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EFFICIENCY OF EMPIRICAL ESTIMATORS FOR
MARKOV CHAINS!

By P. E. GREENwWOOD AND W. WEFELMEYER

University of British Columbia and University of Siegen

Suppose we observe a uniformly ergodic Markov chain with unknown
transition distribution. The empirical estimator for a linear functional of
the (invariant) joint distribution of two successive observations is defined
using the pairs of successive observations. Its efficiency is proved using a
martingale approximation. As a corollary we show efficiency of the empiri-
cal joint distribution function in the sense of a functional convolution
theorem.

1. Introduction. Before introducing empirical estimators for Markov
chains let us recall what this term means if our observations X;,..., X, are
iid. from an unknown distribution P. The distribution P is determined by
values P(A) assigned to certain sets A. The empirical estimator for P(A) is
the proportion of observations falling into A,

JAA) =~ UK € A),

i=1

which is the probability of A under the empirical distribution

1
T} (dx) = — Zlﬁxi(dx).

1=

The estimator oJ,'(A) is known to be efficient for P(A) in nonparametric
models. Here a nonparametric model is a model described by the family of all
distributions on some measurable space, or by a family which is dense in this
family in an appropriate sense. The result is due to Levit (1974) and
Koshevnik and Levit (1976). See also the monographs by Pfanzagl and
Wefelmeyer (1982) and Bickel, Klaassen, Ritov and Wellner (1993).

Suppose now that our observations X,,..., X, are from a stationary
Markov chain with transition distribution P(x, dy) and invariant probability
measure 7(dx). Let Py(dx, dy) = w(dx)P(x, dy) denote the joint distribution
of two successive observations. The distribution of the process is determined
by conditional probabilities Py(A X B)/w(A) for certain sets A and B.
Since 7 is the marginal distribution of P,, the distribution of the pro-
cess is determined by probabilities P,(A X B). The empirical estimator for
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P,(A X B) is the proportion of times it happens that an observation falls into
A and the following observation falls into B,

1 r
J2(AXB)=—) 1(X,_, €A, X, €B),
ni-1
which is the probability of A X B under the empirical distribution
1 r
Jn2(dx, dy) = ; Z S(Xi_l’Xi)(dx, dy).
i=1

If, instead of being stationary, the process starts at X, with an arbitrary
initial distribution, under mild assumptions the distribution of (X, _,, X;) will
converge rapidly to the invariant joint distribution P,, and J2? will estimate
P, consistently.

The empirical estimator for the expected value Ef under P, of a function

f(x,y)is

S| =

JAf) =~ ¥ f(Xi1, X)),
i=1

For example, the least squares estimator
i Xi 1 X
i XE

estimates Ef/Eg, where f(x,y)=xy and g(x,y) = x2 Another example
involving empirical estimators is a misspecified Markov chain model. Suppose
we have specified a parametric family of transition distributions Py(x, dy),
while in reality the transition distribution may be arbitrary. Assign to each
transition distribution P the parameter which minimizes the Kullback—
Leibler distance to the parametric model. This defines a functional of P and
hence of P,. It is estimated by the maximum likelihood estimator based on
the parametric model. In fact, the maximum likelihood estimator is obtained
by applying the functional to 2. Hence efficiency of the maximum likelihood
estimator under misspecification would follow from efficiency of J2. See
Greenwood and Wefelmeyer (1993).

The latter example was our original motivation for the question: Is the
empirical distribution J2 efficient? A question related to efficiency of J? is
studied by Penev (1991), who proves for uniformly ergodic Markov chains
that the usual empirical distribution J! efficiently estimates the invariant
measure. Note that J! is the marginal of J2. We prove efficiency of /> by a
different and simpler approach. Compare Bickel (1993).

We use an efficiency concept based on a nonparametric version of Hajek’s
convolution theorem. It refers to a class of regular estimators. Regularity is
defined in terms of a certain local model. The local model is chosen to fulfill
two requirements. It is large enough for the variance bound to be attainable,
namely, by the empirical estimator. It is small enough not to exclude reason-
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able estimators as long as it is contained in the given model; see the
paragraph on possible choices of nonparametric model in Section 2.

