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VARIATIONAL SOLUTION OF PENALIZED LIKELIHOOD
PROBLEMS AND SMOOTH CURVE ESTIMATION

By MARTIN B. MACHLER
ETH Zurich

Usual nonparametric regression estimators often show many little
wiggles which do not appear to be necessary for a good description of the
data.

The new “Wp” smoother is a maximum penalized likelihood (MPL)
estimate with a novel roughness penalty. It penalizes a relative change of
curvature. This leads to disjoint classes of functions, each with a given
number, n,, of inflection points. For a “Wp” estimate, f"(x) = +(x —
wy) - (x — w, )-exphp(x), which is semiparametric, with parameters w;
and nonparametric part & ().

The main mathematical result is a convenient form of the characteriz-
ing differential equation for a very general class of MPL estimators.

1. Introduction. In the last decades, nonparametric regression methods
have been developed to gain flexibility in regression problems of data analy-
sis. The usual nonparametric regression curves such as smoothing splines
[Silverman (1985), Wahba (1990) and Eubank (1988)], kernel estimators
[Hardle and Gasser (1984), Miiller (1988), Hardle (1990) and Chu and
Marron (1991)] or locally weighted regression “LOWESS” [Cleveland (1979)]
have the nice property of fitting a vast class of smooth functions well.
However, they still may show many little wiggles which do not appear to be
necessary for a good description of the data.

Since “wiggles” are characterized by inflection points, one may ask for a
smooth curve with as few inflection points as reasonably possible. This idea is
made precise in the present paper with a more general concept, using change
of curvature as roughness measure.

Let us consider an example with real data. The “housing starts” series
from the software package S was de-seasonalized using ‘SABL’, and the
resulting data (including the noise part) taken as raw data (in S: hs «
sabl (hstart); data « hs$trend + hs$irregular). The trend compo-
nent computed by sabl is a smoothing of this data with 19 inflection points
and a residual sum of squares of 9.70. Figure 1 suggests that a smooth curve
which fits the data reasonably well only needs three inflection points. The
smooth solid line is the result of the “Wp” procedure, to be defined below. Two
cubic splines are shown for comparison. The smoothness parameter of the
first was chosen to produce the same residual sum of squares as the Wp
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Fic. 1. Deseasonalized housing starts, a times series of length 108: a “Wp” smoother, restricted
to three inflection points, with residual sum of squares equal to 12.16; the first cubic spline is
tuned to have the same residual sum of squares and also shown shifted downwards by 1 with
marked inflection points; the second spline is the best fitting one for three inflection points.

smoother. It results in unsmooth behavior: close inspection exhibits 11 in-
flection points (marked in the figure), of which 6 are “significant.” The second
spline was tuned to produce only just three inflection points. Comparable to
Wp in terms of smoothness, it now suffers from “erosion,” that is, bias near
local extrema. For more details and a second example, see Méchler (1993).

There have been other approaches to deal with the spurious “wiggles” seen
in traditional nonparametric curves. In the domain of splines, this problem
has been approached traditionally by either restricting or generalizing splines
[Ramsay (1988), Wright and Wegman (1980), Mammen (1991), Dierckx (1993)
and Ansley (1993)]; see Machler (1993) for some discussion and further
references.

Maximum penalized likelihood. The approach which leads to the “Wp”
procedure is based on the idea of maximizing a penalized likelihood. If

¥ =f(x;) + &,

1) i=1,...,n, & ~ H; with density A;, independently,
then the negative log-likelihood equals X7 ; p;(y; — f(x;)), where p;, =
—log h;. Typically, p,(x) = W, p(x), where the weights W, are given. For
convenience, we assume that x; <x, < -+ <x,.

It is natural to ask for the function f which minimizes this sum subject to
a bound B on a roughness measure of R[f] to be defined below. The
minimum under the restriction R[f] < B will be attained at the boundary
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R[f] = B (whenever B < inf(R[g] | g(x,) = y,}). As Reinsch (1971) proved for
spline smoothing, this restricted variational problem can be restated using a
Lagrange multiplier A, as

n
@ min| £ (= f(2)) + AR 1)
im
Instead of the bound B, the multiplier A can be fixed. It is then called a
smoothing parameter since higher values lead to smoother curves by giving
more weight to the roughness penalty R[ f].

Let us briefly discuss the role of p. The usual least-squares choice p(x) =
x%/2 corresponding to normally distributed errors leads to estimators which
are not robust, that is, they are highly influenced by only few outlying
observations. This fits in poorly with the idea of using a nonparame-
tric curve. From the theory of robustness, it is well known that one gets
robust M-estimators if | p’| < ¢ for some ¢ € R [Huber (1979)]. The choice of
Huber’s p,

3 (0T "= (5= )%), wherea, ™ max(0, a),

gives the optimal minimax estimators in the case of linear regression, mini-
mizing the maximal variance over a full neighborhood of the normal distribu-
tion.

Roughness penalties R[f]. In Section 3, we will define the roughness
penalty R[f] that leads to our Wp approach and ensures no unnecessary
wiggles. Note that, for density estimation, the choice of different roughness
penalties has a long tradition [see, e.g., Thompson and Tapia (1990) and
Klonias (1984)], whereas, for regression, this is less so. We will only consider
roughness penalties of the form R[f] = [? G(x, f(x), f'(x),...X(x)dx for
some function G. Kimeldorf and Wahba (1971) and others subsequently [e.g.,
Cox and O’Sullivan (1990) and Ansley (1993)] have considered “general
spline” smoothing problems where G(:--) = (Lf)?*(x) and L is a linear
(differential) operator such that [? (Lf)?(x) dx is the norm ||f||* in a Hilbert
space with reproducing kernel. Then the solution of (2) is well characterized
using a basis and the reproducing kernel of the Hilbert space.

