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EXACT COMPUTATION OF THE ASYMPTOTIC
EFFICIENCY OF MAXIMUM LIKELIHOOD
ESTIMATORS OF A DISCONTINUOUS
SIGNAL IN A GAUSSIAN
WHITE NOISE

By HERMAN RUBIN AND KAI-SHENG SONG

Purdue University and Texas A& University

In this paper, the problem of computing the exact value of the
asymptotic efficiency of maximum likelihood estimators of a discontinuous
signal in a Gaussian white noise is considered. A method based on
constructing difference equations for the appropriate moments is pre-
sented and used to show that the exact variance of the Pitman estimator
is 16/(3), where ¢ is the Riemann zeta function.

1. Introduction. Consider the problem of estimating a one-dimensional
parameter 6 based on observations of the process X(¢) satisfying the stochas-
tic differential equation

dX(t) = %S(t - 0)dt +dwW(¢), te]0,1],

where S is a function possessing at least one discontinuity of the first kind in
the interval of observations, ¢ is a small parameter and W(¢) is a standard
Wiener process. This estimation problem may also be referred to as estima-
tion of a change-point as it is the continuous analog of the classical change-
point problems in the regression context.

The problem considered by many comes from considering the asymptotic
situation, in which S can be taken to be constant except for one discontinuity,
and instead of using [0, 1] we use (—o, ). In this case the problem is location
invariant, and Pitman (1938) showed that the best invariant procedure for
such a problem is the formal Bayes procedure with a uniform “prior” on the
entire real line.

As this is not a regular estimation problem, the maximum likelihood
estimator is, as is usually the case here, not asymptotically efficient. It is
natural, therefore, to ask to compare the variances of the maximum likeli-
hood estimator and that of the best invariant estimator.

Received May 1994; revised November 1994.
AMS 1991 subject classifications. Primary 62F12; secondary 60J65.
Key words and phrases. Brownian motion, change-point, efficiency, Pitman estimator.

732

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&
The Annals of Statistics. BIEOIRS ®

o

2
AN

WWw.jstor.org



CHANGE-POINTS IN GAUSSIAN WHITE NOISE 733

The formal setup is that specified in Ibragimov and Has’minskii (1981). We
wish to obtain the ratio x = E¢2/EE2, where ¢, and &, are defined as
follows:

£, = arg max Z(t),
teR,

+ oo + oo -1
e [TawalfTzwa)
Zo(t) = exp(W(2) — 3ltl),
where W(¢) is a two-sided Brownian motion defined as

Wi Wi(t), ift>0,
() = Wy(—t), ift<0,

and W,(¢) are independent standard Wiener processes defined for ¢ > 0 and
such that W;(0) = 0.

The exact evaluation of E£?2 is not too difficult. Ibragimov and Has'minskii
(1981) showed that E¢Z = 26. An attempt to evaluate E£2 was also made in
their monograph. Unfortunately, as they stated in the book, it seems that it is
difficult to evaluate E¢2 explicitly. Instead they obtained a method for an
approximate calculation of E£2 and obtained through statistical simulation a
value of 19.5 + 0.5. Golubev (1979) proved that E¢? is the second derivative
of an improper integral of a composite function of modified Hankel and Bessel
functions with respect to a parameter u evaluated at 0. Again, the exact
evaluation of the result has only been obtained by computer assistance. In
this paper, we shall present a method based on constructing difference
equations for the appropriate moments to compute the exact value of E¢£2.

For an early discussion of the above problem, see Rubin (1961). A related
problem of the Pitman estimator for the absolute error-loss function was
considered by Paranjape and Rubin (1975). The exact distribution of the
estimator was obtained in that paper. It may be worth mentioning that the
problem of determining the distribution of the Pitman estimator for the
quadratic loss function remains unsolved.

2. Main Result. In this section, we first state the main result and prove
it through a series of lemmas.

THEOREM 1.

E¢3 = 16{(3),

where { is Riemann’s zeta function defined as {(s) = ¥, _,1/n".
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Let X,, Y, and Z, be defined as

X, = [ exp(Wy(t) — At) dt,
0

Y, = fwt exp(Wy(t) — At) dt,
0

Z, = fwt2 exp(Wy(t) — At) dt,
0
where A > 0.

LEMMA 1. The reciprocal of the random variable X, has a gamma distri-
bution with density defined by

222x24 1 exp(—2x)

T(21) ’

flx) =
where \ > 1.
Proor. Consider the random process
X(t) =exp(—W(¢) — )\t)ftwexp(W(s) + As) ds.