Our proof of efficiency extends easily to functions of & + 1 or less argu-
ments if the model includes Markov chains of kth order rather than only first
order. Consider, for instance, a function f(x, y, z) of three arguments. The
empirical estimator

1 n
Jn3(f) = ming(Xi—z’Xi—l’Xi)

is efficient for Ef in the model consisting of second-order Markov chains by
the version of our result for 2 = 2. The model consisting of first-order Markov
chains is, however, a strict submodel, and we do not expect the empirical
estimator J3(f) to remain efficient in the smaller model. This can be verified
by calculating the variance bound for estimators of Ef in the model consist-
ing of first-order Markov chains.

Let us compare the above with the situation in the ii.d. case where only
the empirical distribution J;} is needed: J,! X --- X J! is efficient for the joint
distribution P X -:- X P. For Markov chains, J is efficient for P, = , but
the efficient estimator for P, is J2, and J32 is not efficient for the joint
distribution Py of three successive observations.

2. Results. Let X,..., X, be observations from a Markov chain with
values in an arbitrary state space E with countably generated o-field. Let
P(x, dy) denote the transition distribution, and u(dx) the initial distribution.
Suppose that the chain is ergodic and uniformly ergodic. Then there is a
unique invariant probability measure 7w(dx) and an a in (0, 1) such that
(2.1) IP* — 1|l < a*,
with TI(x,dy) = w(dy) the invariant projection of P. Here the norm of a
transition distribution P is the operator norm

1P|l = sup{ll wPll: | wll < 1},

with wP(dy) = [u(dx)P(x,dy), and || ull the variation norm of the finite
signed measure pu.
Consider the function space

B = {f: E* - R, bounded, measurable}.

For functions f in B, the expectation under the invariant joint distribution of
two successive observations is

(2:2) Ef = [ [7(dx)P(x,dy)f(x, ).

We use the following notation for conditional expectations of functions of
more than one variable. For a function f(x,y) and £k =1,2,...,

Ef0f= f‘“[P(xo,d’%) o P(xp_y,dxg) (241, %)
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In particular, E, f = [Px,dy)f(x, y). For a function f(x,y) = f(y) of one
variable, E*f = [P*(x, dy)f(y). We introduce a subspace of B:

H=({(feB,E,f=0forall x in E}.

Let f(x, y) be a function in B and consider the stochastic process
n
Y (f(Xi_1, X;) — Ef).
i=1

For unbounded f we refer to Greenwood and Wefelmeyer (1993). Our first
assertion identifies a function Af in H such that one can replace f — Ef by
Af in this process with error uniformly of order log n. The process thus
created is a martingale since E, Af = O for all x in E. A nonuniform version
of this martingale approximation for arbitrary stationary sequences is due to
Gordin (1969).

LEMMA 1. The operator A defined by
(AF)(x,5) = F(%,y) — E,f + kil(E;f— EEf)
is a linear operator mapping B into H, is the identity on H, and fulfills
(i1 = B = (A7) (5121, ) = OClog )

uniformly for any uniformly bounded set of functions f in B and uniformly
over sequences X, ... .

Lemma 1 is proved in Section 3. Our application of Lemma 1 to the
problem of estimating Ef efficiently uses only the rate o(n'/2).

The efficiency argument begins with a version of local asymptotic normal-
ity. For h in H, let the transition distribution P,, be defined by

P,.(x,dy)/P(x,dy) =1+ n"'2h(x,y).

Let P" and P™ denote the joint distributions of the first n + 1 observations
X,,..., X, if P and P,,, respectively, are true and the initial distribution is
. Since the Markov chain is ergodic under the transition distribution P, we
have (1/n)X!_,h*(X;_,,X,) - Eh?, and the log-likelihood ratio has the
stochastic approximation

n
i=1
The process X7 ,h(X;_;, X,) is a martingale because E, h = 0. By a martin-
gale central limit theorem [see, e.g., Jacod and Shiryaev (1987), page 448,
Remark 3.77.2], the sum converges in distribution,

(2.3) nV2 Y (X, X)) = N,
i=1
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where N, is normal and has mean 0 and variance Eh®. One can, alterna-
tively, use a central limit theorem for Markov chains [e.g., Ibragimov and
Linnik (1971), page 368], once having noticed that the variance given there
reduces to Eh? for A in H. Local asymptotic normality for Markov chains is
basically due to Roussas (1965); see also Roussas [(1972), pages 53ff] and
Penev (1991).

Now we show that, for f in B, the expectation Ef is a differentiable
functional of the transition distribution P. We define E,, f as in (2.2), with P
replaced by P,,, and 7 replaced by the corresponding invariant probability
measure .

