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Finite-state Markov chains with either a discrete or continuous time
parameter, Markov renewal processes and Markov-additive processes are
considered. We prove that their likelihood functions, in the nonsequential
as well as in various sequential cases, belong to special (n + &, n)-curved
exponential families in general, for which limit results are easily estab-
lished. Subsequently, asymptotic normality of the corresponding nonse-
quential and sequential maximum likelihood estimators is established.
Also in the case of Markov renewal and Markov-additive processes, stop-
ping times are determined which reduce the corresponding curved expo-
nential families in general to noncurved ones. The latter, together with
results of Stefanov, are combined with results of Serfozo to imply explicit
solutions in functional limit theorems for the considered processes. In
particular, we derive explicit solutions for the important variance parame-
ter in the functional central limit theorems and functional laws of iterated
logarithm for those processes. Indeed, our explicit solutions cover more
general cases than the known ones, even in the case of finite-state Markov
chains. Moreover, we supply explicit solutions, not previously available, in
functional limit theorems for Markov renewal processes and Markov-ad-
ditive processes.

0. Introduction. In the first five sections of the present paper we obtain
asymptotic normality of the minimal sufficient statistics and subsequently of
sequential and nonsequential maximum likelihood estimators in finite-state
Markov chains with either a discrete or continuous time parameter, in
Markov renewal processes and in Markov-additive processes. This is done in
a unified manner using the special exponential structure of the corresponding
likelihood functions. Actually, we prove that these likelihood functions belong
to special (n + k, n)-curved exponential families in general. For the latter
families, limit results are easily established. For the definitions of curved and
noncurved exponential families, see Barndorff-Nielsen (1980). Exponential
families are a valuable tool in asymptotic statistical theory, as pointed out by
Brown (1986). An earlier reference is Berk (1972), who considered an i.i.d.
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case of noncurved exponential families [cf. also Andersen (1969) and
Johansen (1979)]. Sorensen (1986) explored the tools of exponential families
for obtaining asymptotic normality of sequential maximum likelihood estima-
tors in some (2, 1)-curved exponential families and special (n + 1, n)-curved
exponential families of stochastic processes. However, these tools are still not
fully explored. The results presented in the first five sections can be consid-
ered as extensions of Sorensen’s (1986) results to the multivariate case of
(n + k, n)-curved exponential families.

Relevant references to the topic treated in the first five sections of the
paper follow. The asymptotic normality of nonsequential maximum likelihood
estimators in finite-state Markov chains with either discrete or continuous
time parameter were treated by Anderson and Goodman (1957), Billingsley
(1961a,b) and Albert (1962) [cf. also Basawa and Prakasa Rao (1980)].

Billingsley (1961a) and Silvey (1961) seem to have been the first to
recognize the role of martingale limit results in large-sample inference for
stochastic processes. The martingale limit results became and are now the
principal tool in asymptotic statistical theory for stochastic processes [see
Hall and Heyde (1980), Jacod and Shiryaev (1987) and Karr (1991)]. Both the
martingale and exponential families techniques are combined in the case of
some exponential families of semimartingales by Kiichler and Sorensen
(1989) and Sorensen (1991) [cf. also Kiichler and Sorensen (1994)]. Earlier
references in that area are Heyde and Feigin (1975) and Feigin (1981).

Moore and Pyke (1968) obtained the asymptotic normality of a nonpara-
metric estimator of the semi-Markov kernel in Markov renewal processes, by
applying the limit results for the latter processes obtained by Pyke and
Schaufele (1964). Except for nonparametric and Bayesian estimation [cf. Gill
(1980), Phelan (1990a,b)] other statistical issues for Markov renewal pro-
cesses have not received much attention [cf. Fygenson (1991)].

To the author’s knowledge, large-sample properties of the maximum likeli-
hood estimators in Markov-additive processes are not treated in the litera-
ture. In view of the large applicability of these processes in queueing theory
[see Cinlar (1972a,b) and Prabhu (1991)], statistical issues related to them
are of importance.

Let us remark that, once asymptotic normality is established in the
nonsequential case, one gets asymptotic normality in the sequential case for
any sequence of stopping times (say, 7,) such that 7,/s converges to a positive
constant in probability as s? + «. This follows by applying well-known
results (Anscombe’s type of theorem) concerning random time changes in the
central limit theorem [see Billingsley (1968)]. However, the above property
has not been established in the literature for all stopping times considered in
the present paper, although it does in fact hold true for all of them, as follows
from our results (cf. Section 6). For example, in the case of a continuous-time
Markov chain only, Hopfner (1987) established the abovementioned property
for some of the stopping times considered here.

We pursue also the interesting problem of the existence of stopping times
such that the corresponding sequential likelihood functions belong to non-
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curved exponential families in the case of Markov renewal processes and
Markov-additive processes [cf. also Stefanov (1988a,b) and Stefanov (1991)].
Such stopping times do exist and are described in Propositions 4.1 and 5.1
below. In the case of Markov renewal processes, they are the same as those
which appear in the case of finite-state Markov chains with discrete time
parameter. In the case of Markov-additive processes, some other stopping
times appear also to have that property. Generally those stopping times
possess the optimal properties in noncurved exponential families, which are
well known in statistical inference. Moreover, as shown below, they turn out
to be very useful in deriving explicit solutions in functional limit laws too.

For the derivation of the limit results in the first five sections, only the
special curved exponential representation of the considered processes is
essentially used. However, if the above results are combined with a result of
Stefanov [(1986), Theorem 1] and with the powerful results of Serfozo (1975),
then one gets explicit limit results in functional limit laws for those processes
too. By explicit we mean that an explicit expression of the important variance
parameter in the functional central limit theorem and functional laws of
iterated logarithm is obtained, which makes these results applicable in
practice. Calculable expressions for the variance parameter in the functional
central limit theorem for some Markov processes are found in Bhattacharya
and Waymire (1990), pages 513-515] and Bhattacharya (1982); see also the
references in the latter. An earlier reference in this direction is Gordin and
Lif$ic (1978). However, our method is much simpler, and, moreover, our
explicit solutions cover more general limit results even in the case of finite-
state Markov chains (discrete or continuous time parameter) than the known
ones which have been derived using other techniques [cf. Chung (1967),
Sections 14-16] and Iosifescu [(1980), page 138]. For example, for finite-state
Markov chains we get explicit results in functional limit laws for any linear
function of the components of the minimal sufficient statistic. They contain as
special cases the known limit results concerning any function defined on the
finite state space [cf. Chung (1967) and Iosifescu (1980), page 138].

The paper is organized as follows. In Section 1, a general (n + k, n)-curved
exponential family for which limit results are easily established is introduced.
In the subsequent Sections 2-5, it is shown that the nonsequential and
various sequential versions of the likelihood functions of finite-state Markov
chains with either discrete or continuous time parameter, Markov renewal
processes and Markov-additive processes, belong to the curved-exponential
family introduced in Section 1. Subsequently asymptotic normality of the
corresponding canonical statistics and maximum likelihood estimators in
those processes is established. The concepts, which are similar for all the
processes, are fully considered in Section 2 only. Section 6 contains hints as to
how to obtain more information about the limiting normal distributions; for
example, asymptotic independence of components of the maximum likelihood
estimators. In Section 7 we combine some of the above results with the
powerful results of Serfozo (1975) in order to get explicit solutions in func-
tional limit theorems for the considered processes. The key insights from
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Serfozo (1975) and Stefanov (1986) are discussed briefly and explicit limit
results in the functional central limit theorem as well as in Strassen’s
invariance principle are given. Two simple examples are provided too.

