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OPTIMAL ADAPTIVE ESTIMATION OF A
QUADRATIC FUNCTIONAL1

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

Adaptive estimation of a quadratic functional over both Besov and
Lp balls is considered. A collection of nonquadratic estimators are devel-
oped which have useful bias and variance properties over individual Besov
and Lp balls. An adaptive procedure is then constructed based on penalized
maximization over this collection of nonquadratic estimators. This procedure
is shown to be optimally rate adaptive over the entire range of Besov and
Lp balls in the sense that it attains certain constrained risk bounds.

1. Introduction. The problem of estimating the quadratic functional
∫

f 2 has
received much attention in the statistical literature especially since, in a density es-
timation setting, Bickel and Ritov [5] showed under Hölder smoothness conditions
that there is a breakdown in the minimax rate of convergence. Fully efficient esti-
mation is possible when the function satisfies a Hölder smoothness condition with
α > 1

4 . However when α ≤ 1
4 minimax rates of convergence under mean squared

error are of the order n−8α/(1+4α).
This theory has been developed and extended in a number of important direc-

tions which can be particularly easily described for the Gaussian sequence model

Yi = θi + n−1/2zi, i = 1,2, . . . ,(1)

where zi are i.i.d. standard normal random variables and where θ = (θ1, θ2, . . .) is
assumed to belong either to an Lp or a Besov ball. Such models occupy a central
role in the nonparametric function estimation literature. See, for example, [22]. In
this sequence model setting estimation of the quadratic functional Q(θ) = ∑∞

i=1 θ2
i

is the analog of estimating the functional
∫

f 2 in the density estimation model.
The Lp balls are defined as

Lp(α,M) =
{
θ :

( ∞∑
i=1

ips |θi |p
)1/p

≤ M

}
,(2)
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where p > 0, α > 0, M > 0 and s = α + 1
2 − 1

p
> 0. Besov balls in sequence space

are typically defined in terms of a doubly indexed sequence {θj,k : j = 0,1, . . . , k =
0, . . . ,2j − 1}. For p,q,α,M > 0 the Besov ball Bα

p,q(M) is then given by

Bα
p,q(M) =

{
θ :

( ∞∑
j=0

(
2js

(2j−1∑
k=0

|θj,k|p
)1/p)q)1/q

≤ M

}
,(3)

where once again s = α + 1
2 − 1

p
> 0. In particular, Besov balls contain as special

cases a number of well-known smoothness spaces such as Hölder and Sobolev
balls. It is possible to give a unified treatment of Besov balls and Lp balls by
setting in the case of Besov balls θi = θj,k , where i = 2j + k. Noisy observation
of Besov coefficients can then still be written as in (1). This convention is used
throughout the paper, where in addition we shall assume that p,q,α, s > 0.

For estimation of the quadratic functional Q(θ) over Besov and Lp balls there
are really two distinct cases of interest. The “dense” case corresponds to p ≥ 2
and the “sparse” case to p < 2. Previous literature has focused primarily on the
dense case where the parameter space is quadratically convex. In such cases the
minimax theory for estimating the quadratic functional Q(θ) was well developed
in [13] and [15]. In particular, this theory covers Besov balls Bα

p,q(M) and Lp balls
Lp(α,M) when p ≥ 2. An important feature of this minimax theory is that optimal
quadratic rules can be found within a “small” constant factor of the minimax risk.

The minimax theory for parameter spaces which are not quadratically convex
is quite different. The near minimaxity of optimal quadratic rules typically does
not hold when the parameter space is not quadratically convex. Cai and Low [10]
develop the minimax theory in such cases over all Besov balls and Lp balls with
p < 2. A nonquadratic minimax procedure is given based on term-by-term thresh-
olding. The nonquadratic procedure is sometimes fully efficient even when optimal
quadratic rules have slow rates of convergence.

The minimax results for estimating the quadratic functional Q(θ) over � =
Lp(α,M) or � = Bα

p,q(M) can be summarized as follows. Set p∗ = min{p,2},
s∗ = α + 1

2 − 1
p∗ and let

r(α,p) =




1, if αp∗ ≥ 1

2
,

2 − p∗
1 + 2p∗s∗

, if αp∗ <
1

2
.