Here, we consider a more general situation where G may be nonlinear of
the form G(x, f,...) = (d*/dx*)F(x, f*)(x)))%. Using Dirac’s 8-distribution
notation, we can restate (2) as an integral, the usual form of variational
calculus,

x, (1 2 d* 2
4) mfinj;c1 _Xi;l 8(t —x)p(y; — f(2)) + @F(x, f(V)(x))) ) dt.

In Section 2, we will solve this general problem by reducing it to an explicit
ordinary differential equation boundary value problem and apply it to special
cases like robust polynomial splines. In Section 3, introducing change of
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curvature as a new roughness measure, we develop our Wp approach consid-
ering inflection points, also applying Theorem 1 for its solution (“Wp” stands
for an abbreviation of the German word Wendepunkt, for inflection point).

2. Variational problem and differential equation. This section
shows that the minimizing f of (4) is necessarily a solution of the
Euler-Lagrange differential equation (24). The basic result, Theorem 1,
applies to the following general problem.

GENERAL PROBLEM. For given k,veN, k,v>0, k+ v>1, minimize
the functional J[ f] over f € F, , p, with the following specifications:

. d* ’
& JA=[ {S(f(x), 2 + | g ) }dx

def

d* 2
(6)  Fanr™ {fe ¢ la, b]; [ (WF(x, f(”’(x))) s < oo},

def d
(7) Fg(x’g)=Ig:F(x’g)’
0] def d
Sk (x)=a—S(f,x) ’
® f f=F(x)
S;jn](x) diffo}j](t) dt for0<j<v,

where we assume that F(x) = F(x, f®x)) is 2k-times differentiable and
F(x, f ™)X x)) is continuous. Furthermore, for all f, n €%, , , S must allow
for interchanging of integration and differentiation, fulfilling

d
(9) zl_gjl;bS(f(x)+‘s"q(::c),x)dx 0=j:’77(x)'S)[c0](x)dx,

Note that S is the j-th principal function of SP1, that is,

£e=

dk
—8W(x) =SY~*(x) for0<k<j.
dx* 7 f

This general formulation encompasses a vast class of maximum penalized
likelihood problems, not only in nonparametric regression, but also density
estimation. The scatter term, which may not even be a log-likelihood, has the
general form [? S(f(x), x) dx, satisfying (8) and (9). Typically, S(f(x), x) =
Y 8(x — x)/(f(x)) and [b S(f(x), x)dx = X}, /(f(x,;)); see Lemma 3.
Convexity of S(u, x) in u is often sufficient for uniqueness of the solution.

The existence of a minimizer f of the J[ f] is verified in Méachler [(1989),
Appendix A, pages 68-73], for the case of Corollary 6. Tonelli’s theorem
(a “direct method”) of variational calculus is applied and one sees that the
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function A, (19) belongs to a decent (Sobolev) Hilbert space and the problem
is well posed.

To find this optimal f, one can use the Euler—Lagrange (ordinary) differ-
ential equation (o0.d.e.), which asserts a necessary condition for f. Here, we
also must determine the “natural” boundary conditions.

THEOREM 1. Using definitions and assumptions (5)—(9), a minimizer f of
JLf] fulfills the following:

(i) the differential equation
2k 1
Fy = F = S (=)™ (x) Vae[a,b];
Gi) if (d//dx))F(x, f*(x) #0 for x €{a, b} and 0 <j<k —1, the
boundary conditions

(@ SPb) = SPI(b) = - = 8p(b) = 0,

J

(b) —F=0 Vje{k,....2k -1} forz € ({a,b},

where we used the short forms F and F, for F(x, f*)(x)) and F(x, f®X(x)).

This theorem is proven in two steps: first, a version of the classical result
about the Euler-Lagrange differential equation, Lemma 8 in Appendix A
gives the differential equation and boundary conditions for our case where S
is allowed to contain &-distributions. Then we can reexpress the usual
general form of the Euler-Lagrange differential equation in a more conve-
nient form as given in Lemma 2, which is proven in Appendix B.

LEMMA 2. For k€N, let g: D—>R and F: D X g(D) > R both be
2k-times differentiable. If ((dk/dxk)F(x, g(x))? is represented as 7 (x,
g(x),..., g% (x)), and F, as in (7), then the following hold:

@ Z( 1/ i Py = 2(= 1*F,(x, g(x))- 4

i —Z0 - x, g(x
P’ dxi 8 g dx 2k

Gi) if (d’ /dx)F(x) # 0 for j=0,...,k — 1, the following sets of equa-

tions are equivalent'

—+Fx, g(x) Vx €D,

d.l Jo
() 2( 1)’d“%,> 0 Vj,e(1,...,k);
J=Jo ‘
k+m
(b) dx’”"‘F(x g(x))=0 Vme({0,...,k —1}.