Finally, we would like to remark that the general limit results, presented
in Section 1, are not only applicable to the processes considered in the present
paper. It seems that the curved exponential structure considered here is
hidden in many other statistical models, for example, such as models for
branching processes and time series.

1. Preliminary results. Let (X(¢)),. , be a stochastic process defined on
the probability space (Q,s, %,) with values in (R", %), where 0 is a
parameter, § € ® C R", and where ® is an open set. The time parameter #
may be either discrete or continuous. Suppose also that (X(¢)), . , is adapted
to the filtration (%), (. Let P, ;, be the restriction of P, to the o-algebra 7.
We shall assume that for each ¢ there is a o-finite measure @, such that
P, , < Q, for each 6 € © and that the likelihood function dP, ,/d@Q, is given
by

dP, n k
(1) Ja. ~ | LaX() —e(0)t+ L u(0)Di(1)],
t i=1 i=1
where X(¢) = (X(¢),..., X,(¢)), ¢: R" - R is'a twice continuously differen-
tiable function, ¢;: R* > R, i =1,2,...,k, are continuous functions and
D(t), i =1,2,...,k, are random variables such that, P,a.s., 6 € 0,
(2) |D,(t)| < C(0) < +, i=1,2,...,k,

where C(0) is a continuous function which does not depend on ¢. It is easy to
see from the proof of the next propositions that we can relax condition (2) to
the following one:

(3) |D,(t)|stoch < C;(9)

where “stoch < ” means stochastically not greater than [for the definition of
the latter, see Lehmann (1986), page 84], and C,(9) is a nonnegative random
variable with the property that for each 6, € O there exists an ¢ > 0 and a
neighbourhood .#" of 6, such that

E(sup(exp(&C;(0)): 6 €4)) < +oo.

Note that we can always assume that C,(6), i = 1,..., %, are independent.
Also, for the processes considered in the remaining sections we have P, , <
P, ., for some 6,. Thus, the measure @, may be viewed as the one produced
from P, , after absorbing that part of dP, ,/dP, , which does not depend
on 6.

Conditions (2) and (3) are kinds of weak dependence assumptions which
guarantee that X(#) has asymptotic properties similar to those of a process
with independent increments (cf. Proposition 1.2).

The propositions given below are easy but very useful, as will become clear
in the next sections. They are multivariate extensions of results given by
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Sorensen (1986) in the univariate case (see his Section 3) and noted in a
special multivariate case (see his Section 7).

PrOPOSITION 1.1. Foreachi,i =1,2,...,n, and each 0 € O, the following
result concerning convergence in probability (P,) holds:

—,E-—) — ¢;(0) Pyin probabilityast 1 + o,

where ¢(0) = d¢p(0)/99;.

ProoF. Consider, for example, the Laplace transform of X(¢)/¢,
s Xq(¢
E, exp(———1 tl( ) )

n s, k
= fexp( Y 6. X(¢t) + (01 + _t‘)Xl(t) —o(0)t+ X y;(0)Dy(¢)] dQ,.
i=2 i=1

The Laplace transform exists in a neighbourhood of 0, as is easily seen from
the assumptions made about the model. Let e; be the unit vector in R"” whose
i-th coordinate is 1. From the above equality we derive that

E, exp(ﬂfﬂ) = exp(t(qo(@ + f'ltﬂ) - <p(0)))

k

X Ee+s1e1/zeXP( x (l//i(o) %(0"' _))D (t))

i=1

In view of the assumptions made above about ¢(6), ¥,(0), D,(t),i = 1,2,..., &,
and C(0), it is easy to see that the Laplace transform of X,(¢)/t tends to
exp(¢i(0)s;) as ¢ 1 + «. This completes the proof. O

PROPOSITION 1.2. Let

X(t) — Vo(0)t
\/Z 5

where Vo(0) = (¢(0), ..., ¢, (0)). Then as t1 + », Y(t) is asymptotically
N(O, 3), where

Y(¢) =

9% i
> = a9, ae( ) .
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Proor. Consider the Laplace transform of Y(¢). In view of (1) we have
n

Eoexp( ZsiYi(t)) =exp( Z \/_qo,(e))E exp( ) ‘/_X(t))

i=1 i=1

o) o

x Eeﬂ/ﬁexp( 5 (wi(e) ~ufos %))Dm),

- oo|- B o
i=1

i=1
where s =(s;,...,s,) and 0+s/Vt=(6, +s,/Vt,...,6, +s,/Vt). Of
course in view of the assumptions on ,(0), D,(¢),i = 1,2,...,k and C(6), we
have

n

Eo+s/ﬁeXP( )y (l//i(e) ¢1(9+ T))D(t)) -1 ast? + o.

i=1
Applying the Taylor expansion for ¢(6 + s/ Vt), we get finally that
n 1 = 2
E Y. (¢t — 0 t1 + oo.
oexp(i;sl i( )) *exp(zi,JZ;l 7, ao( )s;8 ) ast1 +

This completes the proof. O

REMARK 1.1. It is straightforward to see that the convergence results in
both propositions above hold uniformly on compact subsets of 0.

We complete this section by stating a well-known convergence result [see
Rao (1973), page 338]), which will be referred to in the following sections.

LEmMMA 1.1. Let S(¢) = (S4(¢),...,S,(¢)) be a k-dimensional statistic such
that Vt(S(¢) — ©) is asymptotically k-variate normal N(0,3%,) as t1 + o,
where & is a k-dimensional parameter. Let g4,..., 8, be r functions of k
variables with each g; a twice continuously differentiable function. Then

Vt (g(S(8) — g(9)) is asymptotically N0, G2,GT), where

G:

r;j=1,...,k].
J
2. Finite-state Markov chains with discrete time. Let (Z(2)),, , be a
homogeneous and ergodic m-state Markov chain in discrete time. For simplic-
ity we shall assume that all transition probabilities are positive. The case
when some of them equal 0 is treated analogously. Also without loss of
generality we assume that the chain starts from state 1 with probability 1.

The likelihood function in this case is given by [see, e.g., Basawa and Prakasa
Rao (1980) or Stefanov (1991)]

L(m,t) = exp Z i (O)Inp; i,
i,j=1
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where 7 = (p; )I";_; is the matrix of the one-step transition probabilities;
N(@@) = (N, (¢);i,j=1,...,m);and N, ;(t) means the number of the one-step
transitions from state i to state j in the time interval [0, ¢].

We shall consider the following type of stopping times:

m
(4) T, = inf(t: Y. a; ;N (t) > s), s>0,
i,j=1
where a, ;, 1,j=1,...,m, are prescribed arbitrary real numbers not all

equal to 0. Of course in the particular case when a; ; =1 for each i,; =
1,...,m, we get the case of fixed sample size. The stopping time given by (4)
is finite, that is,

m
P‘rr(Ts < +Oo) =1 if Eﬂ'( Z ai,j]vi,j(nl)) > 0}
ij=1
where m; means the first entry time to state 1 after the chain has left it for
the first time. Actually, one gets this easily using the regeneration property of
the successive entries to a fixed state, in particular state 1 in this case, and
well-known properties of independent and identically distributed summands.
Namely, if 0, 15, ... is the sequence of the successive entries to state 1, then
in view of their regeneration property the process (L} =14, i N;, j(*r;n))n2 o has
stationary independent increments. Of course if the embedded process crosses
a level a.s., then the original process crosses that level a.s. too. Then the
above claim follows directly from Gut [(1988), Theorem 1.1 on page 76]. Let

m
0 = |7 E, 3 a;;N; ;(m)>0].
i,j=1

REMARK 2.1. Observe that 7, is a stopping time which reduces the
corresponding curved-exponential family to a noncurved one [see Stefanov
(1991), Proposition 1]. Thus, in any particular case, the expectations involved
in II; can be found explicitly using well-known analytic properties of non-
curved exponential families [Barndorff-Nielsen (1978), page 114 or Brown
(1986)]. Therefore, the criterion II, is practicable.