LEMMA 2. For fin Band h in H,
nV/2(E,,f — Ef) - E(hAF).

Lemma 2 is proved in Section 3. It says that the expectation Ef is
differentiable at P with gradient Af in H. The gradient is unique. If we think
of H as embedded in L,(P,), then any function g in L,(P,) with g — Af
orthogonal to H is also a gradient, and we would distinguish Af by calling it
canonical.

With Lemma 2, the convolution theorem for regular estimators of Ef has
the following version. We call an estimator T, regular for Ef at P with limit
L if, for all A in H,

nY%(T, — E,,f) = L under P"*.
Then

n V2 Y (AF) (X, X)),
i=1

@4 WA(T, ~ Bf) ~n7V2 ¥ (AF)(Xio1, X))
i=1
= (Nus, M) under P",
with M independent of N, /. In particular,
(2.5) L=Ny+M.
This justifies calling an estimator T, efficient for Ef at P if
n'/%(T, — Ef) = N,; under P".

As another consequence of (2.4), an estimator T, is regular and efficient for
~ Ef at P if and only if it is asymptotically linear for Ef at P with influence
function the gradient, Af,

26) VAT, —Ef) =n-2 ¥ (AF)(Xi_y, X)) + op(1).
i=1

For estimators of the parameter in a one-dimensional model, relation (2.4) is
due to Ibragimov and Has’'minskii [(1981), page 155, Theorem 9.2]. It is a



EFFICIENCY FOR MARKOV CHAINS 137

refinement of the classical convolution theorem, relation (2.5), which is due to
Hajek (1970). A version of (2.4) for differentiable functionals, including the
characterization (2.6), may be found, for example, in Greenwood and
Wefelmeyer [(1990), pages 359fF.].

The empirical estimator for Ef with f in B is

1 n
Jn(f) = ; '_Zlf(Xi—l’Xi)'

In the Introduction we have written J? for J,. With regularity and efficiency
defined as above, our theorem now follows immediately from Lemma 1 and
the characterization (2.6).

THEOREM. For f in B, the empirical estimator J,(f) is a regular and
efficient estimator of the linear functional Ef at P.

From Lemma 1 and the central limit theorem for Markov chains referred
to after (2.3), we obtain an explicit form of the asymptotic variance of J,(f)
and hence of the variance bound E(Af)?, namely,

E(Af)® = Ef? — (Ef)"

(2.7 i
+2 ¥ (Ef(Xo, X) (X4, Xyi1) = (Ef)’).
k=1
The proof of efficiency of empirical estimators given above is particularly
simple in several respects.

1. Differentiability of Ef and the form of the gradient Af follow immediately
from Lemma 1 and Le Cam’s third lemma. See the proof of Lemma 2. A
direct but more tedious proof can be obtained by expanding =’ =
around 7, using

7' =a+ w(P' — P)R + o(||P' — P
with

R=(I-P+I)'=I+ i(Pk—II).
k=1

See Kartashov [(1985a), page 87, or (1985b), page 251] for these expan-
sions.

2. Using Lemmas 1 and 2, we saw that the empirical estimator oJ,(f) is
efficient without first calculating the variance bound E(Af)?. Then we
obtained the explicit form of E(Af)? from Lemma 1 and the central limit
theorem for Markov chains without calculation. A different, tedious, ap-
proach is to calculate E(Af)? and compare it with the asymptotic variance
of J,(f).

3. Regularity of J,(f) follows from the characterization (2.6). A direct proof
would include showing asymptotic normality of ,(f) under all sequences
P™ in the local model.
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For a function f of one argument, J,(f) reduces to the expectation of f
under the usual empirical distribution. For such estimators, efficiency was
proved by Penev [(1991); see also (1990a,b)]. His treatment differs from ours
in several respects, including the three aspects listed above. Penev takes the
state space to be the unit interval. For general state space, see van der Vaart
and Wellner (1989). They also prove a weaker version of our Lemma 1 for
functions of one variable.

From Lemma 1 one obtains a functional version of the convolution theorem
(2.4). Suppose we want to estimate a function of the form f — Ef, with f
running through some index class of uniformly bounded functions. For a
functional version of (2.4) we need tightness of the sequence of processes
indexed by £,

f=nV2 ¥ (AF)(Xio1, X)).
i=1

By Lemma 1 this holds if we have tightness for the corresponding empirical
processes

f->n"12 3% (f(X;_1,X;) — Ef).
i=1

The latter is, in general, easier to check since the functions f are usually
simpler than the functions Af.