(4)

Then

inf
Q̂

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 � n−r(α,p).(5)
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Moreover, if αp∗ > 1
2 ,

inf
Q̂

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 = 4A(�)n−1(
1 + o(1)

)
,(6)

where A(�) = supθ∈�

∑∞
i=1 θ2

i is a constant and 4A(�)n−1 is the inverse of the
nonparametric Fisher information.

In comparison to minimax theory, the theory of adaptive estimation of Q(θ) is
not as well developed. Most of the progress has been made in quadratically con-
vex cases. Efromovich and Low [14] considered adaptive estimation of Q(θ) over
hyper-rectangles, which corresponds to Lp balls with p = ∞. It was shown that
rate optimal adaptive estimators do not exist and that logarithmic penalties must
be paid. An adaptive procedure only paying these logarithmic penalties was con-
structed using the method due to Lepski [26]. Tribouley [29] and Johnstone [21]
developed an alternative adaptive procedure based on block thresholding algo-
rithms. Gayraud and Tribouley [18] also used a block thresholding scheme for
adaptation over Besov spaces with p = 2 and q = ∞. Using Lepski’s method to
choose within a collection of quadratic rules Klemelä [23] considered sharp adap-
tation for Lp balls with p > 2.

All of the results mentioned so far focus on quadratically convex cases where
p ≥ 2. The sparse case where p < 2 presents some major new difficulties which
requires a novel approach for the construction of adaptive procedures. The goal of
the present work is to develop a procedure which adapts simultaneously over all
Besov and Lp balls. This problem is significantly different from adaptation only
over the dense cases where one can select from a collection of quadratic estimators.
In the sparse case even minimax theory requires nonquadratic rules.

It is well known from previous work that block thresholding is an effective tool
for adaptive estimation of Q(θ) in the dense case. Block thresholding can be used
to guard against the worst case when there are a large number of small coefficients
and where the exact location of these coefficients is unknown. On the other hand, in
the sparse case, as shown in [10], the worst case occurs when there are a relatively
small number of large coefficients with unknown location. In such cases term-by-
term thresholding is effective. Unfortunately term-by-term thresholding does not
work well for the dense case, and likewise, block thresholding does not work well
in the sparse case. In order to develop a procedure that can adapt simultaneously
over both the sparse and the dense cases we incorporate both approaches.

There are three parts to the adaptive estimator given in this paper. The initial
component is based on a simple unbiased quadratic estimate of the first part of the
quadratic functional. The third component is based on a term-by-term threshold-
ing procedure with slowly growing threshold. The most important component, at
least for the sparse cases, is an estimate of the middle part of the quadratic func-
tional Q(θ). This estimate is based on penalized maximization over a collection of
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estimators, each of which uses both block thresholding and term-by-term thresh-
olding. We show that the resulting procedure simultaneously attains the bench-
marks for adaptive estimation given in Section 2. In particular, it is fully efficient
over the largest collection of Besov and Lp balls for which efficient estimators
exist while paying minimal penalty over all other Besov and Lp balls.

More precisely, it follows from the theorems in the paper that the adaptive esti-
mator satisfies for � = Lp(α,M) or � = Bα

p,q(M)

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 ≤ Cn−r(α,p)(logn)2p∗s∗/(1+2p∗s∗)(7)

when αp∗ ≤ 1
2 and

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 = 4A(�)n−1(
1 + o(1)

)
(8)

when αp∗ > 1
2 , where A(�) = supθ∈�

∑∞
i=1 θ2

i . In other words, the estimator is
adaptively fully efficient over all Besov bodies where efficient estimation is possi-
ble and only pays a logarithmic penalty when the minimax rate is slower than n−1.
In fact, it is also shown in the present paper that the upper bound given in (7) is
rate sharp.

