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ASYMPTOTICALLY EFFICIENT ESTIMATION IN
SEMIPARAMETRIC GENERALIZED
LINEAR MODELS'

By HunGg CHEN

National Taiwan University

We use the method of maximum likelihood and regression splines to
derive estimates of the parametric and nonparametric components of
semiparametric generalized linear models. The resulting estimators of
both components are shown to be consistent. Also, the asymptotic theory
for the estimator of the parametric component is derived, indicating that
the parametric component can be estimated efficiently without under-
smoothing the nonparametric component.

1. Introduction. Consider the following semiparametric regression
model

(1) E(Y1X) = by(Wrey — £0(2)),

where X7 = (WT, ZT) € RY X R%; a, is a J X 1 vector of unknown parame-
ters; g, is a smooth function of Z; the conditional distribution of Y given X is
of the form

exp[b,(WTay + g0(2))Y + by(Wiay + go(Z))] v(dY);

b,(-) and b,(-) are known functions, v is a sigma-finite measure on R; and
bs(-) = —b4(-)/b(-). Additional regularity conditions are discussed in Sec-
tions 3 and 4. Model (1) is an extension of partial spline models considered in
Wahba (1986) and others. In a partial spline model, it is assumed that
Y =Wla, + g,(Z) + & with E(¢) = 0 and Var(e) = o 2. The purpose of this
paper is to find an estimator of a, with the usual parametric convergence
rate n~'/2 without “undersmoothing” the estimator of g,,.

Under the additional assumption that g,(Z) = Z78, where § is an un-
known parameter vector, model (1) reproduces the generalized linear model
(GLM) considered by Nelder and Wedderburn (1972). On the other hand, if
WZa, + go(Z) is replaced by an unknown smooth function of W and Z, it
becomes the nonparametric generalized linear model considered by O’Sulli-
van, Yandell and Raynor (1986). ‘
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As motivation for model (1) consider the following example. One often uses
a binomial logistic linear regression to explore the relationship between W,
the characteristics of an individual, and Y, the individual’s binary responses.
However, if the data are collected over a long period, a more flexible model
may be needed to accommodate possible inhomogeneity with respect to time.
Call the time variable Z. In the nonparametric approach, the regression
function E(Y | W, Z) is modelled by b5(8(W, Z)), where 6 is an unknown
smooth function of W and Z. A difficulty with this approach is related to the
so-called curse of dimensionality, which expresses the fact that the variance
of the resulting estimated regression function increases rapidly with increas-
ing dimensionality of (W, Z). On the other hand, the intercept term can be
modelled as a parametric function of Z; the bias of the resulting estimated
regression function may be unacceptably large. A compromise between these
two approaches leads to the semiparametric model (1) which allows the
intercept to vary with time in a nonparametric way. Through use of real and
simulated data, Green and Yandell (1985) have demonstrated the usefulness
of this model.

It is known that the method of maximum likelihood (ML) leads to an
asymptotically efficient estimate of the parameter in regular parametric
models. However, Neyman and Scott (1948) remarked that the estimator
obtained with use of the ML method does not necessarily display consistency
as the number of unknown parameters increases in proportion to the number
of independent observations. In model (1), if there is no restriction on the
form of g, the ML method leads to a data interpolation in the Gaussian case
when the observed X-values are distinct. In this case, the maximum likeli-
hood estimators of o, and g, may not even be consistent. For these reasons,
we deliberately impose a finite-dimensional structure on the problem by
approximating g, by a prescribed set of basis functions. This approximation
yields a parametric model within which we estimate a, and g, by the
method of maximum likelihood. Specifically for sample size n, g, is con-
strained to be in an appropriately chosen N-dimensional linear space spanned
by {gn1s---» gwnt (e, 8o = LN, Bjgn;)- Let (&, By, ..., By) denote the esti-
mate of (&, By, ..., By) by (numerically) maximizing the empirical log-likeli-
hood with g, in (1) substituted with £, B;&n;- Then the maximum likeli-
hood estimator (MLE) of (a, g,) is defined as (&, £, Bign;)-

In this paper, {gy;, 1 <j < N} is chosen to be tensor-product polynomial
splines with equally spaced knots. The MLE of (a, g,) is discussed in detail
in Section 3. The existence and uniqueness of the MLE of («,, g,) and its
rate of convergence are discussed in Section 4 (Theorem 2). A theorem on the
asymptotic normality of & (Theorem 3) is also given in Section 4. Discussions
of the asymptotic efficiency (in terms of the asymptotic variance) of & and the
choice of N are presented in Section 2 and in Remarks 1 and 2 of Section 4.
Some useful tools are developed in Sections 5 and 7, while the proofs of our
main results are given in Section 6.

We note some related results in the literature. First, the estimation
scheme considered in this paper is a special case of the method of sieves due
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to Grenander (1981) in which the sieves correspond to our chosen sequences
of approximating spaces. Second, generalizations and developments for par-
tial spline models may be found in Wahba (1990) and references therein.
Third, model (1) is closely related to the conditionally exponential families
discussed in Severini and Wong (1992). They have proposed an approach
based on the profile likelihood for the estimation of the parametric compo-
nent, and the resulting estimator is shown to be asymptotically efficient. This
approach is adopted in Severini and Staniswalis (1994) to derive estimator of
o, in model (1) based on weighted quasilikelihood. Finally, Bickel, Klaasen,
Ritov and Wellner (1993) have given a general discussion of estimation in
semiparametric models.

2. Remark on the choice of a smoothing scheme. A number of
methods have been developed in Bickel, Klaasen, Ritov and Wellner (1993)
for the estimation of the parametric component of semiparametric models,
including, in particular, the approach proposed in the present paper. For
model (1), all methods in Bickel, Klaasen, Ritov and Wellner (1993) involve
an estimation of the nonparametric function. Therefore, a smoothing scheme,
which consists of a smoother and a specification of the value of the smoothing
parameter, is needed to define the estimate of &, in model (1).

In partial spline models, Rice (1986) has shown that the partial spline
estimate of a, [Wahba (1986)] is asymptotically normal with mean zero but
the convergence rates of the estimate of g, are slower than the usual
nonparametric convergence rates defined in Stone (1982) when W and Z are
dependent. He then raised the issue of whether the usual data-driven meth-
ods for selecting a value for the smoothing parameter in a nonparametric
regression context can be used to get an efficient estimator of the parametric
component in partial spline models. Following Rice (1986), Chen (1988),
Speckman (1988) and Chen and Shiau (1991) have demonstrated that the
convergence rates of the estimate of a, may be quite different under differ-
ent smoothers even when the same estimation scheme is used. Moreover,
some remedies have been proposed is Speckman (1988) and Chen and Shiau
(1991) to remove the effect due to the choice of a smoother so that the usual
data-driven methods can still be used to select the value of the smoothing
parameter. The validity of these proposed remedies has been verified in Chen
and Shiau (1994) for the case when the smoothing spline smoother is used
and when either the generalized cross-validation method or Mallows’ C; is
used.

The aforementioned works conclude that different smoothers may affect
the resulting estimate in partial linear models even though these smoothers
are found to behave similarly in nonparametric regression models. An expla-
nation of those phenomena is attempted in Chen and Shiau (1991). However,
it is not clear whether such an explanation retains its validity in more
complicated models, such as the one considered in the present paper or in
likelihood-based semiparametric regression models. This is the basic motiva-
tion for writing this paper.
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For the proposed estimator of a,, it is shown in Theorem 3 that it
converges to «, at a rate of n7'/2 when the usual optimal choice of the
smoothing parameter is used. Therefore, we conjecture that the proposed
estimate of a, can still achieve the parametric convergence rate when the
smoothing parameter N is chosen by commonly used data-driven methods in
a nonparametric regression context. However, it is not clear whether the
same conclusion can be drawn for estimates derived under other smoothing
schemes such as the method of penalized maximum likelihood in Green
(1987). Speckman (1991) used a heuristic argument to derive convergence
rates for asymptotic bias and variance of penalized maximum likelihood
estimators for model (1), which indicates that the penalized likelihood esti-
mate of a, in Green (1987) cannot achieve the parametric convergence rate
when the smoothing parameter is chosen by commonly used data-driven
methods.

