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STATIONARY EXPONENTIAL FAMILIES

By 1. H. DINWOODIE

Tulane University

A stationary exponential family is defined using transition densities
which take the form of exponentiated symmetric k-linear forms on R%.
Estimation is based on a mean value parametrization through a convex
function on a finite-dimensional vector space. A consistency theorem and a
central limit theorem are presented.

1. Introduction. We are concerned with defining and studying an expo-
nential family for stationary sequences of random vectors X;, X,,... in the
finite-dimensional vector space F = R% The main results are a consistency
theorem and a central limit theorem (Theorems 2.1 and 2.2) for an estimator
0 of the parameter 6 which indexes the process. We begin with some
definitions and a preliminary discussion of the exponential family, and we
present the main results in Section 2 and examples in Section 3.

Let E be the vector space of symmetric k-linear forms on F*. The
E+d-1
d-1
integer solution of x, + -+ +x; = k. Let u be a reference probability measure
on R? such that Z, = [ exp(6(x, ..., x,)u*(dx,, ..., dx,) < o precisely on an

open set ® C E, 6 € 0. The Borel field on R will be denoted B.
Construct a stationary process {X; € F, i > 1} defined on the space F* as

follows. Fix 60 € ® and define

dimension of E is ), since a basis corresponds to a nonnegative

Z(%xq,..., %) = exp(0(xq,..., %)),

Z(%q,...,%;) = fexp(()(xl,..., x) )T (dxy, dxy_y, .., dx ),

1<i<k,

(1.1)

Z= fexp(()(xl,..., x,))pt(dx,, ..., dxy).

The Z will appear with a subscript 6 occasionally to avoid ambiguity. Let the
transition density p (p, occasionally) be given by
p(x %) = exp(0(xy,..., %)) _ Z(%qy...5 %)
Lrerer Tk Z(%yy..y Xp_q) Z(XyyeeerXp_q)

Let m(x,,..., x,_,, dx;) denote the transition probability associated to the
density p. The theorem of Ionescu Tulcea [see Ionescu Tulcea (1949) or
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Shiryayev (1984)] assures us a measure P, on (F~, B) which satisfies

Z(x,)
Z

p(dxy) -

Z(x]_,...,xk_l)
X n dx, )
Ay 1 Z(Xq,.nns X4_3) (dxp-1)

Py(A; X XA, XFx )=
A

1

Xf T(Xqyeees Xy, dXy) o
Ay

XfA W(xn—k+1""’ xn—l’dxn)
n

for every positive integer n and all sets A; € B, 1 <i < n. The coordinate
process X;, X,,... on (F*, B®,P,) is a chain of finite order with transition
probability 7. One can verify that the process is strictly stationary and that
the stationary measure on % coordinates for this process has density
exp(0(xq,...,x,))/Z.

Define the sequence of random elements {Y,} in the dual space E’ of the
vector space E by

Yn(a) = a(Xn,...,Xn+k_1)

for a € E. The vector Y, is a k-fold tensor product defined via the symmetric
k-linear forms.

Expectations and derivatives for the stationary exponential family of
processes {P,: 6 € @} are related as in the iid. family, as we show in
Proposition 1.1 below. For 6 € O, let E, denote expectation with respect to
the probability measure P, on the measurable space F~. The symbol V log Z
denotes the derivative of the real-valued function Z, which is defined on E.
ThusVilegZ: E - E'.

ProposITION 1.1. E(Y,) =VlegZ: 6 - E".

Proor. For each a € E,

Y AC TN
Bo(F,)(@) = faCeym) 20 b d)

= VO log Z( a) ’
which proves that E,(Y,) = V,1log Z. O

In the following text we let m, = E,(Y;) € E’. Consider now the problem of
estimating the parameter 6. The ergodic theorem implies that the sequence
¥ = n"1T"Y, € E’ has the property that ¥ — E,(Y;) = V, log Z. To simplify
notation, let

f=VlegZ:® - E'.
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Proposition 1.1 suggests that we define our estimator @ for the parameter
0 € E by

(12) 6=F1(¥)

since at least formally § = £ 1(Y) - f~ (E,(Y;)) = 0. If C is the closed convex
hull of the support of the distribution of Y}, then Y € C and one needs to be
sure that C is in the range of f and that f is bijective from E to C for (1.2) to
make sense. These points will be addressed in the next section. We think of
this estimation scheme very simply as choosing the parameter 6 € E which
makes the mean of Y; under the law P; equal to the sample mean Y € C.