It is interesting to compare these results with those of an estimator based on
model selection given in [25]. Their procedure, say Q̂LM, maximizes penalized
quadratic estimators. It was shown that for p < 2,

sup
θ∈Lp(α,M)

Eθ

(
Q̂LM − Q(θ)

)2

(9)

≤ C min
{(

logn

n2

)4s/(1+4s)

,

(
logn

n

)4α/(1+2α)}
+ C

n

for some constant C > 0. A comparison shows that these upper bounds are always
larger than the upper bounds given in the present paper whenever the estimator
Q̂LM of [25] has a bound larger than O(n−1). A more detailed comparison is
given in Section 2.

The paper is organized as follows. In Section 2 we develop benchmarks for the
evaluation of adaptive estimators. The major focus of the paper is the construction
of an adaptive estimator which is described in detail in Section 3. A collection of
nonquadratic estimators with specific bias variance properties is constructed. The
adaptive procedure is then built by selecting a penalized estimator over this col-
lection through maximization. We show that the procedure simultaneously attains
the benchmarks given in Section 4 over all Besov and Lp balls. In particular, it is
fully efficient over the largest collection of Besov and Lp balls for which efficient
estimators exist while paying minimal penalty over all other Besov and Lp balls.
Proofs are given in Section 4.
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2. The cost of adaptation in the sparse case. The primary goal of the present
work is to construct estimators of Q(θ) = ∑∞

i=1 θ2
i which are adaptive over all

Besov and Lp balls. This goal, however, needs to be made precise because even in
the dense case of p ≥ 2 it is well known that fully minimax rate optimal adaptation
of the quadratic functional Q(θ) = ∑∞

i=1 θ2
i is not possible. See, for example, [14].

A penalty must be made over Lp or Besov balls with p ≥ 2 and α < 1
4 . Hence in

the present context a rate adaptive estimator is one which attains well defined lower
bounds.

In this section we shall develop the appropriate lower bounds needed as a bench-
mark for the evaluation of adaptive procedures which are given in Section 3.2.
We shall see that an entirely similar phenomenon occurs in the sparse case, al-
though the exponent of the logarithmic penalty is different. In particular, the fol-
lowing theorem shows that fully rate adaptive estimation of the quadratic func-
tional Q(θ) = ∑∞

i=1 θ2
i is not possible over any pair of Besov spaces which have

different minimax rates of convergence. In the following theorem denote by 0 the
zero vector. Then E0 denotes the expectation under the sequence model (1) when
θ = 0.

THEOREM 1. Let Q̂ be an estimator of the quadratic functional Q(θ) =∑∞
i=1 θ2

i . Let r(α,p) be the minimax rate for estimating Q(θ) over � = Bα
p,q(M)

or � = Lp(α,M). Suppose that

E0
(
Q̂ − Q(0)

)2 ≤ Cn−γ(10)

for some constants γ > r(α,p) and C > 0. Then the maximum squared bias over
� satisfies, for some constant C′ > 0,

sup
θ∈�

(
EθQ̂ − Q(θ)

)2 ≥ C′n−r(α,p)(logn)2p∗s∗/(1+2p∗s∗).(11)

The theorem makes clear that rate optimal estimators over one Besov or Lp ball
must pay a logarithmic penalty for the maximum risk over all Besov and Lp balls
which have slower minimax rates of convergence. In fact, as shown in (11), this
logarithmic penalty must be paid in terms of maximum squared bias.

The major use of the lower bound given in the above theorem is as a benchmark
for the development of an adaptive estimator. Adaptive estimators which attain
these bounds must over each parameter space inflate the maximum bias over that
parameter space. In the next section we shall use this fact to guide us in the de-
velopment of estimators which are adaptive in the sense that they attain the lower
bound given in Theorem 1.

