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ISOTONIC ESTIMATION AND RATES OF CONVERGENCE
IN WICKSELL’S PROBLEM

By PIET GROENEBOOM AND GEURT JONGBLOED

Delft University of Technology

It is shown that, in the nonparametric setting for the so-called
Wicksell problem, the distribution function of the squared radii of the
balls cannot be estimated at a rate faster than n=!/ 2‘llog n . We present
an isotonic estimator of the distribution function which attains this rate
and derive its asymptotic (normal) distribution. It is shown that the
variance of this limiting distribution is exactly half the asymptotic vari-
ance of the naive plug-in estimator.

1. Introduction. In Wicksell (1925) the following stereological problem
is studied. Suppose that a number of spheres are embedded in an opaque
medium. The item of interest is the distribution function of the sphere radii.
Since the medium is opaque, we cannot observe a sample of sphere radii
directly. What we can observe is a cross section of the medium, showing
circular sections of some spheres. A thorough discussion on the problem and
the vast relevant literature can be found in Stoyan, Kendall and Mecke
(1987).

If we denote the distribution function of the sphere radii by Fg and assume
the centers of the spheres to be distributed according to a homogeneous
Poisson process, one can show [see, e.g., Watson (1971)] that the observable
circle radii constitute a sample from the density g., where

= dFy(x)

(1) gc(z) =m—0fz T

with 0 < m, = [§x dFs(x) < =, the expected sphere radius.

For mathematical convenience, however, we follow Hall and Smith (1988)
in considering squared radii of both the balls and the circles instead of the
radii themselves. In that case the relation between the density g of the
observable squared circle radii and the distribution function F of the squared
sphere radii follows from (1) and is given by

1 ¢ dF(x)
g(z) = 2m, f(z,w)\/x—z ’
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where 0 <m, = | Vx dF(x) < ». This integral equation can be inverted, giv-
ing an expression of F in terms of g:

2m, = g(2) J2(z —x) g(2) dz
Fl=)=1-—= fx e O
Writing
V() = xi—% dz,
we see that
14
F(x)=1- V((z)) .

Therefore, the problem of estimating F at a fixed point x, > 0 is equivalent
to the problem of estimating V at two fixed points, that is, x, and 0. Taking a
closer look at V, we see that V is right-continuous and decreasing on [0, «).
Moreover, from the relation

1 =dV(x)
g(x)= = [ —
m iz X — 2
and the fact that g should integrate to 1, it follows that V satisfies

j:\/EdV(x) - —g.

Finally, the requirement that m, € (0, «) forces V to be bounded and vanish
at infinity. In other words, V must belong to the class 7°, where

Vs {V: V is a decreasing bounded right-continuous function on [0, %) with

x—>® 2

Apart from its intrinsic interest, the Wicksell problem has several interest-
ing features as a prototype of an inverse problem. First, it was already clear
from, for example, Hall and Smith (1988) that the pointwise rate of conver-
gence of “good” estimators of V(0) should be faster than n™* for @ < 3, but
the exact rate was not known. In Section 2 we show that, under general
conditions, the rate for estimating V at a fixed point cannot be faster than
n~1/%/logn.

Second, naive plug-in estimators of the distribution function exist which
have the right pointwise rate of converge, but look very strange (to say the
least) as estimators of a distribution function, since they have infinite discon-
tinuities at a set of points becoming dense in the support of the distribution
function, as the sample size tends to infinity (for a picture, see Section 5).
These estimators violate both the monotonicity and the range constraints for
distribution functions. We discuss this in Section 3.

lim V(x) = 0and f:\/;dV(x) = —Z}
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In Section 4 we define an isotonized naive estimator V,, of V. It turns out
that the isotonic estimator of V beats the naive estimator on all fronts: it
does not have the undesirable properties of the naive estimator, and the
asymptotic variance of the isotonized naive estimator is exactly half the
asymptotic variance of the naive estimator. From the monotone estimator of
V we get an estimator F, of F, which is actually a distribution function, and
defined by

ﬁn(x) =1- Vn(x)/vn(o)

The asymptotic variance of F‘n(x) is also exactly one-half times the asymp-
totic variance of the corresponding naive estimator.

The isotonic estimator V, of V exhibits some other interesting features. As
usual in this type of analysis, the limiting distribution function is given by
the distribution of the location of the maximum of a Gaussian process minus
a parabola. However, in this case the Gaussian process is degenerate, with
the result that the limiting distribution is in fact just a normal distribution.

Furthermore, in order to obtain the limit distribution of F,, we need to
study the limiting behavior of the derivative of the convex envelope of a
certain empirical process at zero. In general, the behavior at zero of estima-
tors obtained in this way is somewhat pathological. As an example, the
maximum likelihood (Grenander) estimator of a decreasing density at zero,
which is just the right derivative of the concave majorant of the empirical
distribution function at zero, is an inconsistent estimator of the real underly-
ing density at zero [see Woodroofe and Sun (1993), who also provide a
remedy]. In our case, this does not turn out to be the case: the derivative of
the support function at zero is in fact a consistent estimator of the quantity of
interest.