ProOOF OF THEOREM 1. We write the term to be minimized as [} #(x) dx,
where we let
2

dk
%(x; f(x), fO(x),0, fO(2)) = S(f(#), %) + | T F (%, F7(x))
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(6)) Applymg Lemma 8 for m = v + k& and noting that here ?/fm = 0 for
jefl,. — 1}, we have Ek o=@ fdx” N U poesy = = —SP. In-
tegratmg v tlmes « fa dt” we get

k ;
2 1)1 g = (= )7 IS(x) + e,
te,(x—a)+ - +e(x—a)” !

Now, we apply Lemma 2 to the Lh.s. for g = £ and get (i), if we can show
that ¢, =c, = -+ =¢, = 0. This happens iff the Lh.s. and its first v — 1
derivatives vanish at x = a, which in turn follows from S“](a) =0forj e {v,
v — 1,..., 1}, exactly half of the boundary conditions denved in Case 1 of part
(id).

(i1) The boundary conditions from Lemma 8 (with the same remark as
above) can be reexpressed as

k ) dv—i+ J
0= ‘ Y (_I)JW%W) Vie{l,...,v+E}.
j=G-v),
We consider the following cases:
Case 1 (i €{1,...,v}). We have (i — v),= 0, and this (for x = a) com-
pletes the proof of (i), by application of Lemma 2(i). The boundary conditions
are, applying Lemma 2 first and then setting I = v — i,

l 2k

d d
——{F(x fP(x))- = 2kF(x,f(”)(x))} Vie{0,...,v— 1},

for x € {a, b}. Using the differential equation of Theorem 1(i) at x = b, the
remaining boundary conditions are equlvalent to 0 = (d L/dx)SE W) oy =

Sp~4(b), or simply sm(b) = S(b) = - = S["](b) -
Case 2(i € v+{1,..., k). Let Jo=i—VE {1 k} We see that
d.f—jo
0= Z( 1)’ dxJ—Jo i e Zpeys
J=Jjo

and these conditions are proved equivalent to condition (b) of part (ii), by
Lemma 2(ii) (for g = f®). O

The following lemma shows how the assumptions and results of Theorem 1
apply for a wide class of MPL problems.

LEMMA 3. For the general (“log-likelihood”) scatter

(10) S(f(x), ) = ¥ a(x = 5)4(F(),
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a<x;,<b,/ (x)dff(d /dx)/(x), and, using (8), we have the following:
@) [2S(f(x), x)dx = X', Z(f(x;)), a log-likelihood;
(i) SPNx) = X7, 8(x — x)Z{(f(x));
@Gi) SY™*(x) = A/mD TP (x — )7 /(f(x), m =0, 1,...;
(Giv) S(-) in (10) fulfills condition (9);
(v) boundary conditions (a) of Theorem 1(ii), Si™*1(b) = 0, are equiva-
lent to

n

Y 2 (f(x))=0 form=0,1,...,v—1.

PrOOF. We have SP(x) = X7, 8(x — )/ '(f(x,)) and, by definition (8),
SM(x) = X7, [F8(t — ¢ )/'(f(t)) dt =Xl 0l (fx) =X (x —
X, )0/ ! [writing /] for /] '(f(x )]; and, for m > 1, by induction,

S 1(x) = 2/’

l,f(t—x)’fl =—Z(x )74},

since [(t — )7 dt = [1/(m + D¢ — ¢)?*! and a < x,. The S in (10) fulfills
equation (9), since

n

d
f S(f(x) + en(x), x) dx = L — /(f(x,)+gn(x,))

=0 i=1 =0

Z () 2/ (F(x))

de

[x n(x) - SI)(x) dx.

Finally, the boundary conditions (a) of Theorem 1(ii), 0 = 8\"*!(b) =
A/mHZr (b —x)™/] (since x; <bVi) Vme{0,...,v—1}, are seen by
1nduct10n m —m + 1. For m = 0 SM(B) = X7, (b — x)i] = L}, #}, since

< bVi. For the 1nduct10n step m - m + 1, we assume that Z" 1 x’/ ‘=0
1s true for j = 0,. — 1. Now,

0=miSP*(b) = ¥ (b —x)" 2]

ci=1

£ (£ (2)cnr )

i=1\j=0

f( J(-2y7bms e

where the inner sum is zero for all j but j = m. Hence, 0 = (%)(— D™b° X
X, x"/] = £ X}, 2"/}, which was to be seen. O
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The above theorem can be applied to many special situations. Many of
them are MPL problems as our (23) and other problems of nonparametric
curve estimation for which Lemma 3 applies (see below). An application to
density estimation is presented in Machler (1995).

The theorem also entails the main results of Huber (1974), reformulated as
follows.

COROLLARY 4 (Huber’s spline). Consider the following problem:

Given n (= 2) values of an unknown distribution function F, determine the
distribution with minimal Fisher information. Equivalently, given F(x,) = ¢,,
i=1,...,n [and F(—x) =0, F(») =1], find f(x) =(d/dx)F(x) = 0 such
that

o [ f 2
f_w(7(x)) f(x) da
is minimal.
The solution is characterized in each interval [ x;, x;,,] by
(11) V" = MV,
for constants A;, and lim, , . f'(x) = 0. For A\; > 0, for example, \/?(x) =
a; exp(y/A; x) + b; exp(— /A, x).

REMARK. This corrects (iv) and (11) in Huber (1974), which have A;
instead of ‘/X: .