The proof of this theorem also immediately yields the following corollary which
shows the “inflexibility” of minimax rate optimal estimators, at least in cases where
the minimax rate is slower than n−1. In particular, there does not exist an estimator
which attains the exact minimax rate of convergence over any pair of Besov or Lp

balls which have different minimax rates of convergence.
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COROLLARY 1. Let Q̂ be a minimax rate optimal estimator of the quadratic
functional Q(θ) = ∑∞

i=1 θ2
i over � = Bα

p,q(M) or � = Lp(α,M) where the mini-
max rate r(α,p) < 1. That is,

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2 ≤ Dn−r(α,p)(12)

for some D > 0. Then

E0
(
Q̂ − Q(0)

)2 ≥ D′n−r(α,p)(13)

for some D′ > 0 and hence

sup
θ∈�′

Eθ

(
Q̂ − Q(θ)

)2 ≥ D′n−r(α,p),(14)

where �′ is any Besov or Lp ball.

The benchmark given in Theorem 1 is useful for the evaluation of adaptive pro-
cedures over parameter spaces which have a minimax rate of convergence slower
than n−1. On the other hand, over Besov and Lp balls with αp∗ > 1

2 , the mini-
max risk given in (6) is another useful benchmark. Estimators attaining (6) can be
termed efficient since they attain a nonparametric information bound as given, for
example, in [4]. See also [10].

3. The construction of an adaptive procedure. The major goal of the
present paper is the construction of an estimator of Q(θ) which adapts over all
Besov and Lp balls. The development of such an adaptive estimator can perhaps
best be understood by breaking this construction into two stages. In the first stage a
collection of nonquadratic estimators is constructed using both block thresholding
and term-by-term thresholding. These estimators have precise bias and variance
properties. More specifically, for a given Besov or Lp ball when the minimax rate
is slower than n−1, one of the estimators in the collection has maximum squared
bias attaining the lower bound given in (11) and which has variance smaller than
the minimax risk. On the other hand, when fully efficient estimation is possible,
one of the estimators has negligible bias and the variance attains the minimax lower
bound. The construction of these nonquadratic estimators is given in Section 3.1.

These nonquadratic estimators are then used to build an adaptive procedure.
At this stage the adaptive estimator is created by maximizing penalized versions
of these nonquadratic estimators where the penalty is chosen to be a logarithmic
factor of the standard deviation of each of these estimators.

The general approach of model selection via penalization has been shown to
be effective for a number of adaptive function estimation problems. See, for ex-
ample, [1, 3, 6, 25]. In particular, a major advance in estimating the quadratic
functional Q(θ) was made in [25], where it was shown that maximizing penalized
quadratic estimators of Q(θ) can yield a procedure which is adaptive over certain
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Besov and Lp balls. It is shown in Section 3.2 that the procedure based on max-
imizing the penalized nonquadratic estimators is adaptive over all Besov and Lp

bodies. A comparison with the estimator of Laurent and Massart [25] is given in
Section 3.3.

3.1. Nonquadratic estimators with specific bias and variance properties. We
start with the construction of a collection of estimators which have precise bias
and variance properties. These estimators incorporate both block and term-by-term
thresholding. It is known that block thresholding estimators can perform well for
dense cases, that is, when p ≥ 2 and that term-by-term thresholding estimators
can be minimax rate optimal for sparse cases, that is, when p < 2. By combining
block thresholding and term-by-term thresholding, estimators can be constructed
which trade bias and variance in very useful ways for both the dense and sparse
cases. More specifically, for a given Besov or Lp ball we build an estimator that
has inflated maximum squared bias and reduced variance and which in particular
attains the adaptive rate of convergence for mean squared error.

It is useful to break the problem of estimating Q(θ) into three components as
follows. Let m0 = n

(logn)2 and mk = 2km0 for k ≥ 1. Divide the indices i beyond
m0 into blocks of increasing sizes so that the kth block is of size mk . Let J be the
largest integer satisfying 2J ≤ n and set

ξ0 =
m0∑
i=1

θ2
i , ξmid =

mJ∑
i=m0+1

θ2
i and ξtail =

∞∑
i=mJ +1

θ2
i .(15)

Then clearly Q(θ) = ξ0 + ξmid + ξtail. We shall use different strategies for estimat-
ing the three components ξ0, ξmid and ξtail. Estimation of ξmid is the most involved
and so we shall first describe estimators for ξ0 and ξtail.