As some other remarkable features of the Wicksell problem we note that
smoothness assumptions do not seem to be helpful for getting faster rates in
pointwise estimation of the distribution function and also that the n~!/2-rate
in the estimation of certain “smooth functionals,” like the mean, seems in
general to be unattainable. The latter is in contrast with deconvolution
problems with which the Wicksell problem is related. In general, if the
observations consist of a sample of random variables Z; = X, + Y;, where the
Y; have a known distribution and the interest is in estimating the distribu-
tion function of the X,’s, the mean of the X,’s can be estimated at n~!/%-rate,
but the pointwise rate is much worse [see, e.g., Groeneboom and Wellner
(1992)]. In comparison, for the Wicksell ‘problem the pointwise rate is quite
good (n"'/%)/log n), but there is no improvement for the estimation of
moments. Smoothness assumptions on the underlying distribution function
do not seem to help here, the difficulties really seem to derive from the nature
of the inverse problem, in particular, from the extra parameter m,. However,
ratios of moments can indeed be estimated at the n~1/2 rate (in that case we
lose the extra parameter in the division).

In this paper we will not consider the nonparametric maximum likelihood
estimator of the distribution function in Wicksell’s problem. For the definition



WICKSELL'S PROBLEM 1521

and some properties of that estimator we refer to van Es (1991) and Jong-
bloed (1991).

2. Minimax lower bound on the optimal rate of convergence. In
this section we will prove that if one does not want to assume too much
concerning V as introduced in Section 1, one cannot estimate V(x,) at a rate
faster than n~1/%\/log n, where n is the sample size of the observed circle
radii. It will then follow that one also cannot estimate F(x,) at a rate faster
than n~1/2y/log n, for any point x, > 0 in the interior of the support of F.

For even if V(0) is known, one cannot estimate V(x,) at a rate faster than
n~1/2\/log n [basically because, as shown below, the estimation problem is a
local one, and knowledge of V(x;) at a point x, # x, does not help to improve
the rate in estimating V(x,)], whereas a faster rate of convergence in
estimating F(x,), under the assumption that V(0) is known, would lead to a
faster rate of convergence in estimating V(x,), since

V(o) = V(0)(1 =~ F(x))-
Fix x, > 0 and let ® be defined by

av
0= {Ve%:a(x) <Oforxe(x0—6,x0+8)forsome8<0}
if x, > 0, and by
av
0= {Ve%:%(x) <Oforxe(0,6)forsome8>0}

if x, = 0. Let the minimax risk R(n) for the class ® be defined as follows:

R(n) = inf sup Ey|V(x,) — T,
Tn vVeo®

where the infimum is taken over all estimators 7}, based on a sample from
the density g, where

1 =dV(x)
6= 2] o=z

We even allow 7, to depend on the value of V at a fixed point x; # x,. The
following theorem shows that R(n) cannot vanish at a rate faster than

]. R
lIIllIlf n > 0.

THEOREM 1. We have
Proor. Note that for each subclass O, of ® the following inequality
trivially holds:

(2) R(n) = inf sup Ey|V(x,) — T,l.
Tn VE@n
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For each n we will construct a subset 0,, containing just a fixed V,, € ® and
some perturbed version of V|, and find a minimax lower bound for the
discrimination problem for these two functions. First we consider the case
x9 > 0.

Define for £ > 0 and &6 > 0 such that the derivative of V, is strictly
negative in the region [x, — 2§, x, + 28], the function ¢ as follows:

& sin®((x — x4)/2¢)
d)él)(x) = _ 1[x0—6,x0+6](x)'
Vlog(1/¢) X —Xg
Based on ¢’ we can define the function ¢®:

¢.§'2)(x) = ve(l[xo—ﬁ,xo)(x) - 1[x0,x0+8)(x))’

where
3f[x0—8, xo+6]\/‘;¢e('l)(x) dx
2(2x872 — (0 + 8)*% = (x— 8)%)

U,

Using these functions we define a perturbed version V, of V, in the following
way:

Vi(x) = Vo(x) + [ (6D (y) — ¢2(y)) dy.

Since

& 1
sup ¢P(x) = v, x ——— and supdpP(x) x ——==
xeR (=) Vlog(1/¢) xeR (=) Vlog(1/¢)
for £ |0, where the relation =< means that the ratio of the left-hand and
right-hand sides stays away from zero and o, the function V, is, for ¢
sufficiently small, a decreasing function on [0, «). Moreover,

[VEavi(s = -5

and, for ¢ sufficiently small, V, has a derivative which is strictly negative in
the region [x, — 28, x, + 28]. Hence, for ¢ sufficiently small, V, € O. For a
vanishing sequence of positive numbers (¢,), to be specified below, we define

0, = {V,, Vsn}.

The next step is to bound the right-hand side of (2) from below by an
expression involving distances between Wicksell densities g corresponding to
the members of @,. For this, we need the following notions.

Let P and @ be the probability measured on R*, with derivatives p and g,
respectively, with respect to Lebesque measure [. The inf-measure corre-
sponding to P and @ is defined by its density:

d(P
%(x) = min( p(x), g(x)), x € R*.
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The squared Hellinger distance between P and @ is defined as

1 2
HY(P,Q) = 5 [ (Vp(2) = Va(x)) d(x).

The squared Hellinger distance has the property that, writing P®" for the
n-fold product measure of a probability measure P on the real line,

1 - H*(P°",Q°") = (1-H*(P,Q))".