3. The proposed estimate. In this paper, we consider only the case in
which Z takes on values in a d-dimensional cube. Without loss of generality,
we may assume that Z € [0, 1]%. The estimate of (a,, g,) is defined by
beginning with a definition of the space of tensor-product polynomial splines
which is used to approximate g,. To describe these splines, we start with the
definition of S(v, K)(-), a one-dimensional polynomial spline space with K,
equally spaced knots. Let {K,}, n > 1, denote a sequence of positive 1ntegers
with K, abbreviated for convenience as K hereafter. Let [0, 1] be partitioned
into subintervals

E—1 k
Pl K 'K

K-1
) forl <k <K and I;= T,l.

Then S(v, K)(-), v > 1, is the collection of (v — 1)-times continuously differ-
entiable functions on [0, 1] such that each function on every I, coincides with
a polynomial of maximal degree v. Hence S(v, K)(-) is a vector space of
dimension K + v, which is referred to as the space of polynomial splines of
order v + 1 with simple knots at /K, for 1 < £ < K. A particularly conve-
nient basis for S(v, K)() may be constructed with the normalized B-splines
Bg,(-), 1 <k < K + v [see Eubank (1988), Section 7.2.2, for further details].

Given that z =(z,...,2,), v=(vy,...,vy) and K= (K(),..., K(d)),
where v; and K(j) are p051t1ve integers, let TS(v, K) denote the space
spanned by functions s on [0, 1]¢ of the form s(z) = H 1 Bg( J)k(z ), where
1<k, <K(j)+ v;. Then TS(v, K) has dimension l_[d 1 [K(J) +v; ] The space
TS(v, K) will be referred to as the space of tensor- product polynomlal splines.
In this paper, for convenience of presentation, our treatment will be confined
to the case of K(1) = -+ = K(d) = K but the results are easily carried over
to general K. In the present case, T'S(v, K) is written as TS(v, K). Write
[0, 1]¢ as the disjoint union of K¢ cubes Cy = e, I, , wherek = (ky,..., ky)
and 1 < k; < K. When s € TS(v, K), it is easy to see that s is a polynomlal
in d varlables of maximal degree v; in the jth variable on C|,.
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According to the definition of T'S(v,, K), we have {sg(2), ..., sgy(2)} as its
basis, where sy, (z) = I1%_, By, (z;) for some kj, 1 < k; < K + vy;. Let 0,(x)
be of the form

0k (x) = wla + g (z) = wla + skB,

where x” = (w7, z7), wl' = (w,,...,w;), « € R, sy = (sg1(2),..., spn@)T
and B =(By,..., By)T. Let X7, y,) € R7*¢ X R, 1 <i < n, denote a random
sample from model (1), where x! = (W], z7) = (w;;,...,w;;, 2;1,...,2;4) €

RY X [0, 114, #'= (w;)),xy and & = (sg,(z;)), xy- For a given matrix .7, let
&, denote its ith row vector.

By approximating g, with gx € TS(v,, K), we then apply the method of
maximum likelihood to model (1) with a random sample of size n. This leads
to

@ maxi(a,p) [= X6+ 5By + buFia + 58] |
a, i=1

Denote the maximizer of [, (a, B) as (&g, ] %), which can be obtained by
using standard computer packages such as SAS or GLIM3 [Baker and Nelder
(1978)]. Set Zx(2) = sgByx and Ox(x) = wldy + gx(z). Then (dg, &x(2),
0x(x)) is called a MLE of (a,, g,(z), 6,(x)) under the restriction that
go € TS(v,, K). As a remark, the use of tensor-product polynomial splines in
high dimensions is precluded by the exponential growth of the number of
basis functions as a function of the dimensionality of Z.

In practice, v, and K should be chosen automatically from the data. The
analysis in this paper does not address this issue. However, it is expected
that commonly used data-driven methods can be applied to choose v, and K
as discussed in Section 2. We now define a class of functions, £(v,, vy, c,), of
which the members can be approximated well by some elements in TS(v,,
K). An error bound for this approximation in sup norm is given as Lemma 1
in Section 5. Additional notation is needed here. For a nonnegative integral
vector v = (vq,...,v,) and for z = (z,,..., z,), write

d d
vl = X v, z’ = l—[lzj‘!J
jo

Jj=1

d d
DV =] — vy | — |vg-
&zl &Zd

Let 0 < y < 1. Then £(v,, v, ¢,) is the family of all functions g on [0, 1]¢
such that |D™g(z) — DV¥9g(z,)| < cylz — z,|” for z, z,, € [0, 1]¢, where ¢, is
a fixed positive constant and v, = (v, ..., V,4). Here |-| denotes Euclidean
norm. Set p = [v,] + v and N =TI%, (K + vy;). Define |¢l. =
Sup, ¢ (o,1¢/ ¢(2)|-

and
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ConDITION 1. The function g, € Z(v,, v, ¢,), and |g,l. is bounded.
Next, we state a condition on the independent variables W and Z.

CONDITION 2. The variable W = (W,,...,W,)T € C, where C is a compact
set in RY with nonempty interior. The density function of X, f, satisfies

0<ec, <f(X) <c,<» forallx € C x [0,1]¢,

for some constants ¢; and c,.

Condition 2 implies that the distribution of W — E(W | Z) does not concen-
trate on a (J — 1)-dimensional hyperplane. Hence a, and g,(Z) in model (1)
are uniquely determined. Under Condition 2, W and Z are to be treated as
random in this paper. A possible extension to the case of deterministic design
points is presented as Remark 3 in Section 4.

4. Main results. In this section we state our main results on the asymp-
totics for the proposed estimators &, and g.(z). Recall that & and 3y (z)
are defined by maximization of a pseudo-log-likelihood when g is approxi-
mated by regression splines. In this form the estimation problem involves
parameters whose number increases with increasing sample size. The ap-
proach used in this paper to characterize the asymptotic properties of (&g,
8x(2)) is to decompose the error into a sum of two terms which correspond to
approximation and estimation errors, respectively (analogous to the familiar
bias and variance decomposition used in the curve-fitting literature).

To evaluate the approximation error, we need to characterize the maxi-
mizer of the expected pseudo-log-likelihood function A(6), which is given by

(3) A(Og) = [[5:(0x(x))b3(06(x)) + by (6 (x))] F(x) dx,

where 0,(x) = W, + g,(2). Since 0 is only an approximation of 6, the
maximizer of A(6;) need not exist or be unique. In Theorem 1, it is shown
that there exists a unique maximizer of A(fy). Denote it as O (x) = W a
+ gxo(z), where g o(z) = skBx,. Upper bounds on the approximation error,
lago — ol and |gxo — &olx, are also given in Theorem 1.

The estimation error is due to the maximization of an empirical version of
3) li.e., I,(a, B)]. Our treatment of the estimation error will be based on the
preliminary consistency argument and the use of Taylor series expansion as
in Cramér (1946). However, some modifications will be necessary in order to
handle difficulties due to the increased number of parameters with increasing
n. In particular, two arguments (Argument 1 and Argument C) will be used
repeatedly in the proof. These two arguments are described in Sections 6.2
and 6.3.1, respectively.

Recall that N (= K¢) is the number of basis functions used to approximate
&o- Condition 2 and the following condition guarantee that the approximation
error decreases to zero as the sample size increases. The following condition
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also give a bound on the size of the underlying approximating spaces, N, in
order to control the estimation error.

ConpITION 3. lim, ,, n"'K? =0 and lim, ., Kn~? = « for some y > 0.