PROOF OF COROLLARY 4. We want to show that (11) follows from Theorem
1. First, we see that

f ? _ fiz(x) _ —1/2 ;1\2 _ d
(L) 10 = L2 = (0 () = (1)

for F(x, f(x)) = 2y/f(x). We will apply Theorem 1 for £ = 1 and » = 0.

Using Lagrange parameters u;, the interpolation conditions F(x,) =
[*, flx)dx=¢, i=0,1,....,n+ 1, with xj == —», ¢, =0, x,,, = and
t,+1 = 1 [as in Huber (1974)] are incorporated into the minimization prob-
lem, as terms

Ml(fj;f(x) dx — ti) = _/_mw I (l[xgx,](x)f(x) — 8(x — xi)ti) dx,

resulting in

2
’

n+1

- n+1 d 2
minf_w { ( El il xl](x))f(x) - i; 8(x — x,)wt, + (EF(x, f(x))) } dx.

S(f(x), x)
Now we apply Theorem 1. The differential equation (i) (for 2 = 1, v = 0) is
F, - (d?/dx®>)F = 3(=1)°*1*18001 where SINx) = 71! pl, .. (x) =
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rrtl 4011, | < .< (%) for constants A;. Since
F,=(9/98)(28"*) g~ = 1/VF,

(i) is equivalent to 2yf"/ f =380, or Vf" = VF T AL, <pc (2),
which is /f); for x, ; <x <x,andi=1,2,...,n + L

In Theorem 1(ii) the boundary conditions (a) are empty and, for j = &k = 1,
(b) is (d/dx)F(x*) = 0 for x € {—, o}, or lim, , ,, f'(x) = 0. O

From Theorem 1, we get the “classical” result about robust smoothing
splines of order m. See Greville [(1969), Theorem 14.1] for the case of
weighted least-squares splines; see Huber (1979) for a discussion of the
problem of robustifying discrete penalty cubic “splines” and the choice of p or
¢ functions; and see Cox (1983) for consideration of general robust “M-type
splines.”

COROLLARY 5 (Splines). For m > 1, the minimizer of
n x, 2
ILFl = X oy = (=) + A[ " (f™()) da
i=1 X1

is of the form

f(x) =cy+cyx+ - +c,_xm !

(12) (_l)m = 2m—1

Z (x _xi)+

L (3= F(x)),

with conditions
(13) fol/,l(yz_f(xz)):() fork=0,,m—1,
i=1

where Y,(x) = (d/dx)p(x).

Note that equation (12) is a robustified “truncated power” representation
of a so-called natural spline of order 2m, that is, f is a degree m — 1
polynomial outside [ x;, x,]. The “robustification” [i.e., the introduction of p;’s
instead of ( )2, which gives robust splines only if ,(x) = p{(x) < C for all x]
hardly complicates the variational problem. In the least-squares case, ;(x)
= W,x, conditions (13) (orthogonality relations of the “Huberized residuals”
;) are equivalent to a linear equation system for (c,...,c,,_1).

PROOF OF COROLLARY 5. We will apply the theorem with

1 12
S(f(x), x) = i '=216(x —x;)p(y; — f(x)) = N .=lei(yi _f(xi))’
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and we can apply Lemma 3, since S is of the form (10) with

Zi(f(x)) = —p,(yl f(x)).

Hence,
-1 n m
Slm+ () = Wigl(x —x;), ¥i(y; — f(x;)) form > 0.

Further, F(x, g(x)) = g(x), whence F, = 1, and m = v + k, where » and
k are most conveniently set to » = m and k2 = 0; we can apply the theorem
and the differential equation (i) becomes

(-n" =
(m) = - 7 — .
9 ) = g )t = ),
and the boundary conditions are (13) from Lemma 3(v). Integrating (14) m
times results in (12). O

3. Change of curvature as a roughness penalty. The smoothing
splines approach was originally based on the roughness measure of inte-
grated squared curvature, R[f]= [’ k(t)? dt. The curvature can be ex-
pressed as k(x) = f"(x)(1 + f'(x)?)~3/2, Traditionally, for computational and
mathematical convenience, « has been approximated by x(x) = c-f"(x).
Glass (1966), however, indicates that using (exact) k leads to more satisfac-
tory results in the case of interpolation.

The present approach is based on measuring roughness by relative or
standardized change of curvature

(15) Kk =/ =B (L F2) = F/f

This shows that the approximation «’/k = f”/f" holds exactly at all the
local extrema and inflection points which can be considered as the most
interesting points of the curve, such that this approximation seems to be less
problematic than x(x) = cf”(x) for the splines [M#chler (1993)]. The approxi-
mation leads to the preliminary penalty

@ - () «

If f has the inflection points w,, wy,...,w, , then f”/f" has first-order
poles at these locations and “R[ f] contains n, “times .” This means that a
curve with n, + 1 inflection points is mﬁnltely less smooth than one with
n,, and hence the number of inflection points is the principal roughness
measure. In order to measure roughness for functions with the same (given)
number of inflection points, we can rescale the problem appropriately and
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define a roughness of the form

x, flll( t) 2
R[f] = ("— — “poles”| dt
-\ 7o
[see (21)].
More precisely, w,...,w, shall be all the zeros of f”. Multiple zeros are

enumerated explicitly, that is, w; = w, for j # k. The zeros of odd order are
the inflection points of f. Note that multiple zeros will rarely arise for
reasonable models for f, and real data would hardly suggest them.