Using the triangle inequality and Le Cam’s inequality [Le Cam (1973)], we
get, for any estimator T, which may depend on V,(x,) for some x; # x, and
n sufficiently large,

inf sup E,|V(xy) — T, >

(Ve,,(xo) - Vo(xo))IIP;:” A Pg"
T, veeo,

- N =

2n
b

> Z(Ven(xo) - Vo(xo))(l — H?(Py, Pen))

where P, and P, denote the probability measures corresponding to the
densities g, and g, (see the last formula before Theorem 1), respectively.
Clearly,

|Vg,,(xo) = Vo(xo)l =< &,y/logl/e, .
On the other hand,

H?*(P,, P, ) = %fﬂ(\/go(x) - ‘/ggn(x) )2 dx

1 8. (%) — 8o(x) ’
_Ejl;xgo(x)(l—\/1+ 20(%) dx

1o (802) —80(2)
4 /10, 8o(2) .

<
However, since g, (2) = go(2) for z > x;, + & and since V € O implies that g,
stays away from zero on [0, x, + 6], we immediately obtain that
H*(Py, P, ) <clg, —gol3,

for some positive constant c.
To complete the proof we need the following lemma, to be proved in the
Appendix.

LEMMA 1. For n — «© we have

g, — &olls < &,.
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Substituting 1/ Vn for &, throughout, we obtain

n
li 'f‘/—
im in Tog 1 R(n) >c,

for some positive constant ¢, proving the result for the case x, > 0.
We still have to prove the result for the case x, = 0. To this end we
redefine ¢V in the following way:

e sin?(x/2¢)
Vlog(1/¢) x

We also define the constants

¢§1)(x) = 1(0,51(x)~

- [2e D o %
a, [O\/Lpg(x)dx NSV

and
B, = [(6®(x) dx ~ e/log1/e
0
and the function ¢® by

¢ (x) = §a,8” 3/21[0, 5(%)-

Our perturbed version of V,;, now becomes
V,(2) = Vo(x) = B, + [ (60(3) = 62(3)) dy + 3,671/,
0

for ¢ > 0 sufficiently small we again have that V, € 0. The remaining part of
the proof proceeds along the same lines as the proof for the case x, > 0. O

3. Asymptotics of a naive estimator. Suppose we have an estimator
G, (which is a distribution function) for the distribution function G of the
squared circle radii. Our plug-in estimator V,(x) of V(x) is then defined as
follows:

«d@G
V(=) = [ —r—fx) .

If the estimator G, is constructed without using the special structure of the
problem, we call these plug-in estimators naive estimators. The naive estima-
tor most frequently used is the one where G, is the empirical distribution
function of the squared circle radii. For finite n, however, V, is increasing
between successive observation points and has infinite jumps at the observa-
tion points, implying ||V, — V||.. = « for all n. Since the function V is bounded
and decreasing, the function V, is a strange estimate for V indeed.

The asymptotics of the naive estimator based on the empirical distribution
function are given in the theorem below.
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THEOREM 2. The estimator V, is pointwise strongly consistent, that is, for
all x > 0 the following holds:

Vn(x) - V(x) a.s. forn — «,
For each x > 0 where g(x) < ©, we have

n

log n (V”(x) - V(x)) C '/V(O, g(x)) asn — oo,

PrOOF. The first assertion follows from the strong law of large numbers.
Applying the central limit theorem for sums of independent random variables
with infinite variance [see, e.g., Chow and Teicher (1988), Theorem 4, page
305] to the random variables 1., .,(Z,)//Z; — x, the second part of the
theorem is established. O

From Theorem 2 we get the following corollary.

COROLLARY 1. Let F be the distribution function of the squared sphere
radii. Then we have for each x > 0 such that g(x) < o,

" {1— Vol %) —F(x)} sy
log 7 V.(0) 5

n

g(2)V(0)* + g(0)V(x)*
v(0)*

0,

asn — o,

Proor. Using 1 — F(x) = V(x)/V(0), we can write

V.(x) V(x) V(%)

v.0 T Y0 T V0
_ V(%) = V(=) . V(x){V,(0) — V(0)}
- V.(0) V(0)V,(0)

1-—

The corollary now follows from Theorem 2, Slutsky’s theorem and the asymp-
totic independence of Vn (log n)~1/2(V,(x) — V(x)) and vVn (log n)*/3(V,(0) —
V(0)). O

4. Isotonized naive estimators. Based on a naive estimator, which is
in general not a decreasing bounded function, we can define an estimator
which is a bounded decreasing function. We simply define as our estimator
that function within the class of bounded decreasing right-continuous func-
tions which has the smallest L,-distance to the naive estimator. Before we
proceed with the estimation problem, we state the following general lemma,
giving an explicit graphical interpretation of the implicitly defined projection
estimate. The proof of the lemma can be found in the Appendix.
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LEMMA 2. Let ¢ be an a.e. continuous nonnegative integrable function on
[0, ) with compact support. Define the function ® as follows:

P(x) = foxd:(y) dy forx = 0.

Let ®* be the concave majorant of ®. If we define

d(r.h.s.)q)*
¢*(x) = T(x)’

the right derivative of ®*, we have that
[ (8(2) = 9(2))’ dx = [ ($(x) — ¢*(x))* da
0 0

+ [ (¢*(x) — w(x))" dx,
0
for all functions ¢ € F, where
F={¢:[0,0) - [0, ©): ¢ is decreasing and right-continuous} .
We can apply this lemma to the function ¢ = V,. If we define U, as
Uy(x) = [ Vi(y) dy = 2 Vz dG,(2) — 2 Vz —x dG,(2)
0 0 x

and define U} to be the concave majorant of U,, our estimator of V(x) is
U}"(x), the right derivative of U} at x. We refer to estimators U;" as
isotonized naive estimators. For isotonized naive estimators we have the
following theorem.