Typically (2) is nonlinear in « and B, and so finding its maximizer requires
an iterative numerical scheme such as the iteratively reweighted least squares
algorithm. The following condition guarantees that (2) is concave in its
arguments, which precludes the possibility of having many local maximizers
for (2). The maximizer of (2) will be shown in Theorem 2 to be uniquely
determined. The asymptotic properties of the maximizer of (2) are summa-
rized in Theorems 2 and 3.

CoONDITION 4. (a) The functions b; and b, are thrice continuously differ-
entiable, and b and b’ are strictly positive on R. (b) There is a subinterval
U of R such that v is concentrated on U [i.e., v(U¢) = 0] and

bi(u)y + by(u) <0 forallu e Rand y € U.

Since b4(u,) € U for all u, € R by (1), a simple consequence of Condition
4 is
(4) b1 (u)bg(uy) +b5(u) <0 forall u,u, €R.

Although Condition 4 seems quite restrictive, it is easily seen to apply to all
exponential families (in the canonical form) using canonical link functions.
Condition 4 also applies with use of certain other link functions. As an
example, the binomial distribution with the probit link function satisfies
Condition 4. More examples can be found in Wedderburn (1976).

Define |l ¢ll2 = E¢?. The following theorem characterizes the maximizer of
the expected pseudo-log-likelihood function A(6y).

THEOREM 1. Suppose that Conditions 1-4 hold. Then (a) there exists a
unique 0y, which maximizes A(0g) over a and gx € TS(v,, K) and (b)
la gy — ol = O(K™P), llggo — &olla = OCK™P) and |ggy — 8ok = O(K P *2/2),

The following corollary follows easily from Theorem 1(a). This corollary
states that the partial derivatives of A(6;) [= AW T« + sk B] at 6, are zero
or the partial score functions are random variables with zero mean. It will be
used in the proof of Theorem 3 to derive a tight bound on the asymptotic bias
of Vn (&g — ag,) in Section 6.3.1. Define u (s, t) = sb(t) + by(t).

COROLLARY 1. For 1 <j <J, E[u(b3(0,(X)), Ox(X)DIW; = 0; and for 1 <
k <N, E[ ul(b3(00(X)), GKO(X))]SKk(Z) = 0.

The existence and uniqueness of the MLE of («, g(z), 6(x)) are established
in Theorem 2. With use of upper bounds on the approximation error in
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Theorem 1, Theorem 2 also gives upper bounds on the rates of convergence of
&g to ay and g4(-) to g,(-). The proof of Theorem 2 is given in Section 6.2.
We need an additional condition to give a bound on the estimation error of
&y and gg.
ConDITION 5. There exists a positive constant ¢, such that
E(exp(tY) | X =x) <,
for all |¢| < ¢, and x € C X [0, 1]¢.

THEOREM 2. Suppose that Conditions 1-5 hold and p > d /2. Then
ldg — oyl = Op(\/N/n log n + K‘p),
18k — 8ol = OP(\/N/n log n + K“P+d/2) =0,(1)

and, except on the event which depends on {X,,...,X,} and whose probability
tends to zero with increasing n, there exists a unique (&g, Bg) which
maximizes [,(a, B).

Define uy(s, t) = sb(t) + by(t),
E{[ —uz(55(04(X)), 0o(X))]W; | Z = z)
E{—uz(b3(00(X)), 00(X)) | Z = z} ’

T, = E{[ —uz(b3(00(X)), OO(X))](VVJ - hJ(Z))(Wk - hk(z))} and 3 = (U}k )JxJ- It
is easy to check that 2 is a positive definite matrix by Condition 2 and (4). We
now state the main result.

(5) hy(z) =

THEOREM 3. Suppose that Conditions 1-5 hold and that K, = n* If
1/3d > Aand p > d/2, then

n'’2(&x —ay) - N(0,271) indistribution.
REMARK 1. When Y is normally distributed, hy(z) = E(W|Z = z) and
model (1) reduces to
(6) Y=WTa,+g,(Z) +&, with e ~N(0,0%).
Define h(Z) = (h(Z),..., h4(Z))" and write (6) as
Y=(W-h(Z) a + (h(Z) a; + g,(Z) + &.

Observe that W — h(Z) is orthogonal to square integrable function @(Z) in
the sense E{[(W — h(Z))"al¢(Z) | Z} = 0 and (h(Z))T(a — a() + g,(Z) = E(Y
— WTa | Z) is the least favorable curve defined in Severini and Wong (1992).
This suggests that o 2[ E(W — h(Z))(W — h(Z))"]™! is a lower bound on the
asymptotic variance of a “regular” estimator of o,.
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In general,

—[87(00(X))b3(64(X)) + b5(6,(X))] _ Uy (b3(64(X)), 05(X))
[64(60(X))]* [62(60(X))]*

and E{{uy(5;(0,X), 0,X)IW — h(Z)"a¢(Z) | Z} = 0 in model (1). Here
¢(Z) is a square integrable function. As argued for model (6), 3! is a lower
bound on the asymptotic variance of a regular estimator of &, in model (1).
On the other hand, Theorem 3 says that the asymptotic variance of &y
achieves the bound 3 ~!. More precisely, it can be established rigorously that
& is asymptotically efficient among all regular estimators of a by defining
“regular estimators” in the sense in Begun, Hall, Huang and Wellner (1983).

Var(Y | X) =

REMARK 2. Recall that E(Y |X) = b;(WTa, + g,(Z)) and Var(Y | X) is
bounded. Since b% is strictly positive, it follows from Theorem 1 in Stone
(1982) that g,(z) can be estimated with optimal rates of convergence when
K, =~ n¥/@P*d  Comparing the specification of K, in Theorem 3 with
nl/@pr+d) this theorem states that a, can be estimated efficiently when
K, =~ n¥/@P*® a5 long as 1/3d > 1/(2p + d) (or p > d). This result paral-
lels the one for partial spline model in Chen (1988). Therefore, it is natural to
conjecture that & remains an efficient estimate of a, when K is deter-
mined by data through the generalized cross-validation method.

REMARK 3. Although Theorems 1-3 are derived under the assumption
that the (w7, z7) vectors are random, analogous results hold for deterministic
(w!, z7) satisfying Condition 2 in an appropriate sense. As an illustration,
consider an example that w; is either 0 or 1 and z; € [0, 1]. This example is
motivated by the matched case-control study in biomedical studies. In such a
case, a is the treatment effect and z; is a certain exposure variable which
needs to be controlled. The observed data are (w;, z;,, Y;) for 1 <i < n. Let
F,(z | w) denote the conditional empirical distribution for the design points,
{zm‘ w; =w for 1 <i < n} [0, 1]. Suppose that n~ 'L}, 1, _,, converges
to a constant between 0 and 1 and supy . <1lF(z=ulw) — Fz=ulw)=
O(n~1'). Here 1, is the indicator function of A and F(z | w) is a distribution
function with density f(z | w) bounded away from 0 and « on [0, 1]. Then,
Theorems 1-3 continue to hold when Condition 2 is replaced by the above
conditions on the deterministic vectors (w;, z;,).

5. Preliminary lemmas. In this section we will state and prove some of
the basic lemmas needed in the proofs of Theorems 1, 2 and 3. Lemma 1 gives
the approximation error of T'S(v,, K) which follows from Schumaker [(1981),
Theorem 12.8]. The next two lemmas are taken from Chen [(1991), Theorem 4
and Lemma 1, and Lemma 3(i), respectively]l. Lemma 5 is taken from
Breiman, Friedman, Olshen and Stone (1984), Lemma 12.26]. Lemma 7 is
taken from Stone [(1986), Lemmas 1 and 2].
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LEMMA 1. For each g € Z(v,, v, ¢,), there exists an s € TS(v,, K) with
lg — sle < c3 K77 for some fixed positive constant c, which depends only on v,
and c,.

Define

S = (f[o ]dsz(z)skl(z) dz )

)1 NxN

where the sg,’s are as defined in Section 3. Let A, (A) [, (A)] denote the
largest (smallest) eigenvalue of A.

