values of all the functions defined in steps 4 and 5,
that is, u,(X),... and so on.

To simplify notation, we now drop the bracketed arguments of the sample
values of functions so far evaluated, by setting, for example, g = g(X),
g =8X),....

7. Evaluate
d 1/2
h = { Z gigjmj}
i,j=1
8. Evaluate
& 8ij 8ijk
ai=7, aij=7] and aijk:_l:_’
fori,j,k=1,2,...,d".
9. Evaluate
d
hy = (2h)_1 )y {2lgikgj/~"ij + 8,89, ,U«ij}
i,j=1
and

d
hy=h"" Y {giklgj/““ij + 88 it 8in&i I ij T 8.8 ,U«ij}
i j=1

—h ™ Hhyh + g8},
for k,1=1,2,...,d'.
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10. Evaluate
bi = h—lgi,
fori=1,2,...,d,
b =h"'g,;—h7%(g:h; +g;h;),
and
bijp =h7'g — h7%(gihy + ginh;+8inh; + 8hy + gihiyy + gphyj)
+2h7%(g,hihy, + gihyh; + gyhih)),

fori,j,k=1,2,...,d'.
11. Evaluate

d
ly=3 Z Qijlijs
i, j=1
d d
Iy= X2 a;a;a, pp + 3 > ;A0 Mg M,
i,j,k=1 i,j,k,1=1
d d
_ 1
lyy= X {Eaijakzmk My + aiajkl/"‘ij/"‘kl} + X Q@ My,
i,j,k,l1=1 i,j,k=1
and
d d
ly= X aaaq Mijr + 12 h Q0;QL0A; ., My Mg,
i,j,k,1=1 i,j,k,l,m=1
d
+ > {4aiajakalmn Mig M Mg

+ 12aiajaklamn Mg ,LLJm /‘Lln} - 3.

&
_ 1
ki =3 b bij/'Lij’
i,j=1 ‘
d d d’
kg = ) bbb,y +3 Y, ) b0y, byp, i1
i, j, k=1 i, j=1k,l1=1
d
1
koy = 3 Z bijbkl/“’“ik:“'jl
i j,k,l=1
d d’ d d

+X X bibpi i + 2 Y bibi bijn
i=1j,k,1=1 i=1j, k=1
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and
d d &
ky= X b;b;b,b; wijp; + 12 b > ;06,6 Wij1 M
i,j,k,l=1 i,j,k=11l,m=1

d d’
+4 Z Z bibjbk blmn Mg Mo Mg n
i,j,k=11l,m,n=1

d’

d
+12 ), h b;5;by,10, Min Mjm My — 3.
i,j=1k,l,m,n=1

13. Evaluate

1 4 ligh,,
Oplig = 2 ) (@ijm Kij + @ O by;) — n
i j=1
for m=1,2,...,d’, and
d
Oplan= ) {Gaimajakl Kip My +30;@;Q 1, tyy, by + 60,005, 0y 3,y i)
i j k=1
d 3lq.h
31'%m
+ X {3aimajak Mijr T ;050 d, Mijk} T
i,j,k=1

for m =1,2,...,d".
14. Set ¢ = 3(1 + a). Evaluate z, = ®~1(¢).

15. Evaluate
d d d d"
a, = Z Z Mijbi dilyp + %(252 - 1) Z r“'ijbi ‘9j131~
i=1j=1 i=1j=1
16. Evaluate
pi(2) = _{llz + —“( 6 ) ,
I + 1y (4li9l3, +141) (22 — 3
p2(zf) = _zf{ 9 + 24 ( )
15(2¢ — 1027 + 15)
+
72 ’
) I3 2
pl(zf) - 3
and
I+ Loy (4lply +1,) (822 -3
P'z(zg) == + ( )

2 24
12(5z% — 8022 + 15
+ 31( 2¢ ¢ ) _
72
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Evaluate also q,(z,), g,(2,), qi(z,) and q5(z,) by replacing /;; with &,;
in the above formulae for the p, and p;.
17. Evaluate

m1(2¢) = Pa(2:) — qa(2;)
= pi(2){Pi(2e) —2epi(2e) + di(2¢) — 2. au(2¢)) + ae 2
and
t=n"'2m(z,)d(z,).
If0 < ¢+ £/2 < 1, then evaluate

=g+ nl/zh{zﬁ - n"2p(z4)

+n~

1 P1(Zﬁ)p,1(zﬁ) _pz(zﬁ) _Zﬁp?(zﬁ) )}
2

for p= ¢+ ¢/2and 1 — ¢ — /2, respectively, where the functions p,, p,
and p' are recalculated using formulae in the last step.

Note that the notation used in the above description follows that given in
Section 3, except that now all quantities represent sample versions. Only
steps 2 and 5 require anything other than arithmetic operations: these can be
most conveniently handled by an exact derivative evaluation routine, as
described in Section 4 above and Kagiwada, Kalaba, Rasakhoo and Spingarn
[(1986), Chapters 1 and 2]. This routine evaluates derivatives exactly and
numerically, thus saving a great deal of analytic effort and /or computer time
spent on symbolic operations. Note that the term u,.;.,.(X), defined in step 4
and evaluated subsequently in step 6, depends on a moment of order 6s, the
highest throughout the whole procedure. This observation explains our choice
of the maximum dimension d”.

As pointed out in step 17, it may happen that &+ £/2 ¢ (0,1) so that
Zeiise is infinite and the formula for y,,; , is not defined. Also, if 5,_,_;,, >
Ye+i,2, the interval I, would be empty and meaningless. In these situations,
we suggest obtammg an approximation to I; by means of bootstrap resam-
pling. The calibrated coverage level a + £ should also be forced to its nearest
point within the interval [0,1]. To be more specific, we draw B random

resamples X7 xp from y, calculate the version of 6, Bb say, based on
each y/, order these quantities as 0(1) < e 0( 3y, and then approximate I,
by

0 * j*
[B(ml)’ 0(m2>] )

where m; = max{1,[(B + 1)1 — ¢)]}, my = min{B,[(B + 1)¢']}, [-] denotes
the integer part, and £’ = max{1/2, £ + £/2}. Such choices of m,, m, and &’
ensure that 1 < m; <m, < B.
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