THEOREM 3. Suppose that the distribution function F of the squared
sphere radii satisfies the following:

(1) | ydF(y) <o
0
(i) the initial estimator G, of G has the property that, for each x > 0,
fm\Iz -xdG,(z) — foo\/z -xg(2)dz,

a.s. forn — o,

Then we have with probability 1, for each x > 0,
V(x =) = limsup U*'!(x) = liminf U*"(x) = V(%)
n—w n—x
and
liminf U'"(0) = V(0).
n—ow
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ProOOF. First of all note that
f:\/z —xg(z)dz = i:{f()wde(y) - fox(l - F(y)) dy}-
If we define
U(x) = 5o [[A=F() dy (= [V dy)

we have, by assumption (ii),
U(x) > U(x) as.

Since the functions U, are nondecreasing, U is a bounded [by (i)] continu-
ous nondecreasing function, and since

lim Uy(x) =2[ Vz dGy(z) - 2[ Vz dG(z) = lim U(x) as,
x— 0 0 x—> ®©

we have
(3) U, - Ull. >0 a.s.

By Marshall’s lemma [Robertson, Wright and Dykstra (1988), page 329], it
follows that, with probability 1, |[U* — Ull. — 0, whereas Lemma 7.2.1 in
Robertson, Wright and Dykstra (1988) yields

Ul(x) = limsupU*''(x) = liminfU* "(x) > U"(x) as.,
n— o

n—o
for each x > 0 and
liminfU}'"(0) > V(0) a.s.
n-—o
Observing that
Ul(x) =V(x—) and U"(x) =V(x),

the results follows. O

Note that, if F is continuous, Theorem 3 implies that, with probability 1,
for each & > 0, U™ — V uniformly on [ &, ).

The behavior of U}’ "(0) and asymptotic distribution theory for U*'"(x) are
hard to study in the general setting, that is, for arbitrary initial estimators
G, of G. Therefore we now consider the case that G, is the empirical

distribution function of Z,,...,Z,, the sample of observable squared profile
radii. In that case we write V, for U*'" and we have

2 n n
Un(x)=_—{‘z VZp - L Z(i)—x},
nii=1 i=i*+1

where
i* = max(i: Z;, < x}.
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By the strong law of large numbers, which can be applied if condition (i) of
Theorem 3 is satisfied, it is easily seen that (ii) in Theorem 3 is then also
automatically satisfied. Because U, is not only nondecreasing, but also
convex between successive observation points, we have that the concave
majorant of U, equals the concave majorant of the diagram consisting of the
points (Z;), U,(Z;)) for 0 < i < n. Therefore, algorithms from the theory of
isotonic regression can be applied to compute V, in practical situations.

Woodroofe and Sun (1993) proved that the maximum likelihood or Grenan-
der estimator of a decreasing density on [0, ) is inconsistent at zero, whereas
it is strongly consistent for all x > 0. This Grenander estimator can, for
x>0, be viewed as the left derivative of the concave majorant of the
empirical distribution function of the data, and its value at zero is deter-
mined by right-continuity of the estimator at zero. Woodroofe and Sun
showed that, asymptotically, the value of the Grenander estimator at zero is
always too large. In our case, where we consider a derivative of the concave
majorant of an empirical process which is not the empirical distribution
function, we have already seen in Theorem 3 that V,(0) is almost surely not
too small asymptotically. The next theorem shows that our U,-process is
better behaved than the empirical distribution function based on a sample
from a decreasing density, in the sense that the random variable V,(0) is
weakly consistent.

THEOREM 4. Let condition (i) of Theorem 3 be satisfied, and let G, be the
empirical distribution function of a sample of size n from the distribution
function G of the squared circle radii. Then

V.(0) = V(0) in probability, as n — .
PRrOOF. From Theorem 3 we know that, with probability 1,
lim inf V,(0) > V(0).
n—©
Therefore if suffices to show that, for each £ > 0 and n > 0,
P{Vn(O) - V(0) > a} < n for n large enough.

Fix £ > 0,let R > 0 be a constant and let &, = n~!/* (other choices of &, are
also possible, but this choice will do). Now note that

U.(¢)
¢

=P{3¢t>0:U,(¢) > t(V(0) + &)}

<P{3t (0, 5,]: U, (t) > t(V(0) + &)}

+ P{3t € (&,, R]:U,(t) > t(V(0) + &)}

+ P{3¢t>R:U,(¢t) >t(V(0) + &)}

: pi(n) + py(n) + ps(n).

P{V,(0) — V(0) > &} = IP{EI t>0: > V(0) + a}
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For py(n) we can write

ps(n) =P{3t>R:U,(¢) > t(V(0) + &)}
<P{3t>R:U,(¢) - U(t) > eR}
< P{lU, - Ull. > ¢R},

where we use that, for all z > 0,
(4) U(z) <V(0)z.

Since, with probability 1, U, — Ull. — 0 [see (3)], it follows that ps(n) < n/3
for all n large enough.
We will now consider the term p,(n):

po(n) =P{3t € (&, R]:U(t) >t(V(0) + &)}
< u»{ max_ Vi (U,(¢) — U(£)) > Vr ((V(0) + &) &, — U(g,,))}

e, <t<R
< P{o’?fs’% Vn (U (t) - U(2)) > 8\/5%},

where, in the last step, we use (4). Note that Vn (U, — U) converges in
distribution in C[0, «), with the topology of uniform convergence on com-
pacta, to a Gaussian process W. This implies that there exists a number
M > 0 such that

IP’{ sup |W(t)|>M}<ﬂ.
te(0, R] 6

Therefore, since we chose &, = n~ /%, we obtain, for n > (M/&)*,
< P U.(t) — U(t)) > enl/*
pa(n) < B{ max Vi (U,(t) ~ U(1)) > en*/*)
< IP’{ max Vn (Uy(¢) — U(t)) > M}.
0<t<R
The continuous mapping theorem finally yields that py(n) < n/3 for all n
sufficiently large.