LEmMMA 2. Suppose that Conditions 2 and 3 hold. Then the following hold:
(a) there exist two positive constants c, and cs, depending only on v, and d,
such that, for all K,

0<cy <ALin(NS) < A (NS) < ¢ <

(b) except on an event whose probability tends to zero with increasing n,

n

nt Y 1, cey —P(ZEC,)|<ceP(ZECy) forallk,
1

1=

for some positive constant cg.

LemMmA 3. If q(2z) is a polynomial in z with a maximal total degree [v] and
U is a d-dimensional cube with length K~', then

¢, K~ suplq(z)/? sf q’(z) dz.
zeU U
Here c; is a positive constant depending only on v.

In the remainder of the paper, the M,’s denote positive constants which
are independent of 7.

LEmMMA 4. If s = E}_, Bysky, € TS(vy, K) and |sl. < cg, then max, | B,|
< ¢g, where cy does not depend on N. Here cg and cy are positive constants.

PROOF.  Recall that sk, (z) = I17_, By, (z,) for some kj,1<k;<K+uv,,
Write s(z) = £}, B,I17_, By, (2)). Using induction on d, the dimensionality
of z and applying (viii) from de Boor [(1978), page 155], we get max, B2 <
M, sup, ¢, s?(z) for some constant M, which depends only on K and v,. O

LEMMA 5. Suppose that Condition 5 holds. Then there are positive con-
stants cyy and cq; such that

E[exp(t(Y - b3(05(X)))) | X = x] <1+ ¢pot2

for x € C x [0,1]% and It| < cy,.
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LemMA 6. Suppose that Conditions 2 and 3 hold. Then the following hold:
(@ n 'IF sg(2)sg(2;) — Esg(Z)s,(Z) = O,(nK?)"'2a,), for all k, I;
(b) n_l Z;L=1 wijSKk(zi) - EVVjSKk(Z) = Op((an)—l/Zan)’ for allj7 k,

© n '@, — EWW, = 0,(n"'/?), for all j, k;

where a2 /nK™¢ > 0 as n — .

PrOOF. Part (a) follows from Chen [(1991), Lemma 2]; (b) follows from an
analogous argument; and (c) follows from the central limit theorem. O

LEMMA 7.
(a) Given that T > 0, there exist c;, > 0 and A > 0 such that

b1(n)b3(mo) + ba(me) <A — cqplml,
for Inyl < T and n € R.
(b) Let Z be a random variable having mean zero. Then E|Z| < 2E|u + Z|
forall u € R.

6. Proofs of the theorems.

6.1. Proof of Theorem 1. By Lemma 1, there exists an s, € TS(v,, K)
with |g, — s.l» < c;KP. Define 6,(x) = w’a + s,(z). Since |g,l. is bounded,
|s.l. is bounded and hence A(6,) is bounded. Now, we show that the maxi-
mizer Oo(x) = wlay, + skBx, of A(f) is bounded, where ay, =

(0‘1%1, ceey aI%J)T and By, = ([31?1,..., BI?N)T‘
Using Lemma 7(a) with T = |6,|.., we have
J J
(7) A '21 aW, + gK(Z)) <A —-c,E ‘21 oW, + g (Z)|.
J= j=
It follows from Lemma 7(b) that
J
E| ) a,W,; + gK(z)’
j=1
= E|ay[W, — E(W, | W,,...,W,,Z)] + ey E(W, | W,,...,W,,Z)

J
+ ) a W, + gK(Z)‘
j=2

= FEE al[Wl _E(Wl I Wz,...,WJ,Z)] + alE(Wl ' W2,...,WJ,Z)

J
+ ) aW, + gx(Z) Wz,...,WJ,Z}
j=2
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1
> —EE<|a1[W1 ~ E(W, | Wy, ..., W, Z)][|W,,..., W, Z)

J?
|l |

=—E|W1 E(W, | W,,...,W,,Z)|.

Since E|W, — E(W, | W,,...,W,, Z)| > 0 by Condition 2, it follows from (7)
that A(Z)_, ;W, + gx(Z)) > — as |a;| > =. Recall that A(6,) is bounded.

Hence, ay, is bounded. Similarly, ag; is bounded for 2 <j < J.

Again using Lemma 7(a) with T' = |6,l.., we have
f[bl(wTa + 8% Bx)b3(0p(x)) + by(Wwia + s%BK)]l{ZEsupp(sz»f(x) dx

<A-P(Z € supp(sg;)) — 012f|WT0‘ + 8% BxlLgz c supp(sgen [(X) dX,

where supp(s) is the support of s. Then the B2, are shown to be bounded by
using arguments similar to those showing that the a2, ; are bounded.

Since both aK and B2, are bounded, we need only show that Theorem 1
holds for 6, with |0kl < M, for some positive constant M. In other words,
the proof of Theorem 1 can proceed under the assumption that uy(b4(6,(x)),
0 (k) is bounded away from zero.

Let a = (ay,...,a,,5)" be a vector of unit length. By Condition 2 and
Lemma 2(a), there exists a unique minimizer of E[Z}’ 1@ EW; 1 Z) -
LV b,sgi (D) over b,, Whlch is denoted by XY _; b)sg,(z). Since
E[Y]_, o, EW; | D> <M ZJ , @’ for some constant M, depending only on
IE(W IZ)Im, we have TV 1(b°)2 < M;NY/_ ,a? for some constant M, by
Lemma 2(a). Set r(Z) = ©{ a; E(W; | Z) — ZN bY sz(Z) We obtain

2

J
E| Y aW, + Z @y Sxr(Z)
j=1 k=1
J 2
= E| ¥ a)(W, - E(W;12))
(8)

2

N
E| Y (b - aJ+k)sz(z) + Er*(Z)
k=1 ‘

i af.) Amin(Cov(W — E(W | Z))) +

N 2
; (bl(e) - aJ+k) ])‘min(s)‘

Since |a| = 1 and L}, (b)) < M3NY7 ; a?, we have Tp_; (b) —a;,,)? = 1
when L7_, a? = o(N 1). We then conclude that

2

J N
E ZaJWj+ Y ayipsgn(Z)| =M,N?,

j=1 k=1

(9)
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for some positive constant M,, because A,; (Cov(W — E(W |Z))) >0 and
Amin(S) = ¢, N1, Denote the Hessian matrix of A(6;) by V2A. It follows from
(9) that

—a"(VA)a = [[~uy(by(60(%)), 0 ()]

J N 2
Yaw + Y ay8(2)| f(x)dx > 0.
j=1 k=1
Hence, Theorem 1(a) holds.
Note that A(6,) < A(6x,) < A(8,) and A(6,) — A(8,) = O(K %P). We have
A(6go) — A(6,)) = O(K~2P). Observe that

2

10(X) = 8p(X)II5 =

(ag; — )W, + gx(Z) — go(Z)

2

2

J
(10) = X (ax; = o)[W; - E(W; 1 Z)]
Jj=1 2
J 2
+lgx(Z) —go(Z) + ) (aKj - “JQ)E(Wj | Z)
Jj=1 2
where 0,(x) = wla, + g,(2) and o, = (af,..., a?)?. Note that A_, (Cov(W

—EW|[Z) >0 and |E(W;|Z). is bounded by Condition 2. Therefore
L(ag; — af)? = O(K2P) and lgx(@) — g,(@)5 = O(K~27) by (10) and
A(6,) — A(8y) = O(K~2P). Then by Condition 1 and Lemma 3, sup,.¢lgx —
gole = O(K?*%/2) and hence sup, c |0l = O(K?*?/2), This completes the
proof of Theorem 1(b). O

6.2. Proof of Theorem 2. Due to Condition 4, [,(a, B) is a strictly concave
function of (a, B) if (7, ) or (7, ) (7, #) is of full rank. Note that
EWWT EWsL

. (WTW %Ty)
n _
Es,WT S

Ay Ty

2
1/2
EWWT EWwsL\|’