2
The results that follow in Section 2 justify the existence and continuity of

!, show asymptotic properties of ¥ and translate these properties to 6
through 1.

2. Two limit theorems. Our study of 6 below begins with regularity
properties of £~! to obtain the consistency result Theorem 2.1. Then we apply
a central limit theorem of Rosenblatt (1971) to the multivariate Markov
process (X,,,..., X, .,_1) in order to prove a central limit theorem for 6 at
Theorem 2.2. Assume in what follows that:

(a) log Z, is finite precisely for 6 € ®, ® C E open,;

(2.1) (b) Y, €intC as.

The process can be cgnstructed with less than (2.1a), but we use all of (2.1) to
prove results about 6.

LEMMA 2.1. Assume (2.1). Then the map f=VlogZ: ® CE — intC is
bijective.

PrOOF. The function log Z is strictly convex on ® by Theorem 7.1 of
Barndorff-Nielsen (1978) and (2.1b). Now we need only apply Theorems 5.33
and 9.2 of Barndorff-Nielsen (1978). O

Lemma 2.1 makes sense of the estimation procedure (1.2), since now we
have with assumption (2.1b) that 6 exists and is well defined with probability
1. Next we look for further regularity properties of f.

LEMMA 2.2. Assume (2.1). Then f = V log Z has differentiable inverse f*:
intC >0 CE.

ProoF. By Lemma 2.1, f! exists. To show it is differentiable, it is
enough to show that f is differentiable without critical points. However, D, f
is a linear map from E to E’ corresponding in the standard way to a bilinear
form on E X E which satisfies

Dyf(a,a) = E0(<a,Y1 - mo>2)
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for any a € E. D,f is, in fact, positive definite, since (2.1b) implies that the
law of Y; is not concentrated on an affine subspace of E’. Therefore, the
matrix for D,f is invertible, and so f has no critical points. O

THEOREM 2.1. Assume (2.1). Then the estimator 6 € E converges a.s. to 6.

PrROOF. The map f ! is continuous, so the formal argument following
(1.2) is valid. O

We will prove below a central limit theorem for § from results of Rosen-
blatt (1971) for Markov chains. We start with the following observation.

LEMMA 2.3. Assume (2.1). The process ((X,,...,X,,,_1): n>1} is a
Markov chain on F* with transition probabilities , given by

Wk((xo,...,xk_l),(Al,...,Ak))
=8,,..., x,,_l)(Al X XA ) (%y5eens X1, Ag).

Let L** denote the set of real-valued measurable functions on the product
space F* such that

lgls = Ey(g2(Xy,..., Xp)) < o

This is the L? norm for the stationary probability measure on k-coordinates
having density Z(x,..., x,)/Z. Define the operator T on L** by

(Tg) (2155 %) = [Wo(xzwu,xk,dxkn)g(xz’m»xk+1)-

We will say that g L 1 if E,(g(X],..., X;)) = 0. Consider the following L?
norm condition:

IT"gll
(2.2) sup L&l
gLl ”g”2

LEMMA 2.4. Assume (2.1) and (2.2). Then the sequence Y(Y; — m,)/ Vn
converges in distribution to the multivariate normal law N(0, A), where A is
the symmetric bilinear form on E X E defined by

1
A(a,a) = lim-;Eo
1

(i(a,Yi - m0>)2),

Proor. Consider the usual operator for the multivariate Markov chain
with the kernel m,. Then (2.2) is the L? norm condition of Rosenblatt [(1971),
page 206]. Apply Theorem 2 of Rosenblatt [(1971), page 217], to the sequence
S, = (a,Z}(Y; — my)) [where f; , = (1/ \/r_z)a(Xi,..., X,,1-1)and k, = nin
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his notation] to see that S, / Vrn = N(0, A(a, @)). Then it is also true that for
each a, B € E the quantity

1 (2 n
_EB Z<a,Yi_m9>Z<B7Y'i—m0>
n 1 1

converges to a number, say A(a, 8) < », and A is necessarily symmetric and
bilinear. Thus the covariance matrix A is of the stated form.