The argument below shows that p,(n) < n/3 for all n sufficiently large.
Since U, is convex between successive observations Z;, we can write

pi(n) =P{A1<i<n:Ul(Z) > (V(0) + ¢)Z; and Z; € (0, £,1}
< nP{U(Z,) > (V(0) + £)Z, and Z, < (0,5,]}

_ n[:"u»{Un(z) > (V(0) + &) 2|2, = z)g(2) dz

=n["6.(2)8(2) dz,
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where
2 n : 2
$u(2) =P{— ¥ VZ: - VZ, =21, .(2Z)) + ;1/'2’ > (V(0) + £)2|Z, =z ).
i=2
We will now estlmate ¢, from above on the interval (0, ¢,]. For that we use
that, for z > 166 2n"2, we have that ez — 2Vzn"! > ez/2 Splitting the
interval (0, ¢,] as

(0, &,] =(0,16672n"2] U (1662172, &,]

[note that to this end we must take n is sufficiently large, i.e., n > (165~2)*7,
since &, = n~!/*], we can write

1, for z € (0,167 2n 2],

2 n e

$,(2) < {; Y (VZi - VZ, = 21.,.(2)) > (V(O) + 5)z},
i=2

for z € (166 2n72, ¢,].

We will now concentrate on the nontrivial part of the upper bound for ¢,.

Redefine a random variable Z, with density g which is independent of the
old Z, and of Z,, Z;,.... We may write

2 2 2
o2 5 (V2 ~ V2710 20) > (V) + 3]
< P{; ;(\/Z_z ~VZ =21, o(Z)) > (V(O) " g)z}

£z -2 4
< (V(O)z t 5 - U(z)) Var (U,(2)) < ;—Z—z—z-Var(Un(z)),

where we use Chebyshev’s inequality and (4). However, since U,(z) is the
mean of the n independent identically distributed random variables, we have

nVar(U,(z)) = 4Var(\/-Z_1 —-VZ,— =21, oo)(Zl))

which does not depend on n. Writing out this variance, we obtain

Var(\/-Z_l ~VZ, -z 1[z,°°)(Z1))
. [ra(y)dy—2["5/1- %g(y) ay+ [ (29 -2)8(5) dy~ V(=)'

The first term can be bounded from above as follows:

(5) fozyg(y) dy = fozy3/2y‘l/2g(y) dy <2z°/?V(0).
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Since U(z)? = O(z2) for z | 0, we obtain for z |0 that

Var(\/Z_l —VZ, — 21, (Zy) )

=2 e () dy

~2fy ‘/1— Z 1+ ;—y + —Si—)g(y)dy+0(z3/2)

z
Using approximations similar to (5), it can be shown that the first term is of
order O(z3/2) for z | 0. From Taylor’s theorem it follows that the second term
is of the same order for z | 0. Note that no local smoothness properties of g

are needed. The only assumption on the unknown distribution is that V(0) <
w:

Therefore, there exists a positive constant ¢ such that, for each z below
some positive number v,

CZ71/2

2 2 .
P{; 4:-:2(‘/2 - \/Zi—_21[z,oo)(zi)) > (V(O) + E)z} < ;

ne

Consequently, for n large enough (such that 167 %2n"2 < ¢, < v), we may
write

pi(n) = n [ 6,(2)8(2) dz

Snfm/(an) (2)dz +n —52 2g(2) dz

f16/(82 2yne?

4 c
_+__
e g?

fanzfl/zg(z) dz.
0

By the dominated convergence theorem we therefore have that p,(n) — 0 for
n — o, This shows that p,(n) < 1n/3 eventually, implying that

P{V,(0) — V(0) > &} < eventually. O

From Theorems 3 and 4 it follows that, for each fixed x > O, \7(x)
converges to V(x) in probability. In the theorem below the asymptotic distri-
bution of V .(x) is given. It is interesting to see this result in connection with
Theorem 2, where the asymptotic distribution of the naive estimator V,
based on the empirical distribution function is given. It turns out that the
rates of convergence of both V,(x) and V,(x) are n~'/%/log n, which is
optimal in the sense of Section 2. A surprising difference, however occurs in
the asymptotic variances of V. (x) and V(x) The asymptotic variance of
v .(x) is exactly half the asymptotic variance of V,(x).

THEOREM 5. Letx > 0, and suppose that F has a density f which is strictly
positive at x and continuous in a neighborhood of x (if x = 0, we mean a right
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neighborhood). Then we have