T T
(11) < n-l(WW 7/5”)— .
EsyW S

Ay STy

1

1/2

% _I(WT% AR EwwT EWS%
n _

Ay Sy Es, WT S
by (2.2-11) in Golub and van Loan (1985), where |-|;, |‘|2 and |-|. are the
usual matrix norms. It follows from (11) and Lemma 6 that the magnitude of
the Lh.s. of (11) is 0,(nK%)"*/2a,). Then by (9), (7, %) is of full rank, except
on an event whose probability tends to zero, by choosing a, appropriately
according to the specification of K.

oo
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Since /,(a, B) is strictly concave, there is at most one maximizer. Hence, to
prove the existence, uniqueness and consistency of (&g, %) it suffices to
show that the solution of the system of likelihood equations, dl,/ da; = 0 for
l1<j<dJand dl,/dB, =0 for 1 <k <N, lies in the vicinity of (aKO, BKO)

We now show that the system of likelihood equations has a solution in a
neighborhood of (ag,, Bx,) with diameter O((N /n)Y/? log n). First, write

Il (a, n
b(aw—ﬁ) a—ag )y uy(b3(0o(x;)), 9K0(xi))wij
J B=Bk i=1
+ i w;;b1(0x(x,)) s
i=1
+ i:l [ul(b3(00(xi))’ 0x (X))
_ul(b3(60(xi))’ 0K0(xi))] Wi
and
dl (a, n
n(TB'B‘)‘ a=ag Z ul(b3(00(xi))’ GKO(Xi))sz(zi)
k B=Bx i=1

+

skr(2;) b} (GK(Xi))Si

+

M= 1 s

~
I
-

[ul(b3(00(xi))’ OK(xi))

—u1(b3(00(x;)), 0K0(xi))] skr(2;),
where &; =y, — b3(0,(x;)). The proof proceeds via the following steps to find
probabilistic bounds for the components in the above decomposition:

Step 1. Prove that (a) sup;._,.yZr ; sg(z)01(0x(x,)e;| =
0,((n/N)"?log n) and (b) sup, ;. ;L7 ; w; ;b (8 (x;De,| = O (n1/2) when
Ib (%)l is bounded.

Step 2. Prove that (a) sup;_; ;X7 ; [u(03(04(x,)), Ogxo(xDw,;| =

0,(n'/?) ‘and (b) sup, .y IT7_; [u(b5(04(x,), OxoxD]sg,(z,)l =
0) ((n/N)l/2 log n).
Step 3. Choose appropriate 8, and.8, such that

12‘;}3} Eil [ul(bS(eo(xi))’ 0,(x;)) — uy(b3(00(x;)), 9K0(xi))]wij 2 cy3nd
and
1<S}£N ';1 [ul(b3(00(xi))’ ek(xi)) - ul(b3(00(xi))’ 0K0(xi))] sxr(2;)

n
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hold in probability when 0 = 60xo; Or Oxq,. Here 050;(X) = 0xo(x) + w73, +

Suppose that Steps 1-3 hold. Note that |5(0x)l. is bounded for 6 = 04,
and Oy, with 8 = (N/n)"/2log n. By the fact that [ (a, B) is strictly
concave and the definition of 6y, and 60x,,, we conclude that

dl,(a,B) dl,(a,B)

a=agot+d;
By B=Bxo+3d; 9By

<0

a=0go—9;

B=PBgo—32
and

il (o, B) 9l (e, B)

da: a=agot+d; .
7 B=Bxo+8; J

<0

a=ago—8;
B=Bko—92

in probability if 8 > M;(N/n)'/%log n for some constant M;. Note that the
partial derivatives of /,(«, B) are continuous in («, B). Hence, the solution of
the system of likelihood equations is in a neighborhood of (&, Bx,) With
diameter O((N/n)Y? log n) and

&g — agol = Op(\/N/n log n) and

|§K _gKoloo = OP(\/N/n log n)

The proof of Theorem 2 is completed by use of (12) and Theorem 1(b) when
Steps 1-3 hold.
It remains to prove that Steps 1-3 hold.

(12)

Proor oF STEP 1. Note that N in Step 1(a) increases with increasing n.
The proof of Step 1(a) proceeds by first establishing an exponential bound for
the tail probabilities of ¥7_; sg,(z;)b1(0x(x,))e; with fixed & and then using
Bonferroni’s inequality to find a probabilistic bound for all k. This argument
will be employed again in the proofs of Steps 2 and 3 and in Sections 6.3 and
7. It will be referred to as Argument 1 hereafter.

Using Lemma 5 and Markov’s inequality that, for an arbitrary constant
Mg, if max, _;_, ltsg(2)b1(0x(x,)| < cq,

n n\1/2
P( L skr(2:) b1(0x (x;))e; ZMG('N) lognzl,...,zn)
i=1
n\1/2
< 2exp{—tM6(ﬁ) log n}

X Lf[lE(exp(tsz(z,-)b'l(GK(xi))si) I zl,...,zn)

n

< 2exp| -ty ) " tog n| TT{1 + cultsma() 53005 x)]')
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< 2exp{—tM6('Inv)l/2 log n}exp{cwt2 i [sz(Xi)bll(oK(xi))]z}

i=1

1/2 1/2
s2exp{ [Malogn—M7 (N) ]}

for some constant M. The last inequality follows from Condition 3, Lemma 4
and the fact that [b7(6xz(X))l.. is bounded. With the choice ¢ =
M 2M,)"1(N/n)'/? log n, then, for some constant Mg,

Zi,...,Z n)

Hence, sup,_, . y[El; sg(2)01(0k(x,)s| = O,(n/N)"?log n). Step 1(b)
holds by the central limit theorem. O

n\1/2
< Mﬁ(ﬁ) logn

P( sup Zsz(zi)b,l(OK(xi))Si
1<k<N|i=1

> 1 — Nexp| - My(log n)*].

PROOF OF STEP 2. Since p > d/2, |u(b3(6,X), 0x,X)l., sup;|W;| and
sup,|sg,(Z). are bounded by Theorem 1(b) and Condition 2. By Corollary 1,
both ¥, u;(b3(0o(x,)), Oxo(x,Dw;; and E7_; u(b3(0y(x,)), Oxo(x;))sk,(z,) are
sums of independent bounded random variables with zero means. Step 2(a)
holds by the central limit theorem. By Corollary 1 and Hoeffding’s inequality
[Hoeffding (1963), Theorem 1], an exponential bound can be established for
the tail probabilities of X ; u(b5(60,(x;)), 0go(X,;)sk,(z;) for fixed k. Step
2(b) holds by use of Argument 1. O

Proor oF STEP 3. It follows from (8) that there exist §, and §, and
constants My, M,,, M,; and M,,, which are independent of N, with

(13) |E(WT, +s36,)W,| > M5 for1<j<d,

and

(14) |E(W75, + 558,)s,,(Z)| = Myy6N~* for1<k <N,

where 8, = 8(8yy,...,8,,)", 8 = 8(8y,..., 8,x)", min; |8,/ > M,; and

min, |8y, > My,, £/, 87, =1 and £}_, 83, = 1. Note that du(s, ¢)/dt =
uy(s, t). A Taylor series expansion leads to

4?1 [u1(ba(90(xi)), OKOI(XL‘)) - ul(b3(00(xi)), 0K0(xi))] w;;

Il

[42(b3(00(x,)), 00(x,))] (7:85 +F 8wy,

i=1

where 65, lies on the line segment between 6y, and 6y,,. Note that both
|0k 01l and |6g ool are bounded if & is bounded. Hence, inf, _, _, u,(b4(6,(x,)),
0%,(x,;)) > 0 and |uy(b4(6,), 0%l is bounded away from zero and infinity due
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to (4) when & is bounded. By employing Argument 1, there exists a constant
¢,3 such that

sup
1<j<dJ

'=i1 [41(B3(00(x,)), Oxor(X,)) — w1(Bs(0(X;)), Oko(X,))] w;;| = cygnd

holds in probability for a small positive constant 6 by (13) and Hoeffding’s
inequality. By use of an analogous argument, there exists a constant ¢;, such
that

sup
1<k<N

> [ul(b3(00(xi))’ 9K01(xi))

i=1

n

_ul(bS(eo(xi))’ OKO(xi))] sxr(Z;)

holds in probability by (14) and Condition 3 [cf. (n/N)¥21og n = o(n/N)].
Hence, Step 3 holds. O