In view of Jacod and Shiryaev [(1987), Theorem 3.4 on page 153] for the
sequential version of the likelihood fgnction we have

m
(5) L(m,7,) = exp Y N; (t)Inp; ;], o € II;.
i,j=1
In the sequel we shall show that (5) has a representation of the type given by
(1). Consider the following linear system:
x; —x,=0, 1=1,2,...,m —1,

©) 2,
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where (x; )*;_; € R™, x, = rrix;, x.=YXr,x,; and @, ;, i,j=
1,2,..., m, are the constants given in (4). It is easy to see that the rank of the
system given by (6) is m. Define the random variables R(s),..., R,(s) as
follows:

R,(s) = 1,(2Z(7,)) — 1,(Z(0)), 1=1,2,...,m -1,

m
R,(s) =s— Z ai,jNi,j(Ts)a
i j=1
where 1.(-) is the indicator function and s and a; ;, i,j = 1,2,...,m, are as
given in (4). It is easy to see that [cf. also Stefanov (1991)] P -as., w € I1,

Ni(Ts) - ZVz’~(Ts) =Ri(s)’ i = 1,2’~“,m - 1,

m

)y a; ;N; (1) —s = —R,(s),
i,j=1
where N,(7,) = L., N, (7)) and N, (7)) =X" N, (7). In view of (7) the
likelihood function given by (5) can be represented as follows:

m2—m

m
(8)  exp Zl v(m)Ti(N(7,)) = X p(m)R{(S) = Bmir(7)s],

i= i=1
where T'(:) = (T\("), ..., T,2_,(-)): R™ — R™~™ is a certain linear transfor-
mation and w,(w), i =1,...,m? —m, and w(w), i =1,...,m, are certain
linear functions of In p; ;, 7,7 = 1,..., m. Of course T;,(N(7,)), i = 1,..., m? —
m, may be considered as those (m? — m) components of N(7,) through which
the remaining m components are expressed linearly using the linear system
given by (6). Any linear transformation produced using the linear system (6)
may serve for the representation (8) at the cost only of changing the functions
v(m), i=1,...,m* —m, p(w), i =1,...,m + 1, suitably. Manifestly, all
w;(-) and v,(-) are differentiable arbitrarily many times, and

|R;(s)| <const < 4+, i=1,...,m,P_-as.

Now to prove that the representation (8) is of the type given by (1) it is
enough to show that the Jacobian

(7

av;

( (w):u=1,...,m,v=1,...,m—1,i=1,...,m2—m)‘

Y

is not equal to 0 for 7 € II;. In the case of a two- or even three-state Markov
chain, one may check by direct lengthy calculations that this is so. However,
the general case of m-states (m arbitrary) is not straightforward. Observe
first that from the form of (6) it follows that one may choose m components,
one from each row of the matrix N(r,), to be linear functions of the remaining
(m? — m) components of N(r,). Denote these components by N; (1), i=

u,v

1,..., m. Then of course for each k, k = 1,...,m? — m, the function v,(w)
has the following representation:

m
(9) () =lnp,, - Zcilnpi,jl’

i=1
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for some pair (%,7) and some constants c;, i = 1,..., m, where (%,1) # (i, j;)
for each i, i = 1,...,m. Consider now the following matrix of (m? — m)-
dimensional vectors:
dlnp "
Vln(p,e’l),':ilﬂ:= —k’l:u=1,...,m,v=1,...,m—1) .
apu,v k,l=1

It is easy to see that if we arbitrarily select (m — 1) vectors from each row of
the above matrix, we will get (m? — m) linearly independent vectors. Bearing
in mind this and the representation (9), we conclude that the following
vectors are linearly independent:

v
VY, (m) = (é’ (m):u=1,...,m,v=1,...,m — 1), i=1,...,m?*—m.
Thus the Jacobian
av;
( (m):u=1,. ,v=1,‘..,m—1,i=1,...,m2—m)‘
Dy, v

is not equal to 0. Furthermore, the likelihood function given by (8) has a
representation like the one given by (1), where n = m? — m and k = m. For
any fixed linear transformation T: R m* _, Rm*~m one can explicitly find the
function ¢(6) in the representation given by (1), where

0=(01,...,0,2_,) = (vi(m),..., Up2_p(7)).
From Proposition 1.1 we get that, as s 1 + o,
T(N(7,))/s = Ve(0), P, -in probability,
for each 7 € I1,, where Vo(0) = (¢4(0),..., ¢,2_,,(8)). Also from Proposition
1.2 we have the following.

PROPOSITION 2.1. As st + o,

T(N(7,)) —sVe(0)
Vs

— (32 m?—m
where 3 = (9%(0) /0, aej)i,j=1

(10)

- N(0,%), P,weakly, <11,

Of course there exists a linear transformation G: R™*~™ — R™, which is a
generalized inverse of T' whose rank is m? — m. For a given T, the matrix
corresponding to G can be explicitly given. In view of Lemma 1.1 we have the
following.

PROPOSITION 2.2. Ass?T + o,

N —sG(Ve(6
(11) (Ts) j_( ‘p( )) N N(O,G/EG/T) Pﬂ-weakly, Te Hl,
S
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where

el ‘
G =|—(Ve(0)):i=1,...,m?, j=1,...,m*—mj|.
é’xj

Of course it is well known that (N, (7,)/N,(7): i,j = ,m) is the
sequential nonparametric maxunum 11ke11hood estimator of the transition
matrix of the chain. Let H: R™ — R™ be defined as follows:

x. .
H (% )51-1) = o>  bj=1,...,m.

m
Zk=1xi,k

The above sequential maximum likelihood estimator equals H(N(7,)). Once
again using Lemma 1.1 we get that, as s T + o,

H(N(1)) — s
Vs

where H' = ((9H,;/dx;XG(Ve(0))): i,j=1,...,m?), bearing in mind that
H(G(Vg(8)) = 7. The latter follows, for example, from the fact that, as
sT + o,

(12) - N(0, H'G'3G'"H'"), P,-weakly, = < Il,,

H(N(7,)) —» H(G(Ve(6))) and H(N(7)) — m,

P_-in probability, = € II,.

In the parametric case, that is, when the transition matrix 7 depends on a
k-dimensional unknown parameter (¢ < m? — m), say, & = (9;,..., %), the
rank of the matrix (dp; (9)/99;: i,j=1,...,m; 1 =1,...,k) equals k, and
moreover the functions p, (9) are twice continuously differentiable, the
asymptotic normality of the sequential maximum likelihood estimator of 9 is
obtained from the asymptotic normality of the sequential nonparametric
maximum likelihood estimator in a similar way as was done above for the

latter estimator using the asymptotic normality of the canonical statistic
N(7,).

3. Finite-state Markov chains with continuous time. It should not
be confusing for the reader if we use the same notation in the continuous-time
case, as in the preceding section, for the corresponding quantities.