However, this implies that the sequence of vectors Y(Y; — m,)/ Vn € E’
converges in distribution to N(0, A). O

Consider the condition (2.2). If there exists g € L'( u) such that

(23) p(xl"“’xk—l") —<—g(.),

then (2.2) and the above central limit theorem hold. The condition (2.3) gives
uniform integrability of the kernels 7., which is stronger than the Doeblin
condition and has been used extensively for central limit theorems [Doob
(1953)]. Rosenblatt [(1971), Theorem 1, page 211] shows that the Doeblin
condition implies the L? norm condition, and generally (2.3) is easier to
check. Condition (2.2) means in a precise way that the multivariate chain
(X,,..., X, ,,_1) is asymptotically uncorrelated [Rosenblatt (1971), page 207].

For & = 2, the process (X, ) is Markov with ordinary transition operator .
Now 7 is self-adjoint on the space L? of functions on F with the stationary
distribution, since

(g, mhy = [u(dx))Z(x,)/Z8(x,) [ m(dxa) Z(x1, %3) /Z(%1) h(x2)

= [(dxy)Z(%,) /2 h(%y) [ p(dx1) Z( %1, %5) /Z(x2) 8(%1)

=(ng,h)
using the symmetry of Z(-,-). Note that T""!g(x,, x,) = w"Tg(x,), and if
g L1, then A = Tg is orthogonal to 1 in L? and thus (2.2) is satisfied
provided
IRl

sup ———— —

wes IRl
In particular, if 7 has a complete set of eigenfunctions (necessarily orthogo-
nal), thenfor 2 L 1,

llr hllz < AR,

where A is the second largest eigenvalue of 7 in absolute value, or the largest
eigenvalue of m when restricted to the orthogonal complement of the function
1. The condition (2.2) is then satisfied if |A| < 1, which will be the case in
Examples 3.3 and 3.5. .

Theorem 2.2 below is the central limit theorem for 6. Recall that as a
bilinear map on E X E, D,f satisfies D, f(a, a) = E,({(a,Y; — m,)*) and can
thus be interpreted as the covariance matrix for the vector Y.
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THEOREM 2.2. Assume (2.1) and (2.2). Then the vector Vn (8 — ) con-
verges in distribution to N(0, B), where B is the symmetric bilinear form on
E' X E' defined by

B(v,0) = A([Dyf17(v), [ Dyf17'(v)).
PrOOF. Since 6 = /"1(Y) and f ! is differentiable at £(8), it follows that
6= 0 =Dyo,f (T~ £(8)) +o(Y - £(6)),
where Dy, /! is a linear map from E’ to E and o(-) is a function from E’ to
E such that o(x)/llx|l — 0 as [|x]| » 0. We can use the standard argument for

transferring central limit theorems through differentiable maps to see that
for each v € E’,

(Vn (8- 0),v) > N(0, A([D,£]7'(v),[ D, £17}(v))).

However, this proves the multivariate assertion that vz (4 — 0) converges in
distribution to N(0, B). O

3. Examples.

ExaMPLE 3.1. Let d = 1. Then E and E’ have dimension k;‘f; 1) =1,

regardless of k. The parameter 6 is simply an element of R, and the process
Y, takes values in R' as well as is given by Y, = [1:"! X, ;. Thus

exp(0xy X -+ X x3)
m0=kax1><~~ X %, Z dpt(xg,..., x).

If condition (2.2) holds, let o? = lim(1/n)E,(X"(Y; — m,))%. Then LY,/ Vn
converges in distribution to N(m,, 0?). Since [D,f]17! = 1/E,(Y; — m,)?, it
follows that Vn (§ — 9) converges in distribution to N(0, o2 /[E,(Y; — m,)2]?).

ExAMPLE 3.2. The special case where d = 1 and k = 2 corresponds to a
Markov chain on the real line. The stationary density is given by Z(x)/Z.
The chain is reversible since Z(x)p(x, y)/Z = Z(y)p(y, x) /Z, which leads to
a self-adjoint transition operator 7, but not symmetric.