By elementary calculus, under weak regularity conditions, for example,
f"(w;) # 0 for simple zeros, f is of the form f"(x) = (x —w;Nx — w,)
(x —w, )-qs(x), where g, has no zero and is of the same differentiability as
f". Hence, it can be written as q/(x) = s, exp[ 2 ,(x)], where s, = 1or s, = —1.
More conveniently, we define the degree n,, polynomial

(17) Pu(®) Zsp(x = w,)(x — wy) (2~ w,)
and have

(18) F' (%) = py((x)exp[hy( )],

or

(19) hy=10g(f"/Py),

where, by definition of p,, 4, is as many times differentiable as " (at least
once). Hence, f”/f" = (d/dx)log f" = (log p) + K, or
(20) w5 !

f fll i x — wj *

Note that the continuous function A’s is well defined for all x, whereas the
r.hs. of (19) is © — © for x = w,. Further, the sum containing the singulari-
ties is independent of f. This allows us to “discount” the inflection points in a
way which is independent of all other aspects of f. Thus, the penalty

x, 9
(21) R[] = [ "hp(2)*dt

X1
is suitable for measuring the change of curvature “apart from the inflection
points.” Note that, for n,, = 0, R[ f] generalizes R f] from (16), which is not
defined for n,, > 0. '

The number of inflection points (n,) is the main smoothing parameter of
the Wp approach. The smoothing parameter A controlling the weight of R[ f]
is of less importance. Here, the limit A — 0 exists and corresponds to a
smooth function (with only n, inflection points) whereas, for classical
smoothers such as splines, one would get an interpolating curve.

We will consider a straightforward generalization of this approach. First,
we will work with £ instead of f”. For v = 1 this means considering local
minima and maxima instead of inflection points; for v > 2, the inflection
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points of f' or higher derivatives. Another generalization consists in penaliz-
ing higher-order change of curvature instead of “simple” change, that is,
using a general kth derivative of h, instead of 4. The present approach
(v =2, B =1) corresponds to the change of curvature roughness measure.
The generalizations on the other hand follow easily, and 2 = 2 may seem
more attractive for its limit of “infinite smoothing” (Corollary 7).

Given the data (x,, y,), (x5, ¥5),...,(x,, ¥,) and n,, the maximal number
of (generalized) inflection points, we want to determine the function f mini-
mizing X7, p,(yl flx)) + A [ (dk/dxk)hf(x)2 dx. In the followmg, w =
(wy,...,w, ) and sp are ﬁxed that is, p, is fully specified. An “outer”
minimlzatlon over w is needed to find the global optimum.

As in (18) for f”, we factorize ) as f*(x) = p,(x)exp(h ) x). If we let

5’;(1”)(“') dif{fe Cm[a, b],

(22) £ has exactly the zeros w,,..., wnw},

m=v=>0,

the function class %, , F (6) is here equal to F5;’, ,(w), since, for our problem,
[ (dP/dx*)h(x)* dx is only finite for functions f which do have the gener-
ahzed 1nﬂect10n points wy, ..., w,, and no others.

COROLLARY 6 (Generalized Wp). The necessary equation system for a
minimizer of

2

@) 1= Ll ) e[ (dkhfm)

among all functions f € 753, (W), that is, f*(x) = +(x — w Nx — wy) - (x
—w, ) explhy(x)], or F(x) = pg,(x)expl hp(x)] is

hScZk) ( 1)v+k n

(24) f(V) = 2/\(1/_ 1)| Z (x_xz):- ll/j(yt f(x,)),

where h (x) = log(f*/p.) and y(x) = (d/dx)p,(x) The natural boundary
conditions are as follows:

(a) forallm €{0,...,v— 1},
(25) Loal (i — f(x)) =0

(b) for x € {xq, x,},

(26) h(fk) — hs’k+1) — . — h(2k—1) =0.
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PrOOF. We use the theorem and Lemma 3 as for Corollary 5 with
f(x) 1
pu(x) FO(x)’

Applying the theorem, (i) becomes (24), the boundary conditions (a) are
Lemma 3(v) and the (b) conditions are those of the theorem. O

F(x,f(”)(x))=log( ) and F(x, f*(x)) =

Our smoother satisfies an exact fit property. From the boundary conditions
(25) of Corollary 6, the “orthogonality conditions,” it is easily seen that the
generalized Wp smoother fits the data exactly if they lie on a polynomial of
degree v — 1 (straight line for v = 2). It also follows that the smoother is
regression equivariant under superposition of such polynomials.

It is of interest to consider the “most smooth” generalized Wp smoother,
that is, the solution for A — o of Corollary 6:

COROLLARY 7 (Smoothest limit). For A — «, we have
f(x) = py(x)exp(ay + a;x + - ta,_ ).

For k=0, f* - p, and f minimizes ¥, p,(y; — f(x,)) among all degree
n, + v polynomials with f*) = p. For k =1 (Wp), f*> - A - p,, (for some
A €R) and f is the least-p polynomial of degree n, + v with v-inflection
points wy, ..., w, lie, fOw;)) =0 Vjl. For k=2, fO(x)-
A - py(x)exp(Bx) and f(x) = P,_y(x) + Py (x)exp(Bx), where P, is a polyno-
mial of degree k and B € R.

REMARK. We see that % indicates extra degrees of freedom for our func-
tion, where v gives the “order of inflection points” to penalize, yielding
degrees of freedom, too.