Let (Z(¢)),., be a homogeneous and ergodic m-state Markov chain in
continuous time. Once again without loss of generality we assume that the
chain starts from state 1 with probability 1. The likelihood function is given
by

m

(13) L(m,t) = exp i N, (O)In ) ;= 2 Si(t) A ),

i j=1,i#] i=1

where 7 is the transition intensity matrix (A; )*;_;, N, ;(¢) is the number of
transitions from state i to state j in the time interval [0 t] and S,(¢) is the
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sojourn time at state i in the time interval [0, ¢]. The following type of
stopping time is considered:

m m
= inf(t: Y a; ;N, j(t) + X a; ;Si(t) >s]|, s> 0,
i, j=1,i#j i=1
where a; j»i,J=1,...,m, are as in the preceding section. Of course in the
particular case when a;;=0if i#jand a;,;,=1,i=1,...,m, we get the

fixed-time case. Let

m m

I = (77: Ew( )y a; ;N ;(m) + X ai,iSi(”h)) > 0),
Lj=1,i#j i=1

where 7, is the first entry time to state 1 after the chain has left it for the

first time. Criterion II, is practicable (cf. Remark 2.1). In view of Jacod and

Shiryaev [(1987), Theorem 3.4, page 153] the sequential version of (13) takes

the following form:

m m

(14) L(m,7,) = exp( )y N; (m)n A, ; — x Si(“'s)’\i,i) , mell.
ij=1,i%j i=1

Deriving the asymptotic normality of all (N(r,), S(7,)) and the corresponding

sequential maximum likelihood estimators works in exactly the same way as

was done for the discrete-time case and is therefore omitted. We only remark

that the equalities given in (7) now take the form

Ni(7) = Ni(7) =R(s), i=1...,m-1,

m m
X a; ;N; (1) + L a,; ;S(7) —s=—R,(s),
i j=1,i%j i=1

where R, (s) is suitably changed and

N = Y N(n), Nim)= L Ni(n).

J=1i%) j=1,i#j

Of course condition (2) is satisfied for R,(s),i = 1,...,m — 1, and it is easy to
see that condition (3) is satisfied for R, (s) if we take

m

Cm() = Z |al jl + Z !az i L
i,j=1,i+#J i=1
where Y,,...,Y,, are independent random variables such that for each i the

density of Yi is the classical exponential one with parameter )t

Also, when applying the linear transformation 7: R™ 5 R’" ™ on
(N(7,), S(,)), one should proceed as if N, i(7;) from the discrete-time case
were replaced by S,(r,). The function H: R™ — R™" from the preceding
section then takes the form

m i ..
H; (%), .= " i,j=1,...,m.
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The functions v,(7),i =1,...,m%? — m, w,(w), i = 1,..., m, in representation
(8) are the same linear functions, but now of In A jpi,j=1,...,mand i#}j,
and A, ;,i=1,...,m.

4. Markov renewal processes. Let (Z(¢), A(¢)),., be a Markov re-
newal process, where ¢ is a discrete time parameter, Z(¢) is the embedded
m-state Markov chain and A(t) is the so-called additive part of the Markov
renewal process. For A(t) the following condition is assumed:

0=A(0) <A(1) < -

For the definition of a Markov renewal process see, for example, Karr (1991)
or Prabhu (1991). Furthermore, we assume that for each i, i = 1,..., m, the
conditional density with respect to Lebesgue measure of A(¢t + 1) — A(¢)
given Z(t) =i is given by

(15) h(x)exp(A;x — fi(A)),
where A; is a real parameter, A, € A; C R, and h(x) is a Borel function. In
other words the sojourn times have distributions belonging to one-dimen-
sional exponential families. We assume that A; is the interior of the natural
parameter space of the respective exponential family. Without loss of general-
ity we shall further assume that Z(0) = 1 with probability 1. Also we remark
that we shall use the same notation as those used in the preceding sections
for the same or similar quantities; it should not be confusing for the reader,
and, moreover, the explanations become clearer when we refer to the consid-
erations made in Section 2.

It is easy to find the likelihood function corresponding to the observation of
a single realization of the process up to time ¢. It has the following form:

(16) L(m,A,¢) =exp( an‘, N, ;(t)(In p; ; — fi(A)) + %Si(t))ti),
i=1

i,j=1

where 7= (p; )I*;_; is the transition probability matrix of the embedded

Markov chain Z(¢), A = (A,..., A,), N, (¢) is the number of the one-step
transitions from state i to state j in the time interval [0, ¢] and S,(¢) is the
sojourn time at state i in the time interval [0, ¢].
We consider the following type of stopping time:
m m
(17) T, = inf(t: 2 oa; ;N (¢) + LbSi(t) >s|, s>0,

i,j=1 i=1

where b; and a; ;, i,j = 1,..., m, are real numbers not all equal to 0.

The particular case when a; ; =1 for each i,j and b, =0 for each i
corresponds to the fixed sample size case.

Let

I, X A =

m m
(m,A): E‘rr,)\( ai,jNi,j("h) + Z biSi(”h)) > 0)’
i,j=1 i=1
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where 7, is the first entry time to state 1 after the embedded Markov chain
Z(¢t) has left it for the first time. Criterion IT; X A is practicable (cf. Remark
2.1 and bear in mind that 7, is one of the stopping times described in
Proposition 4.1). Likewise (cf. Section 2), it is easy to show that

P, (1, < +x) =1
for each (m7,A) € II; X A. Then, in view of Jacod and Shiryaev [(1987),

Theorem 3.4, page 153], the sequential version of (16) takes the following
form:

L(m, A, 7)) = exp Z Zvi,j(Ts)(ln bi,j _fi()‘i)) + X Si(7) A
(18) Q=1 -1

(m,A) € II; X A.

First we shall show that there are stopping times such that the corre-
sponding sequential likelihood functions belong to noncurved exponential
families. Actually, these are the same stopping times which have the above-
mentioned property in the case of finite-state Markov chains with discrete
time [cf. Stefanov (1991)].

PROPOSITION 4.1. Let I be the state space of the embedded Markov chain
Z(t). Then, for each i € I and each J C I such that ©;. ;p; ; > 0, the stopping
times ti(s) given by

T}(s)=inf(t: ZNj,i(t)=s), s=1,2,...,
) jed

have the property that their corresponding likelihood functions L(m, A, 7i(s))

belong to noncurved exponential families of order equal to the dimension of the

parameter (m, A).

Proor. For simplicity we shall consider the case when the dimension of
the parameter (7, A) is m?, that is, p; ; * 0 for each i, j. The other cases
when p; ; = 0 for some pairs (i, j) work similarly and are therefore omitted.

It is easy to see that the following linear dependencies for the components
of N(7}(s)) hold with probability 1:

L N(rb(5) ~s =0
(19) Nk(T}(s)) - Nk'(T}(s)) + l(k)(Z(O)) - l(k)(Z(‘rj(s))) =0,
k=1,....,m — 1.