6.3. Asymptotic normality. Theorem 2 establishes that (&, BK) is in a
region of (@ g, Bx,) with diameter o, (1). Recall that (&, Bx) is the solution
of the system of likelihood equations. Using a Taylor series expansion of

dl,/da; and dl,/9pB, about (g, Bgo), We get
Y [ua(:s 0% (x)))] [%(&K — agg) +°7i(BAK - ﬁKo)]wij
i=1

dl(a,B)

éaj

a=agg’

B=Bxo

forl1<j<dJ,and

;n‘.l [wa(yi, 0% (x,))] [%(&K —agg) +F( By — BKO)]sz(zi)

_ dl,(a,B)
P

a=argg»

B=Bxo

for 1 <k < N.Here 6;f = (1 — A,)0x + A, 0, for some A, € [0, 1]. Therefore,
setting Y = (yy,..., y,)T and D, = (05(0x(X,)), ..., by(0x(x, )7, and letting
&, and %, be two n X n diagonal matrices with iith entry —u,(y;, 05(x,))
and b'(6gq(x,)), respectively, we have

(%Tyn% 7/%5?) (&K - aKo) ~ (%T

N Y+ D).
yWnW ‘Sﬂwny BK_BKO ‘SﬂT)( " n)
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Let b, and &g, be n X 1 vectors with ith entry u,(b5(6,(x,)), 0x,(x;)) and
b'(0xo(x,))¢;, respectively. Assume that .#7%,.% is of full rank (cf. Lemma 8
in Section 6.3.1). Simple algebraic manipulations lead to

[WTMnl/z(I - Pn)MnlﬂW](&K — k)
= WTMnl/2(I - Pn)MrZI/Z(SKn + bn)’

where P, =w/? A%, ) 17T}/ 2.

The asymptotic behavior of n'/2(& x — a ) is determined by n~'7%o}/2(1
- P, )M1/2W n- I/ZWTMI/Z(I - P, l/zb and n 1/2WTM1/2(I -
P, )Ja/ 1/% %ek,. It will be shown in Lemma 9 that n w2 - P
converges to a positive definite matrix. An upper bound on In 17 2‘%@%1/ 2(I
P, 1/?b | is given in (19) of Section 6.3.1. The term n 1/2‘%T.Ja/1/2(l
P )t zaKn is studied in Sections 6.3.2, where the key technical difficulty in
carrying out an asymptotic analysis lies in the fact that P, likewise depends
on g’s.

(15)

6.3.1. Asymptotic bias. To derive a bound on the asymptotic bias of
&y — ag,, we will need two more lemmas. In the following lemma, & denotes
&,, &,, or «,, where &, is as defined at the beginning of Section 6.3 and
and &,, are two n X n diagonal matrices with Zith entry —u,(b5(6,(x;)),
0,(x;)) and —u,(y;, 0,(x,)), respectively, and P, = &)/ 2A(F 1w, %) L5 0] /2.

LEMMA 8. Suppose that Conditions 1-5 hold and that p > d/2. Then,
except on an event whose probability tends to zero with increasing n, the
eigenvalues of n 'N2w% are bounded away from zero and infinity. Also,

nN-Y(Fw?)"t, nN~'P, and nN™ P, are bounded in probability.

PrROOF. Since |uy(b4(6,(X)), 8,(X))|.. is bounded away from zero and infin-
ity, the eigenvalues of (E[ —u,(54(6,(X)), 0,(XN]sk;(Z)sg,(Z)y x are bounded
away from zero and infinity by Lemma 2(a). Then by use of an analogous
argument used in proving Lemma 6(a), we have

nt 'Ai [uz(b3(00(xi)), eo(xi))]sz(zi)sKl(zi)

— E[u5(bs(64(X)), 60(X))]sx(2)5x1(Z) = O,((nK?) a,),

for all 2 and . This, together with the inequality used in (11), yields the
desired result for &/ =57,
Observe that u,(y, 0,(%)) = uy(b3(0,(x)), 6,(x)) + £b7(6,(x)). In view of
Conditions 1 and 4, |57(6,(X))l. is bounded. Hence,
N 1/2

by employing Argument 1 described in Section 6.2. This leads to the conclu-
sion that Lemma 8 holds for &/ =.4/,,.

n

(16) sup |n”! Z €ib'i(90(xi))sxk(zi)SKl(zi) =
1<k, <N i=1
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It remains to consider & =/,. Note that u,(y, 0F(x)) = uy(b5(6,(x)),
05 (%)) + £bj(0(x)). Since 65 may depend on &;’s, we will employ the so-called
continuity argument to show that

N 1/2
= Op((——) log n)
n

holds [see Jenrich (1969) for an example of its use elsewhere]. This argument
requires two key steps: triangulation and continuity. It will be referred to
hereafter as Argument C. .

Recall that 6} lies between 0, and 6y, and hence both [7(6%(X))l.. and
lug(bg(0,(x)), 0% X)L are bounded. Also, [6(X) — 6,X)l. = O,(YN/n log n
+ K ?*4/2) by Theorem 2. Set

0= {0(x) =wla + s(z): s € TS(vy, K) and
160 — 6,k < YN/n (log n)® + K74/2 log n}

Argument C starts with an r-triangulation which consists of _# points, such
that @ ¢ U, _ ;. ,0,(6,), where 6, € © and 0,(6;) ={6: 6 € © and |0 — 6/l
< r}. By Condition 3, there exists such a triangulation with » = K¢/n and _#
at a polynomial order of n. Applying Argument 1 to all 6, belonging to the

triangulation, we have
N 1/2
= Op((—) log n)
n

Note that b7 is continuously differentiable by Condition 4. Now, Argument C
exploits this fact (continuity) to extend this probabilistic statement to all
6 € O by observing that, for 6 € 0,(6,),

nt '=il 8i[b'{(9j(xi)) - b’i(e(xi))]sz(zi)SKl(zi)

n
sup (n”' ) 8, 07(0%(x;))8x1(2;) 5x:(2;)
1<k,i<N i=1

sup  sup ‘n_l Z8ib'{(Oj(xi))sxk(zi)sm(zi)
1<j<# 1<k, <N i

1/2

n 1/2
< [n‘l )y 83] [n‘l Y [6(x) - e(xi)]20(1)] = 0(r(log n)"?).
i=1 i
These two statements yield the desired result for & =&,. O
We defer the proof of the next lemma to Section 7.

LEMMA 9. Suppose that Conditions 1-5 hold and that p > d /2. Then (a)
n T} 20 — PN} ?w > ¥ in probability and (b) n w21 -
P,/ 2% — '3, in probability.

Recall that the asymptotic bias of n'/?(&y — ag,) is determined by
[n 7w} 2(A — P& 2w HUn V29 Tw!/2A — P)s, */%b,]. By Lemma
9(b), it remains to evaluate the magnitude of the second term, which will be
studied by analyzing n~1/27Tb, and n~ /27" /2P, o/, /2 separately.
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First, we consider n~'/2a’77”b,, where a € R” is a vector of unit length.
Note that b, is a vector with ith entry u,(b;(8,(x,)), 0x,(x,)). Also, n b’ b,
= 0(ll6go — 6,l13) = O(K~27) by the fact that u,(b4(8,(-), 6,(-)) = 0, a Taylor
series expansion, and by Theorem 1(b) and Conditions 3 and 4. Then by
Corollary 1 we have En '%a’#”b, = 0 and E(n %a’»7Th,))? =
O(n~'b’b,). Hence,

(17) n12al%Th, = 0,(K?).
Observe that
n= 2ty 2P,y | = 1N T, S N (S, ) |,
< n_3/2NAmax(nN_1(yTMnL9’)_l)

x (a"7 %, 7w, v ) (BT b, ).