PrROOF OF COROLLARY 7. From the differential equation (24), we have
hg?k) — 0 (uniformly) for A — », and because of the boundary conditions (b)
also h{®) — 0, such that &, — (polynomial of degree £ — 1); f*) = p, exp(h)
completes the proof. O

The special case of Corollary 6 for »=2 and & =1 is basic for the
algorithm implementing the Wp smoother: the ordinary differential equation
(24) is equivalent to

7= Pwexp(hy) Ly,
where L, is a piecewise linear function, defined as
1 n
Lf(x) = o Z (x—x;), ‘Pi(yi _f(xi))‘
i=1
Furthermore, f has to satisfy the conditions A’(x;) = K'(x,) = L, ¥,(y; —

f(x)) =%, x;4,(y; — f(x;)) = 0. Because these conditions involve f(x;)V i,
they are not simple boundary, but multiboundary conditions.
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In Méchler (1989), an algorithm for this nonstandard problem is devised. A
multiple-shooting Runge-Kutta method [Keller (1976)], adapted to this
multiboundary situation, is used to solve (24). The algorithm, a Newton-type
iteration, needs a starting approximation (for f, f', h;, h; and the
Wiyeoo, W, ) Finally, the overall procedure needs to minimize the penalized
log-hkehhood over all possible w;, ..., w, .

To determine A algorithmically, we look at the autocorrelations (ACF) of
the residuals. It is intuitively clear that oversmoothing leads to positive
autocorrelations at small lags. Therefore, start with a “big” A, decrease it
(about exponentially, i.e., linear in log-scale) until the residual ACF does not
show relevant structure anymore.

4, Summary. We have derived the general Theorem 1, useful for charac-
terizing many MPL problems for curve estimation, including polynomial
splines.

The main application, however, is for our new roughness penalty of

“change of curvature.” The factorization f*(x) = +(x —w,) - (x —w, ) X
exp[ h¢(x)] is of semiparametric nature with parameters w; and nonparamet-
ric part h/(-). The main smoothing parameter is n,, the “order” of the
parametric part. Note that the restriction on n,, the number of sign changes
of £, automatically limits the number of zeros of the lower derivatives:
) cannot have more than n, + j zeros.

The (extra) smoothing parameter A is of minor importance: note that, for
A — 0, the number of (generalized) inflection points is still restricted, and a
limit lim, , , f(x) exists everywhere. For splines, the limit for A - 0 is a
trivial interpolating function whereas here the limit is still smooth, namely,
“the best fitting function” for a given number of inflection points, n,. The
“most smooth” generalized Wp smoothers (for A — ) give “natural” paramet-
ric curves (Corollary 7).

APPENDIX A

The Euler-Lagrange differential equation. The following lemma is
classical in the usual case when #%(x; f,...) is defined and twice differen-
tiable for all f € C™[a, b]. In our situation, it is still valid but by slightly
different reasoning. We use the function class F"(w) (22) to show the
principle. For many other subsets of C ™[ a, b], the theorem will be valid by
an analogous proof.

LemMA 8 (Euler-Lagrange differential equation and boundary conditions).
Given integers m > v > 0, 7"(w) the set of m-times differentiable functions
where ™ has exactly the zeros w,...,w, and J[f]= [Eu(x; flx),
F(x),..., f™(x)) dx, where %(x; fo, f1,---»fn) is twice differentiable with
respect to fo,..., [, and is “smooth” as integrand of J[f] [ fulfilling ()
below], then a function f minimizing J[ f1 among all f € 7" (w) necessarily
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fulfills the following:

J

® Z (- l)J——?/fm =0 Vx€<la,b] (“differential equation™),
Jj=0

G) Vviefl,...,m}
m-—i d]
Y (-1 W‘%«um =0 forx < {a,b} (“boundary condition”),
j=0

where %) = U/ If .

ProOF. The first part is the standard variational argument of the calcu-
lus of variation: looking for the optimal f, we consider the trial functions
f + &n, where n(-) is any function € F"(w), and || small enough such that
f+ene %”’(w) A necessary condition for f to be extreme among the f + &n

is then 8J(f; n) = (d/ds)J[ f+ enll,._, = 0, where the “Gateaux variation”
8J is the Gateaux derivative of the functional  (in the direction of %) and
corresponds to the directional derivative of R" calculus.

We have to show that the condition 8J(f; n) = 0V 7 is equivalent to the
stated lemma. Under weak smoothness conditions on %, we can interchange
integration and differentiation and get

b !
We integrate the terms |2 nY’%;, partially j times to see that

8J(f;m)
; b

Jj-1 d
T (-9
i=0

i(f W) (1) s i + -

Jj=0

a

a

m d’
fb ( -go(_l)dej?/fU))n(x) dx
+

)»

m
Jj=1

i=0

(e ’
"7(1_1)( Z (_l)t@%f(iﬂ)):l )

a

where the two sums in the second term have been rearranged by the
substitution j' =j — i, and we used the notation [ H(x)]? = H(d) — H(a).
From 8J = 0, for all n (with »-inflection points w,, ..., w, ), we conclude that
both terms have to vanish, because otherwise we mlght vary the integral part
while fixing all n(f)lx_aorb We easily conclude that the inner sums (over i)
must all vanish. These are the boundary conditions (ii).