The component ξ0 is naturally estimated by the unbiased quadratic estimator

ξ̂0 =
m0∑
i=1

(
Y 2

i − 1

n

)
.(16)

Note that for � = Bα
p,q(M) or � = Lp(α,M)

sup
θ∈�

Eθ(ξ̂0 − ξ0)
2 = sup

θ∈�

{
4ξ0

n
+ 2m0

n2

}
= 4A(�)

n

(
1 + o(1)

)
,(17)

where A(�) = supθ∈�

∑∞
i=1 θ2

i . It is clear that this term is equal to the minimax
risk when fully efficient estimation is possible and negligible whenever the mini-
max rate of convergence is slower than the parametric rate of n−1.

The technique underlying the estimation of the tail component is similar to that
used for minimax estimation of Q(θ) in the sparse case as given in [10]. First
define γi by

γi = 2
(⌈

log2
i

mJ

⌉
+ 1

)
, i ≥ mJ + 1,(18)
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where �x	 denotes the smallest integer greater than or equal to x. That is, γi =
2(j − J + 2) for mj + 1 ≤ i ≤ mj+1 and j ≥ J . Then the tail component ξtail is
estimated by a term-by-term thresholding estimator with slowly growing threshold

ξ̂tail =
∞∑

i=mJ +1

(
Y 2

i − γi logn

n

)
+
.(19)

We shall show that the risk due to estimation of the tail is always negligible
relative to the minimax risk for � = Bα

p,q(M) or � = Lp(α,M), that is,

sup
θ∈�

Eθ(ξ̂tail − ξtail)
2 = o

(
n−r(α,p)).(20)

We now turn to estimation of the middle component ξmid, which is more
involved and uses both block thresholding and term-by-term thresholding. Let
� = Bα

p,q(M) or � = Lp(α,M). The estimator ξ̂mid depends on the parameters
α and p. For each integer k such that 1 ≤ k ≤ J − 1 set τk,i = 2(j + 1 − k) for
mj + 1 ≤ i ≤ mj+1 and k ≤ j ≤ J − 1. That is,

τk,i = 2
⌈

log2
i

mk

⌉
, i ≥ mk + 1,(21)

where �x	 once again denotes the smallest integer greater than or equal to x. For
i ≥ mk +1, set µk,i = E0{(Y 2

i − τk,i

n
)+} where the expectation is taken under θ = 0.

Let

λk = (mk − m0) + 2
√

(mk − m0) log(mk − m0)

n
.

For each 1 ≤ k ≤ J − 1 set

ξ̂k =
(

mk∑
i=m0+1

Y 2
i − λk

)
+

+
mJ∑

i=mk+1

[(
Y 2

i − τk,i

n

)
+

− µk,i

]
.(22)

Recall that p∗ = min{p,2} and s∗ = α + 1
2 − 1

p∗ . Set k∗ to be the largest integer
such that

mk∗ = 2k∗m0 ≤ max
{
2m0, n

p∗/(1+2p∗s∗)(logn)−1/(1+2p∗s∗)}.(23)

The middle component ξmid is then estimated by

ξ̂mid = ξ̂k∗
(24)

=
( mk∗∑

i=m0+1

Y 2
i − λk∗

)
+

+
mJ∑

i=mk∗+1

{(
Y 2

i − τk∗,i
n

)
+

− µk∗,i

}
.

We shall show that the risk of ξ̂mid for estimating ξmid is negligible when fully
efficient estimation is possible and otherwise attains the lower bound given in The-
orem 1 over the given �. It should also be noted that the first term used to define
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ξ̂mid would suffice for the dense case where p ≥ 2. The second term is needed for
the sparse case where p < 2.

The quadratic functional Q(θ) is then estimated by

Q̂k∗ = ξ̂0 + ξ̂mid + ξ̂tail.(25)

The following result shows that this estimator has desirable bias and variance prop-
erties.