By Corollary 1, we have

N n 2
Ebgnybn = Ek;’l [ ;1 u1(bs(90(xi))’ OKO(xi))SKk(zi)]

N
nkgl E[ ul(b3(00(x))’ GKO(X))sz(Z)]z

NnO(ll6g, — 8,l3)0(K~?) = O(nK~2?).

Note that
n n J
a'yTe™ya=Y | ¥ ( > ajwi,-)sz(zi)

2

= 0,(n),

i=1]i=1\j=1

by Condition 2 that the support of sy,(-) consists of finitely many C,, and by
Lemma 2(b). Note that &/, is an n X n diagonal matrix with iith entry
—uy(y;, 0£(x,)) and that u,(y, 05(X)) = uy(b5(0,(x), 0£(x) + £b(0,(X) +
e[ b1(05(x) — b(0x,(x)]. Then both |uy(b5(6,), 6. and [7(6gy). are
bounded by Conditions 1 and 4(a) and Theorem 1(b). Hence,

(2", 75, 7a)* = 0,(n'/?) + 0,(n/?) + 0,(n"/?) = 0,(n"/?)
by Argument C. It follows from the Cauchy—-Schwarz inequality and Lemma
8 that
(18) n= 2"y ) ?P, %, ?b,| = O,(n"/2NK?).
Combining (17) and (18), we have
(19) |n" Y27 T2 (1 - P, )&, V/2b,| = O,(n Y/>NK?) + O,(KP).
It then follows from Lemma 9(b) and (19) that

In'2 [/ 2(L ~ P&} 27| (1~ P,) s, 7|

(20)

ONK” K?
=0,|——=K?+KP|.
\Vn
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6.3.2. Proof of Theorem 3. Observe that
WL = P,) o %y
(21) =" 2 (1 - Po)”o V2%, + W T (Ao — 0,) 55 PPty ey
+ ¥, (A7)~ (S ,5) ] e

To proceed with the proof we will use the following two propositions (the
proofs are given in Section 6.3.3).

PROPOSITION 1. 7"(%, — %),/ *Postly V2, = O,(nK 2PN)'?) +
O,(N(log n)*?).

ProposiTION 2. 77w, #[(#Tw)7) ! — (#Tw, ) 19 Tey, =
0,(n"'2N5/% log n) + O (N3/2)

PrOOF OF THEOREM 3. Let a € RY be a vector of unit length. Observe that
aTw T} 2 (1 — Py) sty %y,
= a"y )% (1 - Py)e, + a7 v}/ ?(1 — P,)

(22) 1/2 1/2 T
% (5/1(01{0("1))) ’ —1le (b,l(oKO(xn))) ’ “1le
1(60(x1)) P Bi(6o(x,)) )

where e, = (e;,...,e,)’, e, = ¢g/0;,, and 02 = Var(Y | X = x,). Write
n-1/2 TWTMI/Z(I —Pyle, as L}_; cje;, . where Ee =0, Var(e;) = 1 and Ee}
<o, for 1 <j<n, by Condltlon B, By Lemma 9(a), Z"_lcj = 0,(1). Set
TWTMI/Z = (f1,..., f,) It follows from Conditions 1 and 2 that max1< i<alfil
=0 (1) and X7, f? = O,(n). Write Py = (p;), »,- It follows from Lemma 8
that 27=1 pl=p;= Op(n‘lN). Hence,

n

n 1721 n
Elcj|3_max|clzc <n121max[|f|+(2f22pu) :|ZCJZ
j=1 j=1

l<j<n Jj=1 i=1 i=1

= n=2[0(1) + (0(n)0,("'N))"?
P

We conclude that
(23) n~ 2%}/ % (1 — Py)e, - N(0,3) in distribution
by the Cramér-Wold device, Lemma 9(a) and the Liapounov central limit
theorem [cf. Chow and Teicher (1978), Corollary 9.1.1]. Since
[61(0x (X)) /b1(8,(X)) — 1l.. = 0o(1) by Theorem 1(b), the second term in the
above decomposition is 0,(1). Hence
(24)  n 2%} ?(1 - Py) oy Y/ %y, —» N(0,3%) in distribution.

Based on (15), (20), (21), Propositions 1 and 2, (24) and Theorem 1(b), we
have

|0,(1) = 0,1).

n*2(&g — ay) - N(0,37!) in distribution,
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provided that lim,,, n Y2NK P =0, lim,_, n~Y2(nK 2’N)¥/2 = 0,
lim, ., n"Y2N%2 =0, lim,_.n Y2N(ogn)*?2 =0 and lim,_, n N%?
xlog n = 0. Hence, for those K = n* satisfying A <1/3d and p > d/2,
Theorem 3 holds. O

6.3.3. Proofs of Propositions 1 and 2. Let #,,(0%) be an n X n diagonal
matrix with iith entry ¢,67(05(x,)) and &,,(0}) =, — &, —,,(0;). Hence,
,5(0%) is the n X n diagonal matrix with iith entry u,(b5(04(x,)), 6,(x,)) —
uz(b3(00(xi)), 0;;(311))

ProOF OF PROPOSITION 1. Recall that 6 lies between éK and 0g,. Hence,
16X) — 6,Xllz = O,(yN/n log n) + O(K~?) by (12) and Theorem 1(b).
Moreover, |uy(b5(6,(X)), 6£X))l.. and |67(05X))|.. are bounded.

Argument C (used in the proof of Lemma 8) is employed here again. Define

0= {0 = wla + s(z): s € TS(v,, K) with [|0(X) — 0,(X) 13

-2p
<O(K*P) + -

N(log n)® }

and select an r-triangulation of ® such that ® c U,_;_ , 9,(6,), where
6, € O, 0,(0)={0: 6 € ® and [6X) - 6,X)lls < r}, r =
min(N~/2K P(log n)'/2, n IN'/2(log n)?) and _# is at most a polynomial
order of n.

Let a € R’ be a vector of unit length. Recall that P, is a projection matrix
and tr(Py) = N. Then for §; belonging to the triangulation,

a" v t,,(0,) 5, 2Py Pyl ot (6, )7 a
_ max;ci;<n Pii
min, _, _ n[ —uz(b3(00(xi)), eo(xi))]

X gnll [uz(b3(90(xi))a 00(x;)) — uy(bs(0(x;)), oj(xi))]zO(l)

= 0,(n"'N)[0,(nK~27) + O(N(log n)*)|O(n)

= 0,(nK2’N + N%(log n)3),
by (4) and Condition 2. Hence
sup a7 7e,,(6,) 2Pty Ve, | = OP((nK‘ZPN log n)l/2 + N(log n)z),

1<js#
by Theorem 2 of Whittle (1960) and Argument 1 used in Section 6.2. Let us
write a’% (05, 2Pty V2%, as ef,&ey,. Note that tr(&78) =
O(Dtr(P,) = O(N). A similar argument leads to

sup [a"7",,(6,); VP Pyty Vg, = O,(N).

1<j<f
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In view of Condition 4 and by making a Taylor series expansion, we have

@7 [5,5(8) —,5(6;)| o /* Posty Ve, |
n /2, , 172,
= (.28‘2) (kglpkk) {.g[uz(%((’o(xi))’e(xi))
5\ V2
_u2(b3(00(xi))’0j(xi))]} 0(1)

= O(( nN)“){ Zl [#2(Ba(00(x.)), 0(x,))

9 1/2
_uz(b3(90(xi))’ oj(xi))] }
= 0,(nN2|0(X) - 6,(X)lIz)
and

|3TWT [Mnl(o) _"Q/nl(ej)]yo_ 1/2P0M0_ 1/28Kn|
= 172 2 _ 1/2
: (Zl ) (max ) { X [-ua(bs(06(x0)). 60(x)] } o(1)

n ) 1/2
X { ; [b,{(a(xi)) - b’i(oj(xi))] }
= 0,(nN16(X) — 9;(X)ll2).