Of course 1, (Z(0)) equals 1 if £ = 1, and 0 otherwise, whereas 1, (Z(7}(s)))
equals 1if £ = i, and 0 otherwise. It is easy to see that the rank of the above
linear system is m, and, furthermore, in view of Stefanov [(1991), Proposition
1] we have that there are (m® — m) components of (N, (73(s)),i,j=1,...,m)
which are linearly independent. By the assumption that A(¢ + 1) — A(¢) have
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conditional distributions, given Z(t¢), which are absolutely continuous w.r.t.
Lebesgue measure, one can easily see that S;(7i(s)),..., S,,(ti(s)) are lin-
early independent with the above (m2? — m) linearly independent components
of N(7}(s)). Of course the components of the canonical parameter, that is,
(np, ; — (X)) and A;, i,j=1,..., m, are linearly independent. Therefore,
the minimal sufﬁment statistic of the model considered for 7}(s) has dlmen-
sion equal to m?2, and subsequently we get that the family (18) for 7, = 7:(s)
is a noncurved exponential one of order m2, that is, of order which equals the
dimension of the parameter (7, A).
This completes the proof of Proposition 4.1. O

Next, as in Section 2, we define the random variables R,(s),..., R,,(s) as
follows:

R,(s) = l(i)(Z('Ts)) - 1,(Z(0)), i=1,2,...,m—1,
m m
R,(s)=s- X a; ;N; (7)) — Y b;:8i(7)
i, j=1 i=1
Likewise we have, for each (7w, \) € II; X A, P, ,-a.s
N,(7,) = N,(7,) =R(s), i=12,....m—-1
Z ai,jlvi,j(Ts) + Z biSi(Ts) -8 = _Rm(s)‘

i j=1 i=1

(20)

In view of (21) the likelihood function given by (18) can be represented as
follows:

m2

m
(22) exp| X (7, )T, (N(7,),8(7)) + X pi(m, D R(8) = py1(7, A)s
i=1 i=1
where v;(m, M), i =1,...,m? and ,u,l(v'r AN, i= ,m are certain linear
functlons of (In p; s f(A ), ,m and )t i=1,....m. T()=
(Ty(),..., T,2(-)): R™ X R™ — R e is a llnear transformatlon s1m11ar to that
introduced in the previous sections, which is obtained using the following
linear system:

xl_xl=0, i=1,...,m_1,
(23) o
Z a; ; lJ+ Zbyl =0,
i,j=1,i#j i=1

where ((x; J)7";_1,(y)%1) € R™ X R™ and X, =Xryx;, x =X x; ;. Of
course u,,, (7, A) can be explicitly found for any fixed linear transformation
T. Also, condition (2) is satisfied for R,(s), i = 1,...,m — 1, and it is easy to

see that condition (3) is satisfied for R,, if we take

m()_ Z!azjl"‘-Z[b

i,j=1
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where Y;,...,Y,, are independent random variables such that for each i the
density of Y; is given by (15).

The proof that (22) is of the type given by (1) follows arguments similar to
those used in Section 2 for the finite-state Markov chain with discrete time,
and it is therefore omitted. Of course likewise there exists a linear transfor-
mation G: R™ — R™ X R™ which is a generalized inverse to the linear
transformation T and the rank of G is m?2 Also let the function
H: R™ X R™ - R™ X R™ be defined as follows:

m m xi,j ..
Hi,j((xk,l)k,l=1’(yk)k=1) = ¥m . L,j=1,...,m,
Zk=1xi,k
for the first m? components of H, and let
m m Yi .
Hi((xk’l)k,l=1,(yk)k=1) = , i=1,...,m,
Zk=1xi,k

for the remaining m components of H. It is easy to see that H(N(r,), S(7,)) is
the maximum likelihood estimator of (a, f'(A)), where f'(A) =
(FiAD, ..o, Fr(A,)) and (X)) = df(A)/dA,;.

Then finally we get, as in Section 2, the following results about the
asymptotic normality of (N(r,), S(7,)) and the maximum likelihood estimator

of (a1, f(A)).

PROPOSITION 4.2. Ass?T + x,

(N(7,),8(7)) — sG(Ve(9))
Vs

P, \-weakly, (m, \) € II; X A, where

- N(0,6¢'30'"),

dG;
G=|—(Ve(0):i=1,...,m*+m, j=1,...,m*|,
&xj

©(0) is the function in the representation (1) of (22) and 3 was defined in
Section 1.

PropPOSITION 4.3. Ass?1 + o,
H(N(Ts)»S(Ts)) —s(m, f'(A)
Vs
P_ \-weakly, (mw, A) € II; X A, where

m

- N(0, H'G'3G'"H'"),

oH,
H = | ——(G(Ve(8))):i,j = 1,...,m* + m|.
J

The asymptotic normality of the sequential maximum likelihood estimator
of a smooth function of the parameters (, A) is obtained by applying Lemma
1.1 and Proposition 4.3 (cf. the last comments in Section 2). Also the results
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presented in this section are easily extendable to more general models, in
which A(¢) does not satisfy the monotonicity condition given at the beginning
of this section and the dominating measure in (15) is not necessarily Lebesgue.

5. Markov-additive processes. We shall be concerned with Markov-
additive processes whose embedded Markov chains in continuous time have a
finite number of states and are ergodic. Denote by I, I =(1,2,..., m), the
space of the states of the chain. A Markov-additive process (Z(t) A, .0
(the time parameter ¢ is continuous) is a two-dimensional Markov process on
the state space I X R, satisfying the following properties [see Prabhu (1991)]:

1. For 0 <t <ty < -+ <t,, n>2, the increments A(¢,) — A0), A(¢,) —
A(ty), ..., A(t,) — A(¢,_,) are conditionally independent given
Z(0), Z(ty), ..., Z(¢,).

2. The condltlonal d1str1but10n of A(t,) — A(tp_l),. given Z(¢,_;) =i and
Z(t,) = j, depends only on ¢, — ¢, and i and j.

Let m= (A, )";_; be the transition intensity matrix of the embedded
m-state Markov cham Z(t). We assume that the conditional density of
A(t) — A(s), given Z(u) =i for all u € [s,t], is given by
(24) exp(%;x — fi(%)(¢ — s)),
with respect to a o-finite measure which may depend on the state i in
general, and 3; is a real parameter, J; € 5, C R. We assume that E; is the
interior of the natural parameter space of the respective exponential family
given by (24). Without loss of generality we assume Z(0) = 1 with probabil-
ity 1.

Applying the general theory about absolute continuity of measures associ-
ated with random processes, developed in Gihman and Skorohod [(1974),
Chapter 7, pages 440-443], it is easy to find the likelihood function corre-
sponding to the observation of a single realization of the process up to time ¢.
It has the following form:

m
L(m,9,t) =exp| Y N, ;(t)lna,;
(25) z,j=ml,z¢1 )
— LS (A + () + LA,
i=1 i=1
where 7= (\; )'_q, O =(9,..., 19,,1),' N, (t) is the number of the transi-

tions from state i to state j of the Markov process Z(s) in the time interval
[0,¢], S;(¢) is the sojourn time at state i of the process Z(s) and

A = T (A (D) ~ Al (D), o (¢ — 72 (D)

n=1
+(A(t) = AM())) L 00 mzin())
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where 7,(i) is the nth consecutive time of first entrance of Z(s) to state i, and
0 (i) is the time of exit from state i after 1,(2).

Once again, as in the preceding sections, the stopping times we consider
are first crossing times of levels by linear combinations of the components of
the canonical statistic (N(2), S(¢), A(t)), where S(t) = (S(2),...,S,(¢)) and
A@) = (A(1),..., A,,(2)), that is,

m m m
ro=inflt: Y, a; ;N (1) + X a;;Si(t) + 2 b;A(t)>s|, >0,
ij=1,i%] i=1 i=1

where a; ; and b;, {,j =1,...,m, are real numbers not all equal to 0. Of
course in the particular case when a, ; = 0 for each i, j such that i # jand
a;; =1, b, =0 for each i, i =1,...,m, we get the case of fixed sample size,
that is, 7, = s with probability 1.