PROPOSITION 1. Let � = Bα
p,q(M) or � = Lp(α,M) and let the estimator

Q̂k∗ be given as in (25). If αp∗ < 1
2 , then the maximum squared bias satisfies

sup
θ∈�

(
EQ̂k∗ − Q(θ)

)2 ≤ Cn−(2−p∗/(1+2p∗s∗))(logn)2p∗s∗/(1+2p∗s∗)(26)

and the maximum variance satisfies

sup
θ∈�

Var
(
Q̂k∗

) ≤ Cn−(2−p∗/(1+2p∗s∗))(logn)−1/(1+2p∗s∗).(27)

On the other hand, if αp∗ > 1
2 , then Q̂k∗ is asymptotically efficient, that is,

sup
θ∈�

Eθ

(
Q̂k∗ − Q(θ)

)2 = 4A(�)n−1(
1 + o(1)

)
,(28)

where A(�) = supθ∈�

∑∞
i=1 θ2

i . Furthermore, in the boundary case of αp∗ = 1
2 ,

Q̂k∗ satisfies

sup
θ∈�

(
EQ̂k∗ − Q(θ)

)2 ≤ Cn−1(logn)2p∗s∗/(1+2p∗s∗)(29)

and

sup
θ∈�

Var
(
Q̂k∗

) = 4A(�)n−1(
1 + o(1)

)
,(30)

where once again A(θ) = supθ∈�

∑∞
i=1 θ2

i .

Note that the estimator Q̂k∗ has reduced variance and inflated bias compared
to the minimax risk when the minimax rate of convergence is slower than the
parametric rate. In fact in these cases the ratio of the maximum squared bias to
the maximum variance is exactly of order logn. These properties are crucial in the
construction of the adaptive estimator given in Section 3.2.

3.2. Adaptive procedure. We shall now turn to the construction of a general
adaptive procedure building upon the collection of nonquadratic estimators given
in Section 3.1. The adaptive estimator is the maximization of penalized versions of
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these nonquadratic estimators. Let Q̂k = ξ̂0 + ξ̂k + ξ̂tail where ξ̂0, ξ̂k , and ξ̂tail are
defined in (16), (22) and (19), respectively. The adaptive estimator is then given by

Q̂ = max
1≤k≤J

{
Q̂k − 6

√
mk logn

n

}
.(31)

We shall show later that for any given Besov or Lp ball the penalty term in (31)
is always a logarithmic factor larger than the maximum variance of the estima-
tor Q̂k . Moreover, the bias of the estimators Q̂k is always negligible when it is
positive, whereas in worst cases it must be negative. Taking a maximization with
the penalty term results in an optimal trading of bias and variance over all Besov
and Lp balls.

It is also convenient to define

ξ̂mid = max
1≤k≤J

{
ξ̂k − 6

√
mk logn

n

}
.(32)

Then the estimator Q̂ can be equivalently written as

Q̂ = ξ̂0 + ξ̂mid + ξ̂tail,(33)

where ξ̂0, ξ̂mid and ξ̂tail are defined in (16), (32) and (19), respectively.
The following theorem shows that the estimator Q̂ is optimally adaptive over

all Besov and Lp balls both for the dense and sparse cases.

THEOREM 2. Let Q(θ) = ∑∞
i=1 θ2

i and let the estimator Q̂ be defined as
in (31). Then the risk of Q̂ satisfies for all Besov balls � = Bα

p,q(M) and all Lp

balls � = Lp(α,M)

sup
θ∈�

Eθ

(
Q̂ − Q(θ)

)2

(34)

≤
{

4A(�)n−1(
1 + o(1)

)
, for αp∗ > 1

2 ,

Cn−(2−p∗/(1+2p∗s∗))(logn)2p∗s∗/(1+2p∗s∗), for αp∗ ≤ 1
2 ,

where C > 0 and A(�) = supθ∈�

∑∞
i=1 θ2

i are constants.

Comparing the upper bounds given in the above theorem with the lower bound
given in Theorem 1 as well as the information bound given in (6), it is clear that the
estimator Q̂ is adaptive over all Besov and Lp balls. In particular, it is adaptively
efficient over those parameter spaces where efficient estimation is possible.