Observe that for any ¢ the distribution of X(¢) is the same and coincides with
the distribution of X, [see Ibragimov and Has’'minskii (1981)]. Using Itd’s
formula, we obtain the following stochastic differential for the process X(t):

dX(t) = —X(t)dW(¢t) + (1 - (A — 3)X(2)) dt.

It follows that the stationary density g(x) of the process X(t) satisfies the
differential equation

L - (a-1/2 0
5 72(¥°8) — (1 - (A~ 1/2)x)g = 0,

subject to the constraint
f g(x)dx = 1.
0
Solving the above equation, we find

22)‘36_(2 A+1) exp( _2/x)
T(21) ’

g(x) =
which completes the proof. O

LEMMA 2. Let p be any nonnegative integer. Then EY,/XP < o, where
A> 1.
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ProoF. For any given A > 1, choose a 7 such that 3 < 7 < A, then
X - X,

e

By Lemma 1, X, has finite moments of all orders £ < 2A and X, has finite

moments of all orders 2 < 27. Let £k =1+ &, where 0 < § < 27— 1. Then
Minkowski’s inequality implies

> Y,

E(X, - X,)'"° < 21*°EX!+3,

Therefore Y, has finite moments of all orders 1 + 8. An application of
Ho6lder’s inequality finishes the proof. O

LEMMA 3. Let A, (V) = EX(Y,/X,)", a is a nonpositive integer, A > 3.
Then A, 1()) satisfies the following difference equation:

(1) za(a—20)A, () + (a—1)A,_11(A) +A,0() =0;
and the unique solution of the equation for a = —q is given by
2T(q + 2)) 12271 (1 —¢9)
2 = dt,
(2) A-qa(A) 29T(2)) fo 1-t ¢

where T is the gamma function and q is a nonnegative integer.

ProoF. Note that, by Lemma 2, A_, ;(A) = EY,/X¢*D < o for all q. For
any arbitrary small ¢ > 0, let

S, = /Ogexp(Wl(t) — At)dt,

S, = j:t exp(Wy(t) — At) dt,

T = exp(Wy(&) — Ae).
Then we have
X, =8, +TX,,
Y, =S, + T(Y, + &X}).
where X| and Y, are independent of T, S, and S,; (X}, Y)) and (X, Y,) have

the same joint distribution. Let g(s) = 1/[s + TX,]" P, Taylor expansion of
g(s) at s = 0 yields

Y,

X)?Jrl

@ Y, e (a+D)SY
_|_ p—

T(X) T TUX)! TUr(X)T?

=[S, + T(Y] + &X])]2(S))
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where
R Sy (e + 1SS, (g+1)eS;
(Tx)* (TX)T (Tx;)*""
L@+ D(a+ SIS, (a+ (g + 2TV
2(0 + TX,)*"? 200+ TX))**?

(¢ + 1)(q + 2)eTX]S?
2(0 + TX})*"®
and 0 < 6 < S;. Taking expectation on both sides of equation (3) gives
A_,1(AN) =A_,(MNET 7 + eET 7A_, (())
—(q +1)ES,T"“*PA_ .1 ,(2) +ER.

Therefore,
(ET 7 —1)A_,1(A) + eET1A_,,())
_(q + 1)ESIT_(q+1)A_(q+1)’1(A) + ER = 0.

Note that ET 7 = exp(q(q + 2A\)e&/2) and lim,_ , ES,T "D /e =1; let
g — 0. We have, from the above equation,

1 R
Sa(a+ 20 A_,1(A) +A_go(N) = (4 + DA_(gp,(Y) + IimE— =0,

It remains to show that lim, ,, ER/& = 0, but this is true by noting that
S, < &S, and lim, _, , E(T"'S,/€)™ = 1, where m is any positive integer, and
by an application of the Cauchy—Schwarz inequality. To solve (1), observe
that, for « = —q, (1) becomes

2\
(4) (g +1DA_,ipi(H) — 'q(q;-—)A—q,l( A) =A_,o(A).

The factor (¢ + 21)/2 suggests that A_, (1) should be considered with the

factor I'(qg + 21)/27 removed. Since the density in Lemma 1 has the normal-
izing factor I'(2A), we can put this in as well. Call the resulting function H,
that is,

29T (21) A N
77 T(g+2)) “aa(Y)-
Then (4) becomes
2
(¢ +1)H, , —qH, = PETYE

so this would say that gH, should be 2y(q +2)) + C, where (z) =

‘dlogT'(z)/dz and C is a constant. Since the equation holds also for ¢ = 0,
C = —2y(2)). The result is then given by the standard integral form of the
difference of the i function at two values, which yields formula (2). O
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LEMMA 4. Let A, (M) be defined as in Lemma 3. Then A, (3) < < and it
satisfies the following difference equation:

%a(a - 1)Aa,1(%) + (a - l)Aa—l,l(é) +Aa,0(%) =0
and the unique solution of the equation for a = —q is given by

(5) A_q,l(%) = w[ ta71[~In(1 — )] dt.