\/E( Va(2) = V() = ( 1g(x)) asn - o,

ProoF. The proof essentially consists of three parts. The first part is to

write the event
n A
{]/ Tog 7 (Vn(x) - V(x)) < a}

in terms of the location of the maximum (arg max) of a stochastic process
t = Z (t) — at [see (7). The second step is to show convergence in distribu-
tion of the sequence (Z,) to a process ¢ — Z(t) on the space (C(—w, ®), d),
where d is the metric of uniform convergence on compacta. This result is
established by showing the asserted convergence for a sequence (Z,) of
processes, where d(Z,, Z ) > 0. The final step is to prove that from the
convergence in d1str1but10n of (Z,(¢) — at) to Z(t) — at it follows that the arg
max of (Z,(¢) — at) converges in distribution to the arg max of Z(¢) — at.
Since the arg max functional is certainly not continuous on (C(—, ®), d), the
simplest form of the continuous mapping theorem cannot be applied Some
extra work has to be done. From Lemma 4 it follows that the sequence of
locations of the maximum of (Z,(¢) — at) is uniformly tight. This enables us
to localize the problem: umformly in n the probability that the arg max, . g of
(Z,(t) — at) equals the arg max, c;_y, y of the same process can be made
arbltrarlly close to 1 by choosing M sufﬁc1ently large. Moreover, since the
limiting process turns out almost surely to have a unique maximum and the
arg max functional is, for all M > 0, continuous on the subset of (C(—M, M),
Il |lx) consisting of functions having a unique maximum, the asserted conver-
gence in distribution follows.

Fix x > 0 such that x satisfies the conditions stated above. Define, for
a > 0, the process T, as follows:

T,(a) = inf{t > 0: U,(t) — at is maximal}.
The relation between T, and Vn is given by
(6) T (a) <t = V,(t)<a.

From this relation it follows immediately that, for each vanishing sequence
(8,) of positive numbers and for a > 0, the following holds:

(7 8, (Va(x) —V(x)) <a o §(T,(ao+ 8,a) —x) <0,
where we write a, for V(x). Note that a, is fixed.
It is now convenient to introduce the following notation:
7 - [0,»), ifx=0,
N R, if x > 0.
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Define the process Z, in C(I,), the space of the continuous functions on I.,as
follows:
Z,(t) = 8,7 [Up(x + 8,8) — Up(x) — ay8,t].
For each fixed a € R we can, for all n sufficiently large, write
8, (Tu(ap + 8,a) —x)
=8, Y(inflx +t > 0: Uy(x +1t) —apx
—ayt — 8,ax — 8,at is maximal} — x)

=8, ' inf{t > —x: U,(x + t) — U,(x) — agt — 8,at is maximal)

=inf{t > — 8, x: U,(x + 8,¢) — U,(x) — ay8,t — 8%at is maximal}

=inf{t > —8,;'x: Z,(¢) — at is maximal}.

What is used essentially is that the location of a maximum of a function is
equivariant under translations and invariant under multiplication by a posi-
tive number and addition of a constant.

Defining the processes (Z,) in C(I,) as

Z,(t) = 28, [{Va =% 1y (2) = V2 =% = 8,8 L105,1(2)} d(G, — G)(2)
- Mf(x)t2’

we see that
Z,(t) = Z,(¢) + 8,2(U(x + 8,t) — U(x) — U'(x)8,t — $U"(x)82¢2).

Therefore, using Taylor’s theorem, d(Zn, Z,) - 0, where d is the metric of
uniform convergence on compacta, defined on C(I,). Therefore, Z, converges
in distribution to some limit process Z in the topology induced by d if and
only if Z does. We will now establish convergence in distribution of Z,. It is
clear that we only have to concentrate on the part of Z, contamlng the
randomness:

Wo(8) = 8.7 [{V2 =% 1, 0(2) = V2 =2 = 8,8 1150, 0(2)} d(G, — G)(2),
fortelI,. '

For the process W, the asymptotic convariance structure is given in
Lemma 3, the proof of which can be found in the Appendix.

LEMMA 3. For each fixed s, t € I,

1 loglog n 1
COV(Wn(S),Wn(t)) = ggo(x)st 1- Tgn‘— +0 Tog 1 ,

provided that 8, = n"'/%/log n .
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Note that the assumptions made on x imply that 0 < g,(x) < . From now
on we take 8, = n"/%/log n .

Furthermore, the Lindeberg central limit theorem for triangular arrays
yields W,(1) —,, 410, g,(x)/8), whereas Chebyshev’s inequality implies that,
for all fixed s, t €I, |sW,(¢) — tW,(s)| = op(l) for n — «. Therefore, the
finite-dimensional distributions of W, converge weakly to the corresponding
finite-dimensional distributions of the process

(8) W(t) =tX
in C(1,), where X is a normally distributed random variable with expectation
0 and variance gg,(x).
Finally, applying the maximal inequality given by Pollard [(1989), Theo-
rem 4.2] to the function class
9:11‘,{ = { 2 - x— ant 1[x+8nt,oo)(z) — Y2 X = ans 1[x+5ns,°°)(z):

&
s,tel,,ls —t| < e, max(ls], It <M},

with its natural envelope, we obtain the stochastic equicontinuity condition
which, together with the convergence in distribution of the finite-dimensional
distributions, implies the convergence in distribution in (C(I,),d) of the
sequence (W,) to W as defined in (8) [Kim and Pollard (1990), Theorem 2.3].
We now use the following lemma, which will be proved in the Appendix.

LEMMA 4. Forn — o,
Tn(ao) = V_l(aO) + Op(8n)
Note that since the ¢, from Kim and Pollard (1990) corresponds to our
8, YT (ay) — V"1 (a,y)), Lemma 4 shows that condition (ii) of Theorem 2.7

from Kim and Pollard (1990) is satisfied. Applying Theorem 2.7 from Kim and
Pollard (1990) to the process Z, yields the following result:

aw
8, (T,(a, + 8,a) — x) =, argmax {2tX - ——f(x)t? — at}
0

tel, 4m
2my,(2X —a
ImeXoe) o

7f(x)

Hence,
P{8;1(V,(x) — V(%)) <a} = P(8;1(T,(ao + 8,a) —x) < 0} > P{2X < a},
which completes the proof. O

We get the following as a corollary to Theorem 5.