This, together with the appropriately chosen triangulation, completes the
proof of Proposition 1. O

PrOOF OF PROPOSITION 2. By (16), Theorem 2 and Lemma 8, we conclude
that the eigenvalues of (nN~1.9%/,.) "1 nN 197 (&, — /)% are between —1
and 1. Therefore, I + (#%%/,.%) 197 (w, — ;)% is nonsingular. Hence

A7)~ (P, 7)
(25) — (St ) " (3, - ty) A (F ety ) ]
=0, VIR P (o, — ) sty PP P (St — Ay ) sty APy
Note that, for a € R”, a vector of unit length,
a" Y At P) (S, — ) A A F) A e

(26)
= a" Wit ot V2Pt VA (o, — Ay Ay 2Pyl V e,
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Suppose that the following statement holds:

(27)  sup [(Posfs '/*(o —ato)aly M Posty Ve, ) | = OP(

l1<i<n

N3/2
First, note that n 'X"_ || — uy(y;, 05(x;) = O,(1) by Theorems 1(b) and 2
and by the law of large numbers. Hence, by (26§ and (27), we have

alw T, (0, ) S (A, — )
(28) T -1 3/2
X A, ) Feg, = O,(N*?).

Next, using the law of large numbers and Theorems 1(b) and 2, we have
a’w "o, 7 a = O(n). By Condition 4 and Theorems 1(b) and 3, we obtain

—uy(y;, 0 (X;)) + ua(bs(0o(x;)), 0o(x;))
uy(bs(0o(x;)), 0o(x;))

Using the Cauchy—Schwarz inequality and Lemma 8, we get
AT o2, (a1 V2 )ty )

1/2K

sup
1<i<n

= O,(log n).

< Amax(Py) (277", 7 a)

o((2) ")

This, together with (27), yields
et N AR AT i JX R CARN A RSl 2 A
29
(29) =0,(n"'2N%? log n).

Hence, Proposition 2 holds by (25), (28) and (29), provided that (27) holds.

Argument C will be employed here to show that (27) holds. Since the proof
is analogous to that of Proposition 1, the details are omitted here and we
proceed as if the function 6% does not depend on &;. Observe that

(Post /%l (0% ) 525 /2 Posty Py )
_b,l(OKO(Xj))b,i(ejg(xj)) o2
[_uZ(b3(00(xj))’Qo(xj))]3/2 ’
_bﬁ(OKo(xk))b,{(ofs(xj))gjgk
[—uZ(b3(00(xj)), eo(xj))][_uZ(b3(00(xj))’ Oo(xj))]l/z

4y V2 (st — sty) sty 2|

n
= E: Pi;jDPj;
Jj=1

+ ) PijPjr
J*k

E‘ﬁ,
Using Lemma 9(a) and Theorem 2 of Whittle (1960), we have

Iv3/2
E(filxl,...,xn)=0( ) |pij|pjj)=0( _ )

l1<j<n
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and
E{[f, - B(f)]" 1xy,...,x,)} = O((nN"1)*).
Then by Markov’s inequality,
sup |fil = OP(N3/2/n) if ’}i_r’nonN‘S =0.

l<i<n

Similarly,

N3/2
sup |(Pyy V2,5 05) 5 PPty Uzﬁ'}(n) =0 ( n )

l<i<n

Hence, claim (27) is verified and so Proposition 2 follows. O
7. Proof of Lemma 9. To begin, observe that, for 1 <j </,

. -1
Vit W — %Tyoy(ywoy) St ;

= min [ w5 (B5(05(%)), 00(x:))] (w;; — s(2,))".

s€TS(Wy,K) ;-1

(30)

Let A x; denote a solution to the above minimization problem. Let us write
W, = hj(Z) + (W; — h(Z)). Then by (5) and Condition 2, %; is continuous, and
h; and W; — h; are bounded. Note that %4,(z) can be approximated by a
p1ecew1se constant function of the form X, ak 1, <., with an error bound of
order K~¢; we have |h(Z) — s(Z)l. < M, K¢ for some s € TS(v,, K) by the
second statement in Lemma 7 of Chen and Chen (1991).

Note that W, — & J(Z) is bounded. Now we can argue as in Agarwal and
Studden (1980) and in Stone (1986), that A J(z) converges to /(z) and that

nT e [ uy(by(0(x,), 0,(x N(w,; hK (z,))* converges to
E[—uy(b5(6,X)), 00(X))](W h; (Z)). Recall that E[—uy(b5(0,X)),
0,XDAW; — 1 (Z))* = ay;. This leads to the conclusion that g
(31) n” |7t} — ¥ sto A (F 54y F) " St #;| > 0, in probability

holds for 1 <j < J. In view of (30) and the geometric interpretation of the
least-squares method, we have

W, — Wty (St S,
= Z[_uZ(b3(00(xi))’ oo(xij)](wij - flKj(zi))(wik - };Kk(zi))’

for 1 <j < %k < J. By using the same approach as in the proof of (31), it can
be shown that

(32) n_l[%Tyo% - %Tyoy(yTMOy)_lywo%]
— 0, in probability.

Consequently, Lemma 9(a) holds.
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Recall that the iith entry of &, is —u,(y;, 03(x,)), where 6% = (1 — A,)0x

+ A, 0k for some A, € [0, 1], and that |63 (X) — 6,X)llz = O,(/N/n log n +
K™7). Hence 6} is bounded. For notational simplicity, we will still use A4 ; to

denote the minimizer of L ;[ —u,(b3(0y(x,)), 05x Dw;; — s(z,))?, where
s € TS(vy, K). Again, |hy;(X)l. is bounded and for 1 <j <%k <,

Vit W, — Wt A, ) S,
= En‘.l [ —uy(bs(y:) ei(xi)))](wij - ﬁKj(zi))(wik - f‘Kk(zi))'
We will show that Lemma 9(b) holds by arguing that, as n — o,
nt En:l [ —uy(bs(y;, 0(x,))) + us(b3(0o(x)), Oo(xi))]

X (wy; = $;(2;))(wip — s(2;)) = 0,

for all s, with s, € H = {s: s € TS{v,, K), Isl. < 2max15jsJ|ﬁKjIw}.
Observe that

us(y, 0% (x)) + u2(b3(00(x)), 00(x))
= eb'{(@,"{‘(x)) - [uZ(b3(00(xi))’ Oo(xi)) + u2(b3(00(xi)), olt(xi))]‘

Hence, to prove Lemma 9(b) it suffices to show that the following two
statements hold in probability as n — « for all s;, s, € H:

n~t 'Li [_b,{(e;g(xi))](wij - Sj(zi))(wik - sk(zi))ai -0
and
w0 L [ ua(Ba(00x),00(x)) + (55 0%, 67 05,)]

X(wij - Sj(zi))(wik — 5,(2;)) = 0.

Note that [57(6,(X))I.., Isj(Z)Lc and W, are bounded. It follows from Lemma
5 that, for any fixed 6 with [6(X) — 6,(X)|.. < 2/6X) — 6,(X)|, an exponen-
tial bound for the tail probabilities of n ™ 'X7_ | [—87(6,(x,)) + b(6(x;)w, ;
— sz )w;, — 5,(z;))e; can be established. This, together with Argument C
with an appropriate triangulation of H U {6 = W a + s(z): [6(X) — 6,X)l.. <
2(0z(X) — 6,(X).}, establishes the first statement.

The second statement can be established easily by noting the facts that
uy(, -) is continuous, w;; — s(z,) and w;;, — t(z;) are bounded, and [|6, — 6l
—>0asn—>ow O
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