Proor. It is enough to prove that A_, (3) < = since we can repeat the
same argument as given in Lemma 3 to derive the difference equation and
use integration by parts to obtain (5). By Fatou’s lemma, we find

1 Y,
Aaof3) -2 ) < pmgea- o
I'lg+1 1 -1
_ (q - )/‘1 dt,
27 o (1-1t)q

which shows that A__ ,(3) is finite. O

REMARK 1. The fact that A_, (3) <® can be obtained directly by a
completely different method using the reflection principle for Brownian mo-
tion (defining appropriate stopping time) and Fubini’s theorem. Instead we
present the above proof in Lemma 3 and Lemma 4 because the truncation
argument used in the proof is more intuitive and elementary.

REMARK 2. Formula (5) has only been obtained for positive gq. However,
the A_, ; are moments of a measure on (0, «), as are the quantities given by
5). Slnce the moments grow slowly enough, the measure is determined by the
moments of positive integer order, and thus (5) holds for all ¢ > —1. In
particular, it holds for ¢ = 0, which is needed to continue the process.

LEmMA 5. Let B, () = EX(Z, /X,)". Then B, (3) satisfies the following
difference equation:

sa(a—1)B, (3) + (a = 1)B,_14(z) + 24A,.(3)=0
and the unique solution of the equation for a = —q is given by

1 8I'(qg +1) —In(1 — u)
B_q,I(E) —2——f j l_sj —— dudsadt

The proof of Lemma 5 is similar to the proofs of Lemmas 3 and 4. We omit
the proof.
For notational simplicity, we omit the subscripts on X, Y and Z through-
1

out the rest of the paper, with the understanding that A = 5. Observe that
the random variable &, can be written as

Y® _yD
X0 4+ xX®

€ =
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where
X0 = fwexp(Wi(t) —t/2)dt
0
and
YO = [“texp(Wy(t) —t/2)dt,i = 1,2.
0
LEMMA 6.

y@ _ ym2 VA
E(Xa) T X<2)) - EXa) T X®
ProoF. A direct application of Theorem 3 of Golubev (1979). O
Now we shall prove Theorem 1.
PrROOF OF THEOREM 1. Let ¢(X)=E(Z/X|X). Then, by Lemma 5,
EX 1y(X) = B_q’l(é).'Observe that the growth of B_q,l(é) as a function of ¢

is sufficiently slow, approximately in the order of 27%¢!, so that the above
moment problem has a unique solution, which is

v =8 1_J11M1

Observe that the joint density of (XV, X®) is

. 11
f(x1, x5) = 4(%x,%5) exp(—2(— + _))

]dudst‘z exp(——z—(l—:—t—)—)d

xt

X1 Xa

Using Lemma 6, we find
X(l) © .00
1
E¢f =E X<1)+X<2>E(X<1) X )) B fofo x, +x f(xl’x?‘)dj(xl)dxl -

Writing x; = 1/(twz) and x, = 1/[(1 — w)z], we obtain

~af [ T dwasr

© .1 1—-w
A 1+(t—-1)w]
11— t+tln(t) ~In(1 -
=sf0 e j[ 2(1_ ) dudsar.

Note that d[1 — ¢ + ln(t)]/(l - t) =[1 - ¢+ tIn()]/[t(1 — £)?] d¢, integrat-
ing by parts gives

tzexp(—22z) dwdzdt

1—¢t+In(¢ —In(1 —u
= -8/ 2()[1 A=Y Guar.
0 (1-1¢) ¢ u
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Writing v = 1 — ¢, we obtain
1v+1In(1-v) v —In(u)

= —8]; 2 fo (1—u)2 dudv.

Observe again that d[(1 — v)In(1 — v)/v] = —[v + In(1 — v)]/v%dv, inte-
grating by parts yields

1 In(v)In(1 - v)

N 8«/;) v(1 —-v)
_ 16folln(l —:)ln(v) do
= 16£(3). O

Thus it follows from Theorem 1 that the asymptotic efficiency of maximum
likelihood estimators of discontinuous signal in a Gaussian white noise is
E¢? 8
= 7 = 7=4(3).
E¢; 13

K
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