COROLLARY 2. Let x > 0, and suppose that F has a density f which is
strictly positive at x and at 0, and continuous in neighborhoods of x and 0.
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Then
n Vn(x)
Viogn '~ V.0 _F(x)}
e EROVO He@V(0))
~ ’ 2v(0)* ‘

The proof of this corollary is completely analogous to the proof of Corollary
1, with Theorem 2 replaced by Theorem 5. Note that again, as in Theorem 5,
the asymptotic variance is exactly half the asymptotic variance of the naive
estimator.

5. Pictures. To give some idea of what the estimators look like, we show
the pictures (Figures 1 and 2) of the naive estimator and the isotonized naive
estimator of the distribution function F, based on a sample of 100 observa-
tions from a standard exponential distribution. In this case, the distribution
of the squared circle radii is again standard exponential, so, for simulation
purposes, we can just generate a (pseudorandom) sample from a standard
exponential distribution and consider this as a sample of squared circle radii,
corresponding to a sample of squared sphere radii from a standard exponen-
tial distribution.

The pictures (based on the same sample) show that the naive estimator of
F roughly has the right trend, apart from the bad behavior between neighbor-
ing observation points. The isotonic estimator shows, of course, a much more
acceptable behavior.

FiG. 1. The naive estimator of the distribution function of the squared ball radii, based on a
sample of size 100 from a standard exponential distribution.
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0 1 2 3 4 5
FI1G. 2. The isotonic estimator of the distribution function of the squared ball radii, based on a
sample of size 100 from a standard exponential distribution.

APPENDIX

This section consists of the proofs of several lemmas.
PROOF OF LEMMA 1. We define the function V, as follows:
~ x 1
Vo(x) = V(@) + [9l(y) dy.
Corresponding to this function, we define the function &, by

- 1 dav,(x)
ge(z) - _; (2, ) /x_z .

Note that &, is not a probability density.
By the triangle inequality we have that

(9) lg, —gollz <llg, —&.ll2 + 114, — goll2.
Because the function (g, — £.)(z) has bounded support and tends to zero at
rate ¢/ ylog1l/e uniformly in z, it follows that the first term on the right-
hand side of (9) is of order ¢/ y/log1/¢ for ¢ | 0. In what follows we will prove
that |5, — goll2 is of order &.

First of all note that if we consider the L,(—o, ©)-norm of the extended
function (&, — 8¢)ex, that is,

) 1 b, ()
(ge_gO)ex(z) - _; (Z’w)m

dx forall z € R,
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we have the obvious inequality
18, — gollz < I(£, — 80)exllz-
Notice that (g, — g¢)ex is the convolution of ¢! with the function % defined

by
1(_00, 0)( y)

k(y) = ‘/':—y—

If we denote the Fourier transform of a function f as

SN =f(0) = [ f(2)expli) e,

we can apply Plancherel’s identity and use the convolution structure of

(8, — 8¢)ex to obtain
(&, — &0)exllz = 191 &, — 80)exllz = 1 - B>
Straightforward calculations yield that

k(t) = —\/_-;fa + 1)t

For the function ¢! we have

[logl/e . in%(x/2
cgl/e dl(¢t) = exp(itxo)f(S Mexp(itx) dx
£ s x

. 8/ 1—cosx .
= 2exp(ztx0)f0 Tsm(tsx) dx.

Now observe that

s/esin(tue ssin u
f /e ( ) du = ft - du,
0 u 0 u

which is independent of ¢ and bounded in ¢. We also have that
5/s€0S x sin(tex) s/e8in(u + teu) — sin(u — teu)
[rreczsnlten) du
0 x 0 2u
c—pSinu
_ fa(l/ t) d
s(1/6~8) 2u

u.

So, log(1/¢) /& $X(¢) is uniformly bounded both in ¢ and &.

Now let £ |0 and |¢| - « in a way that |tg] — «. Then we have that

logl/e . 1 —cos x
LAy ST — [ ——sin(tex) dx
0 x

—exp( —itx
9 p( 0) e
5t sin u st(1+1/te) SIN U
= du—f (+/8)———du.
8t(1—1/te) 2u 5t 2u
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Because the last two integrals are of order 1/|t¢|, we obtain

lo & . 1
/ g/ B2(0)] ~ T forlta] > =

Now, write the following for the squared L,-norm of £ - éL:

fR(IE(t)$§(t))2 dt = (f_—wl/ez N f_li; f

1/6%

)Mﬂ@mfm
Since in the region |¢| > 1/£2 we have that |te| — « for & | 0, we have

(f__:/sz + f:s2)(13(t)$§(t))2 dt

e? £ 1 et

C ~—
- logl/sj;/g2t332dt logl/e’

for some constant C and for ¢ | 0.

Because the function y/log(1/¢)/e ¢1 is uniformly bounded and the sin-
gularity of £ at zero is taken care of by the function ¢>1 near zero, we may
write

2 21
1 @@ at s O [V de ~ e,

again for some constant C and for ¢ | 0.
Therefore,

llg, — golla = O(e) for & 0. O
ProoF oF LEMMA 2. It suffices to show that

[ (8(x) = 6°(2)(#*(2) = () dx 20,

for all ¢ € 7. Note that since ¢ is a.e. continuous,
d(d — &%)
dx

Therefore, we should prove, for all ¢ € ?,

d(x) — ¢*(x) =

(x) ae.