3.3. Discussion. It is interesting to compare the performance of the adaptive
estimator Q̂ with the estimator, say Q̂LM, given in [25]. The estimator there is
constructed based on model selection. It chooses a penalized quadratic estimator
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through maximization. In contrast, in this paper the adaptive estimator Q̂ selects
among a collection of penalized nonquadratic estimators. These nonquadratic es-
timators enable optimal adaptation over sparse cases corresponding to Besov and
Lp balls with p < 2 in addition to the standard dense cases of p ≥ 2. In Table 1,
R(Q̂LM) denotes the order of the risk upper bound of Q̂LM given in [25] and R(Q̂)

denotes the order of the maximum risk of Q̂ as given in Theorem 2. The compari-
son is focused on the sparse case where p < 2.

Simple algebra shows that the risk upper bounds for Q̂LM are always larger
by an algebraic factor than those for Q̂ whenever R(Q̂LM) � n−1. In particular,
if 1 ≤ p < 4

3 and 1
2p

< α ≤ 1
2 , R(Q̂LM) is of order (

logn
n

)4α/(1+2α) whereas Q̂ is

fully efficient. Likewise when 4
3 ≤ p < 2 and 1

2p
< α ≤ 1

p
− 1

4 , R(Q̂LM) is of order

(
logn

n2 )4s/(1+4s) and Q̂ is once again fully efficient.
It is also interesting to note that the problem of estimating the quadratic func-

tional Q(θ) is strongly connected to the problem of estimating linear functionals.
This connection was developed first in [13] where it was shown that a modulus
of continuity for orthosymmetric parameter spaces could be used to yield optimal
quadratic minimax estimators in a way that is analogous to a similar theory for
minimax estimation of linear functionals given in [12]. See [10] for further dis-
cussion of this connection and the connection to estimating the whole signal θ in
the minimax estimation setting. The adaptation theory for estimating the quadratic
functional Q(θ) developed in the present paper is also similar to that for estimating
linear functionals. For linear functionals Lepski [26] was the first to show that log-
arithmic penalties must often be paid when adapting over collections of parameter

TABLE 1
Comparison of the performance of the estimators Q̂LM and Q̂

0 < p < 1 1 ≤ p < 4
3

α > 1
p − 1

2 α ≤ 1
2p

1
2p

< α ≤ 1
2 α > 1

2

R(Q̂LM) n−1 (
logn

n )4α/(1+2α) (
logn

n )4α/(1+2α) n−1

R(Q̂) n−1 n−(2−p/(1+2ps))

×(logn)2ps/(1+2ps) n−1 n−1

4
3 ≤ p < 2

α ≤ 2
p − 1 2

p − 1 < α ≤ 1
2p

1
2p

< α ≤ 1
p − 1

4 α > 1
p − 1

4

R(Q̂LM) (
logn

n )4α/(1+2α) (
logn

n2 )4s/(1+4s) (
logn

n2 )4s/(1+4s) n−1

R(Q̂)
n−(2−p/(1+2ps))

×(logn)2ps/(1+2ps)

n−(2−p/(1+2ps))

×(logn)2ps/(1+2ps) n−1 n−1
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spaces, as is the case in the present paper. Further refinements and generalizations
for adaptive estimation of linear functionals can be found in [9, 24, 27].

4. Proofs. The main results are proved in the order of Proposition 1, Theo-
rem 2 and then Theorem 1. Detailed proofs are only given for Lp balls since the
proofs for Besov balls are entirely analogous. In this section C denotes a positive
constant not depending on n that may vary from place to place, φ(z) and 	(z) de-
note the density and cumulative distribution function of a standard normal random
variable and 	̃(z) = 1 − 	(z).

4.1. Preparatory results. The following lemma helps in the analysis of term-
by-term thresholding estimators and is important to the proof of Proposition 1 and
Theorem 2.