Possible choices of nonparametric model. The results stated so far refer to
a fixed uniformly ergodic transition distribution and a specific local model.
Hence they are not only applicable to the model of all uniformly ergodic
Markov chains. In fact, the results are true for any model containing the
fixed transition distribution. However, the local model P*" with A in H is
chosen with “nonparametric” models in mind. In general, our local model may
not be contained in the underlying model. In that case it will treat competing
estimators unfairly by demanding that the be regular in directions 4 outside
the model. We refer to Penev (1991) for conditions under which the local
model lies in the underlying model.

Stationary Markov chains. To simplify the exposition, we have assumed
that the initial distribution w is fixed. The results remain true for all models
in which the initial distribution is not assumed to vary too strongly with the
transition distribution. More specifically, we have to exclude cases in which
the first observation X, carries a nonnegligible amount of information as
compared to the rest of the observations Xj,..., X,. When the initial distri-
bution is fixed, this is trivially true: the initial distribution cancels in the
likelihood ratio between P™* and P™. If the process is stationary, the initial
distribution is the invariant probability measure. It depends continuously on
the transition distribution [see Kartashov (1985a), page 74, Theorem 4, or
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(1985b), page 251, Theorem B]. Hence the factor dm,,/dm in the likelihood
ratio is asymptotically negligible.

The i.i.d. case. It is interesting to see how the argument presented here
works in the ii.d. case. Suppose X,..., X, are i.i.d. with distribution P(dx).
Introduce a local model dP,,/dP =1+ n~'/2h with A(x) bounded and
Eh = 0. Then we have local asymptotic normality,

log dP™ /dP" = n=Y/2 ¥ h(X,) — LER? + opa(1).
i=1

Let f(x) be bounded, and consider Ef as a linear functional of the distribu-
tion P. The empirical estimator is (1/n)L?_, f(X;). Lemmas 1 and 2 hold
trivially with Af =f — Ef and imply that the influence function of the
empirical estimator is the gradient of the functional Ef, which means the
estimator is regular and efficient for Ef.

Note that in the i.i.d. case we can have

n
n~V2 Y f(X;) = 0pn(1)
i=1
only if f = 0, while for a Markov chain we have

n
n7V2 Y f(Xis1, X;) = 0pe(1)
i=1
if and only if Ef = 0 and Af = 0. This implies f = 0 if and only if f is in H.
In the ii.d. case the role of the local parameter space H is played by the
bounded functions A(x) with Eh = 0. The local parameters are characterized
as the functions for which X7_, f(X;) and L!_; f(X,_,, X,), respectively, are
martingales. To get asymptotic linearity of an empirical estimator, we must
replace the function f — Ef by a function in the local parameter space. This
is easy in the i.i.d. case: the function is already in this space.

EXAMPLE. Suppose the state space is finite-dimensional. The distribution
function F for the joint distribution of (X, X,) is defined by

F(S, t) = EI(XO < S, Xl < t).
The empirical distribution function F, is defined by

n

Fn(s,t)— Z X,_1<s,X,<t).

The convolution theorem (2.4) implies its own multivariate version, as shown,

for example, in Greenwood and Wefelmeyer [(1990), page 362, Corollary 2.22].

From Lemma 1 and the multivariate version of (2.4) we obtain joint efficiency
for finitely many pairs (s, ¢).
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To prove that F, is efficient for F' in a functional sense, we need a
functional version of the convolution theorem (2.5). We want to apply results
for stationary ¢-mixing sequences. Hence we assume that the Markov chain
is stationary. Then (2.5) still holds, as noted in the paragraph on stationary
Markov chains. Call an estimator T, regular for F at P with limit L if
T, (s,t) is regular for F(s,t) with limit L(s,¢) for each pair (s,t), and
n'/%(T, — F) is tight under P". Since the Markov chain X; is uniformly
ergodic, the sequence (X;_,, X;) is ¢-mixing with exponential rate. The
process n'/2(F, — F) is the (usual) empirical process for the sequence
(X;_1, X,). Tightness of n'/%(F, — F) is now implied by a functional central
limit theorem for the empirical process for a multivariate stationary ¢-mixing
sequence. See Sen (1974) or Yoshihara (1974) for continuous distribution
function F. For a general recent result see Arcones and Yu (1994). Alterna-
tively, one could use, for example, the almost-sure invariance principle for the
empirical process for a multivariate strongly mixing sequence in Philipp
(1984). In particular, F, is regular, and a functional version of (2.5) holds:

L=N+M,

where N is a Gaussian process with covariance function equal to the limiting
covariance function of F,, and M is independent of N. For the functional
version of the convolution theorem, see Schick and Susarla (1990).