Let the reference measure u be Lebesgue measure on (0, 1). Then we can
take ® = R = E and the transition density p(x, y) is given by

Oxe Oxy
p(x’y) = eox _ 1’
which is bounded uniformly in x on (0, 1) and satisfies conditions (2.1) and
(2.2) (in fact, the chain satisfies the Doeblin condition with uniformly u-inte-

grable transition functions). The map f is given by

f(6) j:/:xye"xy dxdy/folfole“y dxdy

1(90—1 )
— -1/,
0 Co
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where ¢, = [{(e* — 1)/xdx. The function f is monotone increasing from the
real line ® = (—o, ) onto the interval (0,1) = int(C) (cf. Lemma 2.1). Now
Y = £"X,X,,,/n and the estimator 6 is the unique solution to

f(4) =Y = (0,1).
ExampPLE 3.3. Suppose we are interested in a standard Gaussian refer-

ence measure. Then the transition density p(x, y) with respect to Lebesgue
measure on R becomes

p(x,y) =

1 (- 0x)>
B P T T )

and when 0 € (—1,1) this represents the transition probability for a process
in discrete time analogous to the Ornstein—Uhlenbeck process. The sequence
X,, X;,... can also be represented as an autoregressive series with X, =
£+ 0X, , =X50% & ~iid. N(,1).

Set @ = (-1, 1) Conditions (2.1) are satisfied and the invariant marginal
distribution on Xn is N(0,1/(1 — 62)). Condition (2.2) is also satisfied, since
the self-adjoint operator 7 on L? takes the form

xp(—(y — 0x)?/2
7rh(x)=[h(y)ep( (L\sz—:)/)d

One can check that the spectrum of 7 is 1,6, 602,... and that these num-
bers correspond to Hermite polynomials for the stationary distribution
N(0,1/(1 — 62)). By the remarks following Lemma 2.4, the L? norm condi-
tion is satisfied.

The map f: ® — R is given by

f(0) =

)

1- 62

which is an increasing map from ® = (—1,1) onto E = (—, ), with asymp-
totes at +1. This is of course the covariance of X, and X, ; with joint
bivariate normal distribution having mean 0 and covariance matrix R given
by

2 (1 -8
R _(_0 1).

One can solve explicitly f(§) = Y to find the estimator for 6. With some
straightforward calculation it is seen that Cow(Y;,Y;) = 6% Cow(Y;,Y;_,) for

17y
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j=i+2 and

1 n 1-6*+460°
2= lim;Varo(ZY) _

‘ (1-6%)° "~
) 1+ 62
Var(Y;) =f'(0) = _(_I——oé?’
n 864
\/-7?(0_ 0) —)N(0,1+ 02 - (1_,_—92)2)

The information 1,(8) in the sample {X,, X;,..., X,}, given by

n 2
(‘90 log(1 - 02) _X02(1 - 02) - Z(Xl - 9Xi—1)2) )

satisfies 1,(8)/n —» 1/(1 — 6%). The maximum hkellhood estimator 0y is
the value of 6 which maximizes the quantity log(1 — 62) — X2(1 — 6%) —
YM(X, — 6X,_,)% It is known that 0y, satisfies Vn (6, — 6) > N(©O,1 — 62)
[Box and J enklns (1970), pages 280-281] and that this asymptotic variance is
also attained by the sample correlation r;. Thus the asymptotic variance for 6
in this example is slightly greater than the variance of these estimators.

In(e) = E0

ExaMmPLE 3.4. Let d = 2 and let 2 = 2. Then E and E’ have dimension 3,
and E consists of symmetric bilinear forms on R? X R2. Elements of E can be
identified with symmetric 2 X 2 matrices and a basis consists of the three

vectors
(31,32’93)=((3 8)’(1/?@' l/f)’(g 2)

which are orthogonal for the entrywise inner product. E is then a three-
dimensional subspace of the vector space of all 2 X 2 matrices. A correspond-
ing dual basis (e}, e}, ;) for E’' has the same matrix representation and
(e,, e;) = §,; for the entrywise inner product. For example, if we think of x,y
in the state space F = R? as column vectors, then

1 0
el(x, y ) = ( 0 0 )
With this identification, f(0) is an element of E’ determined by coordinates

T,
f(0)(e;) = Eo[ei(Xp Xz)] = foFxTeiyf‘)m(;%)‘ﬂ X u(dx,dy).