Also, it is easy to show (cf. Section 2) that, for each (7, 9) € II; X E,

P,,,ﬂ(’rs < 4x) =1,
where
m

I, X B = ((W,a):Eﬂ-,ﬂ( > a; ;N; ;(m)

i,j=1,i#j

m m
+ Y a; ;Si(m) + Y b, A (m)
i=1 i=1

g

and 7, is as used in the preceding sections. Criterion II, X & is practicable
(c¢f. Remark 2.1 and bear in mind that m; is one of the stopping times
described in Proposition 5.1). In view of Jacod and Shiryaev [(1987), Theorem
3.4, page 153], the sequential version of (25) has the following form:

m
L(7T, 197'7'5;) = exp E Zvi,j(Ts)ln /\i,j
i, j=1,i#j

(26) mo m
- _;lsi(Ts)(’\i,i +fi(%)) + ._ElAi(Ts)ﬂi )

(m,9) ell; X E.

There are also stopping times, in the case of Markov-additive processes,
which reduce the curved exponential family in general given by (26), to
noncurved exponential ones of order equal to the dimension of the parameter
(7, 9). The following proposition describes them.



1090 V. T. STEFANOV

PROPOSITION 5.1.  For each i € I and each J C I such that ¥;. ;A;; > 0,
the stopping times 7;(s), T/(s), 7/(s) and 1] ;(s) given by

Tj(s)=inf(t: ZNj’i(t)=s), s=1,2,...,

jed
ti(s) = inf(¢: S;(t) =s), s>0,
7/(s) = inf(¢: A;(¢) = s),

i 4(s) =inf(t:Ai(t) + ENj,i(t)=s), s=1,2,...,

jed

where additionally we assume that P, 4(7/(s) < +») =1 and P, (7} ;(s) <
+0) = 1 for each (1, 3), have the property that their correspondzng lzkellhood
functions L(m, 8, 7;(s)), L(m, ¥, 7/(s)), L(mw, ®,7i(s)) and L(w, 8,7} ;(s)) be-
long to noncurved exponential families of order equal to the dzmenszon of the
parameter (i, ).

REMARK 5.1. The condition P, ,(7/(s) < +%) =1 is satisfied, for exam-
ple, if the process A;(¢) is nonnegatlve with continuous trajectories and
A(t)? + o as t1 + », or if the process A,(¢) is a Poisson process; in the
latter case s must be a natural number. If A,(¢), i = 1,..., m, are Poisson
processes, then the Markov-additive process is called a Markov—Poisson
process [see Prabhu (1991)]. The condition P, 4(7/ ;(s) < +) = 1 is satis-
fied, for example, in the case of a Markov—Poisson process. This follows from
the fact that jumps in Z(¢) and A(#) cannot occur simultaneously [see Prabhu
(1991)].

Proor or ProrosITION 5.1. For simplicity we shall consider the case when
the dimension of the parameter (7, 9) is m?, that is, A, ; # 0 for each i, .
The remaining cases when A; ; = 0 for some palrs of (7, ]) work similarly and
are therefore omitted. One should just replace N, ;(*) by 0 if the respective
A; j = 0. The proof for ;(s) and 7/(s) is an easy consequence (cf. the proof of
Prop051t10n 4.1) of Proposition 2 of Stefanov (1991) and is therefore omitted
too.

Consider the stopping time 7/(s). Of course, Z(7/(s)) = i with probability 1
and moreover the following equalities hold with probability 1:

Ai(;ii(st)) =s,
Nk(;ii(s)) - Nk~(:‘:ii(s)) + l(k)(Z(O))
l(k)(Z(*?ii(s))) =0, k=1,...,m — 1.

Of course 1,,(Z(0)) equals 1 if £ = 1, and 0 otherwise, whereas 1 ,,(Z(7/(s)))
equals 1 if £ =i, and 0 otherwise.

The rank of the sublinear system consisting of the last (m — 1) equations
above is manifestly (m — 1). Thus, there are at least (m — 1) linear depen-
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dencies between the components of N(7/(s)). We shall show that there are
exactly (m — 1). Let

B, = (N.i(i"f(s)) = n)

Of course ¥;_, P, 4(B,) = 1 and, for each & and each pair (i, j) with proba-
bility 1,

(27) N, (7 (s))(@)1p (@) =N, j(1/(n))(@)1p (o),

where we recall that I means the state space of the embedded chain Z().
However, in view of Stefanov [(1991), Proposition 2] it follows that there are
exactly m linear dependencies between the components of N(7j(n)). Also the
first linear dependence, that is,

N,(t{(n)) = n,

is different for each n, and the remaining (m — 1) linear dependencies are
the same for each n. Thus, in view of these considerations and (27) we
conclude that there are exactly (m — 1) linear dependencies between the
components of N(7/(s)).

It is easy to see that there is no linear dependence involving components
from both (N(7i(s)), S(7/(s))) and A(7i(s)). Actually, it follows from the
conditional independence of the increments of A(¢). This was defined pre-
cisely in property 1 at the beginning of this section. It implies enough control
over the values assumed by the components of A(7/(s)) to show that each
linear dependence of the type mentioned above is violated with positive
probability.

Of course the components of the canonical parameter (In A; ;,(A; ; —
f:(9), 9, i#j,i,j=1,...,m) in (26) are linearly independent. In view of
the equality

Ai(%f(s)) =S8

and the easily seen fact that A(7/(s),..., A, (7Fi(s), A, (F(s),...,

A, (7/(s)) are linearly independent, we conclude that the dimension of the

minimal sufficient statistic of the considered model for 7/(s) equals m?. Thus,

we get that the family (26) for 7, = 7/(s) is a noncurved exponential family of

order m?, that is, the order equals the dimension of the parameter (w7, ).

The proof for 7/ ;(s) follows similar arguments to those above and is omitted.
The proof of Proposition 5.1 is complete. O

Next the random variables R,(s),..., R, (s) and the linear transforma-
tions T and G are defined likewise (cf. the previous section). Likewise,
condition (2) or (3) is satisfied for them. Also, the function H: R™ X R™ —
R™ X R™ is defined as follows:

X .
Hi,j((xk,l);:l,l=1’(yk);n=1)=A’ I”J=1’-~"m’
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for the first m? components of H and

m Yi .
Hi((xk,l)l'en,l=1’(yk)k=1)= PP i=1,...,m,

for the remaining components of H. It is easy to see that H(N(x,), S(r,), A(7,))
is the maximum likelihood estimator of (w7, f'(3)), where f'(8) =
(i, ..., fn(8,)) and f{(9;) = df(9;)/d9;.

Likewise the following propositions hold true.

PROPOSITION 5.2. As st + o,

(N(7,),5(x,), A(7,)) = sG(Ve(8))
Vs

P, sweakly, (w,¥) € II; X E, where

- N(0,G'3G'T),

dG,
G =|—(Ve(0)):i=1,...,m*> + m, j=1,...,m?],
dx;
¢(6) is the one from representation (1) of (26) and 3, was defined in Section 1.

PROPOSITION 5.3. Ass?T + o,

H(N(1,),8(7)A(7)) — s(m, f'(?))
Vs

P, sweakly, (w,9) € I1; X E, where

- N0, HG'SG'"H'"),

H' = T?x_(G(V‘P(G))): i,j= 1,...,7’)’1,2 +m].
J

The asymptotic normality of the sequential maximum likelihood estima-
tors of smooth functions of the parameter (o, d) is obtained likewise by
applying Lemma 1.1 (cf. Section 1).