[ (4*(x) = 9()) d(@ - &*)(x) > 0.

Clearly, by the compact support condition on ¢, there exists a positive
number M such that ®*(M) = ®(M) and *(x) = ¢(x) = 0O whenever x > M.
It is also clear that the (negative) measure determined by ¢* has all its mass
concentrated on the set {x > 0: ®(x) = ®*(x)}. Hence, we may write, using
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partial integration,
L8 (%) = 0(2)) d(® = D) (x) = ($*(x) — ¥(2))(D(x) — P*(2))I¥
0
- [M(@(x) — @*(2)) d(4 ~ 9)()

- fM(q)(x) — ®*(x)) dy(x) = 0.
0

The partial integration step is justified by the continuity of both ® and
o*, O

Proor oF LEMMA 3. Fix s, ¢t € I,. Without loss of generality we may take
s <t
For £ > 0 we define the function ¢(:, &) as follows:

¢(z,¢) = \/;—:x—l[x’w)(z) —Vz—x— 31[x+8’w)(z).
We can write
Cov(W,(s), W,(t)) = 8,*n"" Cov(¢(Z, 8,t), ¢(Z, §,5)),
where Z has density g,. One easily sees that
E(Z, 5,t) = 0(8,¢),
implying
E}(Z, 8,5)Ed(Z, 5,t) = O(87st).
We can write

é(z, 8,8)d(z, 5,t)
5,t B
=(z—x)( (x,(2) + \/ zi \/1“—n‘s_1[x+3too)(z)

X

\/ [x+8te)(z) \/ [x+Bs°°)(z))

Integrating these four terms using Taylor expansions, gives that the domi-
nant contribution comes from the second term. It follows that

E¢(Z, 8,5)p(Z, 5,t) = —gstgo(x) 8?2 log 8, + O(82.)
Therefore,
Cov(W,(s), W,(t)) = —zstgo(x)8,°n " log 8, + O(8,%n"1).
Choosing 8, = n~*/%/log n, the result follows. O

Proor oF LEMMA 4. The first thing we will prove is that for all £ > 0
there exists a stochastically bounded sequence of random variables (M,) and
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a positive constant R, such that
J{Vz=51,,0(2) = V2 = 015 o(2) } d(G, — G)(2)

<elx— 01+ 82M,,

for all 6 with |6 — x| < R,. Remember that x has been fixed and that
8, = n"'/%/log n. This result is similar to Lemma 4.1 in Kim and Pollard
(1990) and will be proved along the same lines. Using result (10) we will
prove that T,(a,) is a §,-consistent estimator of x = V~'(a,). This statement
resembles Corollary 4.2 in Kim and Pollard (1990).

For the first part of our proof we introduce the function class

2

(10)

7= {hy:[0,%) = R: hy(2)
=2z — 21, w(2) = 2z = 015,(2) — ag(6 —x), 0= 0}
and, for R > 0, its subclass %3,
4y = {hy €710 — x| < R}.

It can be proved using arguments similar to those used in the proof of Lemma
3 that there exists a positive number R, such that the envelope

Hy(z) =2(Vz —x — Rl p o(2) — Vz — 21, o(2)) + aoR
of 7 satisfies
(11) JHE(2)80(2) dz < —2g,(x)R? log R,

for all R < R,. Now fix £ > 0 and let (M,(w)) be the infimum of all positive
numbers v for which

Uho(z) d(G, - G)(z; 0)| < elx — 01> + 82v

holds for all 6 € [x — R, x + R,]. If we define, for n, j > 1,
A(n,j)={0=0:(j—-1)8, <0 —xl<js,},

we can write, for all n > 1 and » constant,

P{M, > v}
RO/Sn
< ) P{ sup &2 fho(z) d(G, - G)(2)|>e(j - 1)+ V}
(]_2) Jj=1 0€A(n, j)

o E{supio—. < jo,8: [ Jo(2) A(G, — G)(2)]*)
j=1 [¢(G - 1%+ ]
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By maximal inequality 8.1.2 in Kim and Pollard (1990) and relation (11), we
obtain that there exists a C > 0 such that, for each j < R,/$,,

E{ sup a;‘*[fho(z)d(Gn—G)(z)]Z}ngo(an.

l0—x|<j8,

Applying this inequality to (12), it follows that, by choosing v sufficiently
large, P(M, > v} can be make arbitrarily small uniformly in 7, which proves
(10).

We will now prove that T,,(a,) is a §,-consistent estimator for x = V~1(a,).
Using a Taylor expansion for [h,(z) dG(z) around 6 = x, we get that there
exists a positive number R; such that

[ro(2)dG(2) = ~ g =Fa(x)(0 = )",

for all 0 with |6 — x| < R;.

Now take ¢ in relation (10) equal to 7f(x)/(16m). Using the fact that
T, (a,) is weakly consistent for x = V~!(a,), which follows from Theorem 3,
Theorem 4 and relation (6), we know that, with probability tending to 1,
IT,(ay) — x| <R; AR, for n - . If |T,(a,) — x| <R; A R, we obtain that

0= [h(2) dG,(2) < [hr,0(2) dG,(2)
mfo(x)

< thn(ao)(z) dG(2) + —¢ - lx — T,(ao)l® + 82M,
Wfo(x) 2
-——|x-T + 82M,
< 16 0 Ix n(aO)l n**ns

where (M,) is stochastically bounded. This proves that T,(a,) — x = O,(§,)
for n » . O
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