The classical way to get the differential equation (i) is to apply the
fundamental lemma of variational calculus, which states that from G contin-
uous and [? G(x)n(x) dx = 0V continuous 7, one concludes that G(x) has to
vanish on [a, b]. This lemma is proved indirectly, assuming, for example,
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that G(x,) > 0, and therefore G > 0 on a whole neighborhood of x,. Then
one takes 7> 0 on this same neighborhood and zero outside, such that
[ G(x)n(x) dx > 0, which is a contradiction.

Here, the fundamental lemma may not be applied directly, since we have
n € Z{"(w) and cannot have n = 0 on any interval. We consider a subset of
F(w), namely, functions 7 of the form

n(x) = exp(—ax)Q(x),

where @(x) is a polynomial @(x) = X2, q,x"* such that n*(x) =0 is
equivalent to x € {w,,...,w, ,}- By the product rule of differentiation and
reversing the order of summatlon we see that

ny

(27)  n™(x) = exp(—ax) ),

n,—k

L (J)-0k + e |

Jj=0

where (n), = n(n — 1)---(n — k + 1), as in definition (30). If we require that

(%) = c(x — w, Xx — wy) -+ (x — w, ) and compare the coefficients of the
two polynomials for "), we see that factors of x* in (27) form a linear system
for (qq,-- ., g, ) with an upper triangular matrix. This matrix is regular with
constant dlagonal elements (—a)”, such that the coefficients q; and the
polynomlal @ always exist with the required property. Now we have

2 G(x)Q(x)exp(—ax)dx = 0, Va > 0, which means that the Laplace trans-
form of G(x)Q(x) is identically zero, and therefore G(x) must vanish every-
where, since the polynomial @(x) is not identically zero. O

APPENDIX B

Higher chain-rule identities. The goal of this appendix is to prove
Lemma 2 in Section 2. To this end, we have to consider formulas which are
connected with the chain rule for higher derivatives of a composite function
F(x, g(x)). In the standard books, we have not found those which we use in
the following. A well-known formula of a similar nature is Faa di Bruno’s
formula, which uses multinomial coefficients in sums with combinatorial
indices [Abramowitz and Stegun (1972), Chapter 24].

Our goal is to reexpress the partial derivatives of Euler’s differential
equation for the penalty part (d"/dx™)F(x, g(x)). It is of the form

n

d
dan(x, g(x)) =F,(x;8(x),g'(x),...,8™).

(28)

LEMMA 9 (Higher chain-rule identity 1). Let g( ) and F() be as in
Lemma 2, and let F, be the nth derivative of F as above. Then
(29)

d
n .
@Fn=(‘1)£Fn—J V]ENO,VnENO.
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ProorF. We denote the partial derivatives as F, = dF(x, *)/dx and
F, = 9F(x, g)/dg. The equality is trivially fulfilled for j = 0 and for j > n
(where both sides vanish). It remains to be proved for 1 <j < n. For j =n,
(29) follows from the identity

F,(x, g(x))
=g"WF,(x,g(x)) +R,(g,....8" ", F,,...,F", F,,...,F{),

where R,(:-+) is a “remainder” not containing g, which is proved by
induction: n = 1 is the simple chain rule with R, = F,. For n > 1 we have

d

Fn+1=Zx- n

=g"*VF, + g™ (F,g' + F})

d
+£Rn(g,...,g(”‘1); Fy,....,F, F,,...,F™),

using the result for n. We see that R, , == g"(F;g' + F,;) + (d/dx)R, ()
does not depend on g** Y,

To complete the proof of the lemma, doing induction n — n + 1, we may
assume its truth for n and have to show it for j=1,...,n (j=n + 1 was
done above!). We again apply the chain rule to F,: F,, , = (d/dx)F, =
Y’ o (d/dx)g (/g P)F, + (3/3x)F,. Therefore, the Lh.s. of (29) equals

J - (g(i+1)

J J
ag(j)Fn+1 = Z
Note that (9/9g)d/dx) = (9/3dx)d/3g?), such that we have

~F, | + ~—F .
ag(l) ") ag(J) Ix "

izo ag(l)

e 14 17 17

—a—F + Y gitV—or——F + ———F
ggu D n T HE e ggin T Gy g

which, using the result for n, equals

n | @ i (n)2 9 @
. —F + G+ —F .+ ) ——F _ ..
(J - 1) g "It lz‘;)g ogd\J)og "7 \J)ogox "/

Note that, in L, the last j summation terms vanish, because (9/dg)F, _; =
0 for i > n — j. This sum is therefore equal to

9 ni P
(O J— .
( )&g ,Zog ag®» "

We have

4 n J n) 9 ; J J
- - - i+H___ R —F
ag‘f)F””_ (J'—l)agF"‘j“Jr (J) {Zg ' og® T G|



MPL PROBLEMS 1513

and { -} is (d/dx)F,_;, by the chain rule. Therefore,

4 n n 4 n+1)9
e = ()« () g = (75 gm0

In the following, we will also make use of “elementary” identities for
binomial coefficients. Let us define V&£ € Ny, Va € R,

(@), Ea(a—-1)(a—k+1) with (a) =1,

a ) def (@)p a) _
(k)_ 7l and, for £ <0, (k)—O.

— (_ k +k-1
= (—DH{(n

(30)

The special case ( _k” ) will be used in the next proof.

The following binomial identities will be used later and are (to our knowl-
edge) not available in the standard literature.