6. Further remarks. Observe that, for 7, as defined in Sections 2-5, we
have

7,/s — const(6) > 0, Pyin probability as s 1 + oo,

This follows from Proposition 1.1 and the fact that 7, is a linear combination
of the components of the corresponding canonical statistic in all models
considered. Therefore, bearing in mind the results concerning random time
changes in the central limit theorem for random processes [see Billingsley
(1968)], we conclude that the limiting normal distributions of the respective
quantities considered, for all stopping times 7, in any particular model, are
the same up to a multiplication of the limiting random vectors by a constant.
We may use this fact to obtain some useful information about the limiting
normal distribution; for example, we may see whether the latter is a product
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of several independent normal distributions and if so which they are. It is
possible to obtain such information by choosing the stopping time 7, suitably.
Note that if ¢(6) in the representation (1) can be split into m parts

@(0) = @1(01,--504) + - +0,(0h, 11,5 6,),

then the random vectors (X, ..., Xp)se-es (X, +15---, X,) are asymptotically
independent.

7. Applications to functional limit theory. In this section we explain
our method for deriving explicit solutions in functional limit theorems for the
processes considered. For the sake of brevity, we exemplify it by two simple
examples, namely, of a two-state Markov chain and a Poisson process modu-
lated by a two-state Markov process.

First we discuss briefly the key insights from Serfozo (1975) and Stefanov
(1986). Let (&(¢)),., be a stochastic process whose trajectories are right
continuous and have left limits. Let (£(7,)), . , be a process embedded in £(¢),
where (7,), ., is a sequence of stopping times such that 7, < 7, < -+ and
7, = + as. Define M,, and the processes S, =(S,(t)),,, and S, =
(S,(8), o as follows:

(€(kt) — 2, kt)

Sy(t) = 2,
5 _ (f(’r[k,]) _'MkT[kt])
Sk(t) - ‘@k ’

M[kt] = sup(| é(s) - f(T[kt]) — (s — T[kt])' Tiey) <8 < T[kt]+1)

where ), and %, are constants. The following propositions are excerpts from
Serfozo’s main results [see Serfozo (1975), Theorems 2.1 and 2.2, Corollary 2.3
and Remark 2.4] and are used in deriving our explicit results. Let —,, mean
any, but fixed, mode of convergence selected from a.s., in probability and in
distribution. For all convergence results below we assume & T + o,

_ ProrosiTion 7.1. Suppose 1,/k —,, a, a #0, and M,/%, -, 0. If
S, —,, S(a-) for some process S, then Sk -, S.

PropoSITION 7.2. Suppose 7,/k = a a.s., a # 0, M./}, > 0 a.s., and
let K denote a compact subset of the Skorohod space D = D|0, +°0) If
(S, ()5 o is a.s. relatively compact with limit points K, then (S,(tNy 50 is
a.s. relatively compact with limit points {x(a™!-): x € K}.

In other words Serfozo (1975) provides conditions which ensure that limit
results for the embedded process imply the same limit results for the original
process. The results of Serfozo (1975) cover and unify almost all limit results
available for the processes considered in this paper. However, deriving explic-
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itly the limiting process, for example, the variance parameter of the limiting
Wiener process in the functional central limit theorem, is a problem. Conse-
quently, no general explicit limit results are available for these processes.
Note that Bhattacharya and Waymire [(1990), pages 513-515] and
Bhattacharya (1982) provide calculable expressions for the variance parame-
ter in the functional central limit theorem for some Markov processes. The
reason for the lack of such general explicit results is that not enough has
been known about the properties of the sequences of stopping times used,
beyond their useful regenerative property. However, the results of Stefanov
(1986, 1991) and Propositions 4.1 and 5.1 given above fill that gap for the
considered processes. Actually, from Stefanov [(1986), Theorem 1] it follows,
in particular, that when using the sequences of stopping times [introduced in
Stefanov (1991) and in Propositions 4.1 and 5.1] the embedded process has
stationary independent increments, and, moreover, the moment generating
function, and consequently the moments, of the increment can be given
explicitly. The latter is due to the noncurved exponential structure of the
distribution of the increment. This supplies enough information for obtaining
explicitly the limiting laws and therefore making the results of Serfozo (1975)
applicable in practice. A more detailed discussion follows.

Propositions 1 and 2 of Stefanov (1991) as well as Propositions 4.1 and 5.1
above say that, for suitably chosen stopping times, the respective likelihood
functions belong to noncurved exponential families, that is, D,s in the
representation (1) are equal to 0. Of course, the following sequence of stop-
ping times (7(s)), . , is common for all these propositions:

7(s) =inf(t: 2N (¢) =s), s=0,1,...,
jelI
if ¢ is discrete, and
7(s) =inf(t: Y N; 1(t) =s), s=0,1,...,
Jjel, j*1

if ¢ is continuous, where I is the state space of the corresponding finite-state
Markov chain. Without loss of generality we assume that Z(0) =1 a.s. In
view of the abovementioned propositions, we obtain the following representa-
tion for the sequential likelihood functions for (7(s)),. ,:

(28) exp( i OiXi(Tl(S)) + 90(0)3)’

i=1

which is derived explicitly in any particular case.

ExaMpLE 7.1 (Two-state Markov chain). It is straightforward to verify
that (28) takes the following form:

1 — exp(6,)
eXP(91N1,2(7(3)) + 05N, 5(7(s)) +sln ))»

1 + exp(6,) — exp( 0,
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where 6, and 6, are related to the transition probabilities as follows:

P1,2P21
p—2ret

0, =1
! P11

’ 0, =1np2,2.

ExampLE 7.2 (Poisson process modulated by a two-state Markov process).
This is a Markov-additive process for which [recall (24)]

fi(9) = exp(¥,), fao(D) = exp(Fy),

that is, %; = In u; and ¥, = In u,, where u, and u, are the intensities of the
two Poisson processes involved. It is easy to verify that (28) takes the
following form:

eXP(elsl(T(S)) + 0,85(7(8)) + 05A:(7(s)) + 0,A5(7(s))
+sIn((6, + exp(03))(0, + exp( 04))))’

where S,(¢), S,(¢), A|(t) and A,(¢) were defined in (25), and 6, 6,, 6; and 6,
are related to u;, p, and the transition intensity matrix (A; ;)7 ;_, of the
embedded two-state Markov process as follows:

0, = _)\1,2_,“«1, 0, = _/\2,1_,“«2
05 =1n pu, 0, =In p,.

From (28), in view of Stefanov [(1986), Theorem 1], it follows that the process
(X(7(8))), ¢ is a process with stationary independent increments, and, more-
over, we get explicitly the moment generating function of the increment.

REMARK 7.1. In particular, this presents also an alternative method for
deriving the regeneration property of some sequences of stopping times, in
this case those whose respective sequential likelihood functions belong to
noncurved exponential families.