As a special case we obtain efficiency of the usual empirical distribution
function for i.i.d. observations [Beran (1977) and Millar (1985)]. As noted
above, Lemmas 1 and 2 are trivial in this case. Hence efficiency and regular-
ity of the empirical distribution function are immediate.

3. Proofs of the lemmas.

ProoF oF LEMMA 1. The following relations hold uniformly for |f| < 1 and
sequences x,... . By (2.1), for ¢ sufficiently large,

n
Y L (Ef-ECY)|s2m ¥oat oo
k>clogni=1 ' ' k>clogn

Hence

._il(Af)(xi—l’xi) = il(f(xi_pxi) _Ex,_lf)

X X (BHF-EEF) + o)),

k<clogni=1

Rearranging the sums, we see that the conditional expectations Efl cancel
except for i = 0 and i = n. Hence the right-hand side equals

M=

(F(xiop, %) —EE¥W )+ X (EXf-ELS).

i=1 k<clogn
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The second sum is of order log n since f is bounded. The result now follows
by replacing E{'°8™*1f by Ef. The error is negligible by a second application
of (2.1),

Z (E(clogn)+ lf_ Ef) < na(clogn)+1 - 0. o

A Xi-1
i=1

ProoF oF LEMMA 2. Assume for simplicity that |k| < 1 and |f| < 1. It will
be convenient to consider local asymptotic normality with =, as initial
distribution. We use the following stability result of Kartashov [(1985a),
Theorem 6]. There exists an £ > 0 and ¢ such that |P' — P|| < £ implies

|7 — 7wl < ellP’ = Pll,  IP"* — P*|| < cllP' - PIl.

If £ is chosen small enough, we obtain from (2.1) that there exists a, < 1
such that

(3.1) . |P* -l < at.
By definition of the transition distribution P,, we have
IP,, — Pll<n~'/%

In particular, ||, — 7|l — 0, and local asymptotic normality remains true as
written if the initial distribution is ;. The proof of Lemma 2 is based on a
contiguity argument. By the Cramér—-Wold theorem, n~!'/2Y"  A(X,_,, X,)
and n~ Y2 (AfXX,_,,X,) are jointly asymptotically normal under P"
with variances Eh? and E(Af)? and covariance E(hAf). Since we have local
asymptotic normality, Le Cam’s third lemma implies

(3.2) n~1/2 i (Af)(X;_1, X;) = Nys+ E(hAf) under P™*,
i=1

where N, is normal with mean 0 and variance E(Af )2. By local asymptotic
normality, P™* is contiguous to P". Hence the martingale approximation in
Lemma 1 and (3.2) imply

(33) nt2Yy (f(X;_1,X;) — Ef) = Ny, + E(RAf) under prh
i=1
Write the random variable in (3.3) as
n 12 Y (f(Xi-1,X;) — E,,f) + n'/?(E,,f — Ef).
i=1

Since the initial distribution is ,,, the chain is stationary, and n'/2(E,, f —
Ef) is the mean of the above random variable. We want to show that this
mean converges to the mean E(hAf) of the limit distribution. This follows if
n~12yr (f(X,_,,X,) — E,, ) is uniformly integrable under P"*. Uniform
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integrability follows using (3.1) and a moment inequality for ¢-mixing se-
quences [Ibragimov and Linnik (1971), page 309]:

Enh(

n-1/2 .g(f(Xi—l’Xi) _Enhf)

xl{ >})

" 2
< c—lEnh(n—l/2 E (f(X~_1, X,) _Enhf))
i=1

nV2 Y (f(Xi-1, X)) —E,\f)
i=1

n

=c'n7t ¥ E"M(A(X;-1, X;) - Enhf)(f(Xj—lan) - Enhf)

i,j=1

gc-l(1+162a§). 0
k=0
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