LEMMA 10 (Binomial identities). The following hold Yn € Ny, Vm €
{0,...,n}

(i) VaeR, i(—l)”‘f(;?)(”“)—a ER TR

J=0 mn

m +j z(n—m—l.
J k ’

(i) toms= L (- 1)( )(J J)

Jj=m+dJ

(i) VEkeN,, f (—1)J'(k’jj)

Jj=0

fulfills, VJ €{0,...,n — m},

n m+d(n—m—1
@) oy = (1), + (=) (T,
(b) Chma=0 o J=0An+m.

ProoF. (i) Consider the forward difference operator A,: f— f(x + 1) —
f(x). We apply the well-known formula A% f = Z;?=0(—1)"_j(';)f(x +j) at

x = 0 to the polynomial f(¢) = (t ;l“), which gives the Lh.s. of (i). Applying
the mean value theorem to the nth derivative, we have A% f = f(™(¢) for a
£ € [0, n]. Because here f(t) =t™/(m!) + (lower-power terms of ¢), m < n,
we have f("(¢) =6, ..
-(11) A well-known formula,

- +a

2 (5] - (5)

S\ k= k
is seen by comparison of coefficients of the binomial theorem, applied to
1+ x)"A+x)=(1+x)""? and is valid for any real a and |x| <1 [e.g,,
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Abramowitz and Stegun (1972), 3.6.8]. We apply it to a = —m — 1, using
(_.N)= (—l)j(NJr;_ 1) to get

J
P i WP B |

Here, the adding terms are zero whenever j > k or (also) j > n, such that we
may sum from j = 0 to £ instead of n. Reversing the order of summation, we
have (ii).

(i) We have ¢,y = Tl iy = = D0 g o —Emi/ 1 (—1)1‘(';)(1' )
where the first sum is (—1)" times the Lh.s. of (i) for @ = —J, and therefore

equal to (—1)", . In the second sum, the terms are zero whenever 0 < j —
J<m [(,’;) =0for0<k < m], such that we may sum only to J — 1. For

these j, j — J < 0, so that we can apply (J;J)= (—l)m(J_j;lm - 1) to get

J-1
n m-j+1[ +J-j—-1
cn,m,J_(_l) Sn,m= j§0(_1) J+1(j)(m mJ )

This is seen to be (— 1) "7 times the sum in (i) and, by setting j' =J — 1 —j
and % :=J — 1, (a) is proved. Part (b) is an immediate consequence if we
remember that 0 <m + J <n. O

LemMA 11 (Higher chain-rule identity 2). Let g( ) and F( ) be as general
as in Lemma 2, and let F, be defined by (28). Then,V n € N,V m €{0,...,n},
Vm' e{m,...,n},

Comm = 3 (-7 ) o

dxd =™ WFn(x’ g(x))

. , m
Jj=m
a . _ —
E_Fn—m"(smn-i_(_l)m(n i 11))
ag ’ n—m
i F
cn,m,m’—m ag n—m'»

where c, ., ; is defined as in Lemma 10.

Proor. We apply Lemma 9 to C above and get

n,m,m’

n s , di-m 4
S e L | [ K
n,m,m j=2m,’( ) m J)dxi ™™ ag n—](x g(x))
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Now we make use of the following basic rule:

for any function G(x, u(x), u'(x),...,u™(x)),
(31) 0 d d 9

Judx  dx du

which is a simple consequence of the chain rule for several arguments. (Note
that this rule would be wrong with u’, j > 1, instead of u.) Apply this rule
Jj — m’ times to see that

@
dxi—m' 3 ” J(g( )) = n—m’(g(x))’

which is independent of j so that we can apply directly (a) of Lemma 10(iii),
with J = m’ — m, to complete the proof. O

PROOF OF LEMMA 2. Because of 7= F,(x, g(x))?, we have 7 =
2F,(3/3gV)F,. In the Lh.s. of (i) and part (a) of (i), we take (j — jj)th
derivatives of this product, applying Leibniz’ rule

——(a(x) -b(x)) = Z (m)a(m)b(J m)

m=0

such that this Lh.s. becomes
J=Jo . . di~jo—m g
2} -1y’ (J_JO)F — —F,,
or, switching the order of summation (keeping 0 <m <j —j, <k — ji),

di=Jo k—Jjo

(32) Y (-1 () = 2 £ Co(®)Fuin(2),

J=Jo m=

where

d] (m+jo) 9
A ~F,.
de (m+jo) ag(J)

C, = Z (- 1)(J Jo

m
Jj=m+jo .

Remark that C,, = C, ,, , of Lemma 11 if we let n =k and m' :=m + j,.
Therefore C,, = c;, ,, ;(3/I8)F}_p,_j,-

() For j, = 0, we see (i), because ¢, ,, , = 0 for all m but m = & [part (b)
of Lemma 10(ii)], where C, = (= 1)* - (3/3g)F;_;_, = (— D*F,(x, g(x)).
(ii) Because of equation (32), the equivalence of (a) and (b) is proved if we
can show that, here, C,, # 0 for m €1{0,..., & — j,}. We have ¢, ,, ; # 0 from
(b) of Lemma 10(ii), since j, > 1. Also by the basic rule, (ﬂ/ ig)F,, =
(d* /dx*' X9/ 9g)F, which are nonzero by the assumption in (ii). O
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