All known functional and nonfunctional limit results for processes with
stationary independent increments are valid for the process (X(7(s)));. -
Furthermore, well-known analytic properties of noncurved exponential fami-
lies [cf. Barndorff-Nielsen (1978), page 114, or Brown (1986)] yield

9%p(0)
s 96, 96,

(29) Cov(X,(7(s)), X;(7(s))) = —

Also, for each s > 0 and each a > 0,

(30)  E(X(7(s)) —X/(r(s — 1)) <+, i=1,2,...,n,

(31) T(S—S) S Er(1)<8(0) >0 as.asst + oo,
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The latter follows from the fact that 7(s) is a linear function of the compo-
nents of X(7(s)) and thus (7(s)), , has stationary independent increments.
Define for each &, £ > 1, the processes Y,(¢) and Y,(¢) as follows:

F(X(kt)) + kt571(0)f(Ve(0))

32) V()= - ,
G T o TEEERD) + (kD) (0)/(Ve(0))

‘/E 2
where X(-) is as in (28), f: R" — R is a linear function, that is,

f(x) =byx; +byxy + - +b,x,,
and 8(0) is defined in (31). For the processes considered in this paper ([ %t])
is a linear function of the components of the minimal sufficient statistic
X(r((ktD),..., X, (v([kt]), say,

") = X X (r([k]) + ay, (k).

where a,, (kt) depends on kt in general. Of course, Y,(¢) can be represented
also as follows:

T 1(b; + a; 8710 F(Ve(0)) X (m(Lkt]) + a,, 1(k)671(8) f(Ve(6))

(34) T, - i

Bearing in mind that the expected value of 7(s) equals s8(8), it is straight-
forward to see that the expected value of the numerator in (33) and conse-
quently of the numerator in (34) is equal to 0. Of course, from the functional
central limit theorem for processes with stationary independent increments
we have that, as £ —» 4+, Y, converges in distribution to a Brownian motion
starting at the origin with zero drift and diffusion coefficient o 2, such that
n 2
i, j=1 i U

where

¢; =b; +a;871(0)f(Ve(0)).
Condition (31) guarantees that the assumptions for 7, in Propositions 7.1 and
7.2 are satisfied. In the case of finite-state Markov chains and Markov
renewal processes the condition
(35) M;,,/Vk — 0 inprobability as k1 + o

follows from the following observations. For these processes we can assume
without loss of generality that the components of X(¢) are nondecreasing
functions of ¢. The latter is achieved by selecting a suitable canonical repre-
sentation of the exponential family given by (28). Thus, as is easily seen,

(36) M}y < const '§1|Xi(7([kt] +1)) - X, (v([%t]))]-
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Since (X(7(s))),. , is a process with stationary independent increments, the
condition (36) can be written also as

(37) M, < U, k=1,2,...,
where U,,U,,... are ii.d. r.v.’s whose moments are finite in view of (30).

Thus, (35) holds true. In the case of Markov-additive processes we have to
assume additionally that

sup(Z;":1|Ai(s) “Ai(T([kt]))|Z T([kt]) <s < 7([Rt] + 1)) S
vk

in distribution as & 7 + . Clearly condition (38) is satisfied if the trajectories
of the components of A(¢) are monotone functions of ¢. Finally, in view of the
above considerations and Proposition 7.1, and under assumption (38) in the
case of Markov-additive processes, we get the following.

(38)

PROPOSITION 7.3. The process (Y,(t)), ., defined above in (32), converges
in distribution to a Brownian motion starting at the origin with zero drift and
diffusion coefficient o2~ 1(0), where a? is given above.

REMARK 7.2. For the processes considered in this paper the constant §(6)
is explicitly given because 7(s) is always a linear function of the components
of the minimal sufficient statistic X;(7(s)),..., X,(7(s)).

In particular, Proposition 7.3 covers all existing central limit results for
finite-state Markov chains, with either discrete or continuous time parame-
ter, for which explicit limit results are available [cf. Iosifescu (1980), page
138] and Bhattacharya and Waymire (1990), pages 313—-315]. Moreover, our
Proposition 7.3 supplies further explicit solutions, not previously available, in
functional limit theorems for finite-state Markov chains, Markov renewal
processes and Markov-additive processes.

Let % be the set of absolutely continuous functions x in C[0, 1] with
x(0) = 0 and whose derivatives % are such that

j:(ob(t))2 dt < 1.

In view of a slight extension of Strassen’s (1964) invariance principle from
the space C[0,1] to the space D0, 1] [cf, e.g., the general Theorem 1 of
Maller (1988)], the process (2loglog k)~1/%0~1Y,(¢) is relatively compact with
a.s. limit set .7, where o was given above. Considerations similar to those
made prior to Proposition 7.3 imply that

M;,.,/V2k loglogk — 0 as.,
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in the case of finite-state Markov chains and Markov renewal processes. For
Markov-additive processes we assume additionally that

sup(ZQ":1|Ai(s) —A(r([#t])) | 7([kt]) <s < T([kt] + 1))
(39) V2k loglog k

-0 a.s.

Once again it is clear that condition (39) is satisfied if the trajectories of the
components of A(¢) are a.s. monotone functions of ¢. Thus, in view of
Proposition 7.2 and under the additional assumption (39) in the case of
Markov-additive processes, we get the following.

PROPOSITION 7.4. The process (2loglog k)~ /%~ 1Y,(t) is relatively com-
pact with a.s. limit points {x(671(0) - ): x €.%).

Likewise, strong and weak laws of large numbers are easily obtainable.
For example, in view of Proposition 7.1 and under the suitably changed
assumption (39), just replace 2% loglog £ by k, in the case of Markov-ad-
ditive processes, we get the following.

PROPOSITION 7.5. For each t the sequence Y,(t)/ VE — 0 a.s. as k — +,

ExampLE 7.1 (Two-state Markov chain, continued). Bearing in mind that
(D) =1 + N, ,(r(1) + N, ,(7(1)) it is easy to see that

dp(0)  de(9)
96, 96,

5(0)=1-

2

where
1 — exp(6,)
1 + exp(0,) — exp(6,)

o(6) =In

Consider, for example, the process U,(t) = N, ((kt) + N, ,(kt), that is, the
number of occurrences of state 2 in the first k¢ steps. Observe that in this
case we have a; = ¢, = b; = b, = 1. Applying Proposition 7.3 we get that, as
k T + o, the process

U, (t) + kt(09(0) /30, + dp(0)/0;)(1 — d¢(8) /6, — de(0)/d0,) "
VE

converges to a Brownian motion with zero drift and diffusion coefficient
o257 1(0), where

o= —

s9(0) a¢(e>))2( 3 a%(e))

96, 96, 96, 96;

1+6‘1(0)(

i,j=1

and 8(6) and ¢(0) are given above.
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REMARK 7.3. If the process in question U,(t) is such that U,(¢) = const,
then one should select another stopping rule 7,(s), among those whose
corresponding likelihood functions are noncurved exponential families, such
that U,(¢) is random. Such stopping rules exist for any linear function of the
components of the minimal sufficient statistic in all the processes considered
in this paper.

ExampLE 7.2 (Poisson process modulated by a two-state Markov process,
continued). Bearing in mind that 7(s) = S,(7(s)) + S,(7(s)), it is easy to see
that
dp(0)  d¢(0)

5(0) = —
(9) 30, 90,

2

where
®(60) =1In((6, + exp(08;3))(0, + exp(6,))).

Consider, for example, the sequence of processes (A¥)(¢)),.,, k= 1,2,...,
where

AB(t) = A, (kt).
Observe that b, =b,=5b,=0, by=1 and a, =a, =1, a; = a, = 0. From
Proposition 7.3 we get that, as £ 7 + =, the process
AP(8) + (= 2¢(8) /36, — 3¢(6)/985) " 9¢(0) /30,
VE

converges to a Brownian motion with zero drift and diffusion coefficient
o %7 1(0), where

s [ aa o (22O & 9%(0)
7 __((8 (0)( 903 )) i,jzil fwi‘wj)

90, 96, 36, 962

( 1(0)( (0)))(& a2¢<e))+ a%(f))’

and 6(0) and ¢(0) are given above.
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