2

Also D,f is a linear map from E to E’ given by a 3 X 3 matrix (d;;) with
columns D, f(e;), the entries of which are determined by the effect of D, f(e,)
on each basis element:

dij = [Dof(ei)](ej) = Eo[(ei(Xl’ X5) — Eo[ei(Xl’ Xz)])
X (e;( X1 X,) — Ey[e;(X1, X,)])]-
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The bilinear form A on E X E can also be represented as a 3 X 3 symmetric
matrix (a;;), where

1 n n
a; =lim—E,| ¥ {e;,Y,, —my) Y (e, Y, —my)|.
n m=1 m=1

ExaMpPLE 3.5. Take d =2 and k2 =2 as above and let the reference
measure pu on R? be the product of two independent N(0, 1) distributions. Let
O C E consist of those symmetric matrices

- (3 2]

M. — 1-a2-52 —b(a+c)
o\ —b(a+c) 1-b2-¢?

is positive definite. This means that the eigenvalues of 6 are in (—1,1). One
can easily show that conditions (2.1) are satisfied. One can show that condi-
tion (2.2) is satisfied, as we did in Example 3.3, by showing that the
self-adjoint operator 7 on L? has largest eigenvalue equal to the largest
eigenvalue 6, of the matrix 0, when 7 is restricted to the subspace of L?
orthogonal to the function 1.

One finds that Z2 = 1/det M,, and the transition density p(x,y) with
respect to Lebesgue measure takes a form analogous to the one-dimensional
situation,

such that the matrix

)=id—02

1 ~lly — oxI®
p(x,y) = 5—exp| ——— |,

so the step has the Gaussian distribution with mean 6x. The stationary
marginal distribution on F = R? is bivariate normal N(0, M;') and the
stationary distribution on F X F = {(x,, x,, ¥;, ¥5)} is Gaussian with mean 0
and covariance matrix R such that

R =10 5 1 o0
-b —c 0 1
In particular,
1 I a + ¢b? — ac?
F(0)(e1) = 7 [mry exp(xBy)u X (dx, dy) = — 3 7r—
2
0)(e2) = 3 [ 25 I ey e ) - @b(ld:‘ju ol

0 1 To d d 1_a2_b2
020 = 5 frasw (o5 ¢ e, 23) = gy
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Thus we can represent f(0) € E’ as the symmetric 2 X 2 matrix
1 a+cb®>—ac® b(l+ ac—b?)
det My | b(1 + ac —b%) 1 —a®—-b2

f(0)

— 0(id — 62) .
Finally, the statistic Y € E’ takes the following form. Let X, = (X, ;, X; ,) €
F = R? Then

Y(e;) =e —Z( » Xiv1))
and this gives the formulas

_ 1
Y(ey) = "EEXi,12Xi+1,1,

Y(e;) = ==I[3X, X, 11 +2X, 23X, 5],

‘/— 2
17.(‘33) = ;EEXi,ZEXi+1,2’
which in matrix form becomes
7= Y(ey) Y(ex)/V2
l7'(‘32)/\/5 l7(‘33)

We remark that the exponential family presented here is a restrictive
parametric model for a stationary process that is different from typical time
series models. The advantage of this is a very simple estimation scheme
which is based on studying a sample mean in a finite-dimensional vector
space. The sample mean itself is an easy candidate for an ergodic theorem
and a central limit theorem. Then a smooth map transfers its statistical
properties to the estimator 6.

One can ask about the efficiency of the estimator § which we have
introduced based on natural convexity considerations. Example 3.3 indicates
that 6 does not always have minimum asymptotic variance, although it is
close. In the ii.d. model (¢ = 1), 6 is of course the MLE and an optimal large
deviation property for the estimator was recently proved by Kester and
Kallenberg (1986). A similar result for £ > 2 will require first a careful look
at the large deviation properties of Y.

Acknowledgments. We thank the referees for indicating another ap-
proach to exponential families in Kiichler and Sorensen (1989), and also for
suggesting that assumptions in the first version be weakened.
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