LEMMA 1. Let X ∼ N(θ, 1
n
) and τ ≥ 1. Set µ0(τ ) = E0{(X2 − τ

n
)+} where

the expectation is taken under θ = 0. Let ξ̂ = (X2 − τ
n
)+ − µ0(τ ). Then 0 <

µ0(τ ) ≤ 4√
2πnτ 1/2eτ/2 ,

|Eθ ξ̂ − θ2| ≤ min
(

2τ

n
, θ2

)
(35)

and the variance of ξ̂ satisfies

Var(ξ̂ ) ≤ 6θ2

n
+ 4τ 1/2 + 18

n2eτ/2 .(36)

In addition, if Z ∼ N(0,1) and V (τ) = Var[(Z2 − τ)+] then

V (τ) ≤ (16τ−1/2 − 9τ−3/2 + 9τ−5/2)φ(τ 1/2).(37)

PROOF. Equations (35) and (36) are from [10]. For (37), it follows from
the standard alternate series tail bound 	̃(z) ≤ (z−1 − z−3 + 3z−5)φ(z) for z > 0
that

V (τ) ≤ 2
∫ ∞
τ 1/2

(z2 − τ)2φ(z) dz

= (6τ 1/2 − 2τ 3/2)φ(τ 1/2) + (6 − 4τ + 2τ 2)	̃(τ 1/2)

≤ (16τ−1/2 − 9τ−3/2 + 9τ−5/2)φ(τ 1/2). �

Lemmas 2 and 3 given below provide useful properties of term-by-term thresh-
olding estimators and are central to the proof of Theorem 2.
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LEMMA 2. Let Xi = θi + Zi where Zi
i.i.d.∼ N(0, σ 2) for i = 1,2, . . . ,m. Let

ξ = ∑m
i=1 θ2

i . Let λ ≥ 0. Then for any x

P

(
m∑

i=1

(X2
i − λ)+ ≥ x

)

(38)

≤ P

{
[(Z1 + ξ1/2)2 − λ]+ +

m∑
i=2

(Z2
i − λ)+ ≥ x

}
.

That is, for a given value of ξ = ∑m
i=1 θ2

i , the random variables
∑m

i=1(X
2
i − λ)+

are stochastically maximized when θ1 = ξ1/2 and θi = 0 for all i = 2, . . . ,m.

PROOF. Intuitively the result of this lemma seems clear since given the sum∑m
i=1 X2

i the value of
∑m

i=1(X
2
i − λ)+ is a decreasing function of the number of

nonzero terms in this sum. A formal proof can be given as follows. Begin with
the case when m = 2. Let x > 0 and note that

P {(X2
1 − λ)+ + (X2

2 − λ)+ ≥ x}
= E

(
P {(X2

1 − λ)+ + (X2
2 − λ)+ ≥ x|X2

1 + X2
2}

)
.

It thus suffices to show that the conditional probability

g(x; θ1, θ2, ρ) = P {(X2
1 − λ)+ + (X2

2 − λ)+ ≥ x|X2
1 + X2

2 = ρ2}
is maximized when θ1 = ξ1/2 and θ2 = 0 since the distribution of X2

1 +X2
2 depends

on θ1 and θ2 only through θ2
1 + θ2

2 = ξ .
Note that if ρ2 ≤ λ+x, then g(x; θ1, θ2, ρ) = 0 = g(x; ξ1/2,0, ρ). On the other

hand, if ρ2 > 2λ + x, then g(x; θ1, θ2, ρ) = 1 = g(x; ξ1/2,0, ρ). Now consider
the main case λ + x < ρ2 ≤ 2λ + x. In this case

g(x; θ1, θ2, ρ) = P {X2
1 ≥ λ + x|X2

1 + X2
2 = ρ2}

+P {X2
2 ≥ λ + x|X2

1 + X2
2 = ρ2}.

It is more convenient to use polar coordinates by setting X1 = ρ cos(φ), X2 =
ρ sin(φ). The conditional distribution of (X1,X2) given X2

1 + X2
2 is a von Mises

distribution. See, for example, [7, 28, 30].
Since the distribution of X2

i depends only on θ2
i , i = 1,2, without loss of gen-

erality we assume θi ≥ 0. Let β be the angle between the direction of (θ1, θ2)

and the horizontal axis. More precisely, cos(β) = θ1√
θ2

1 +θ2
2

. Then 0 ≤ β ≤ π
2 . The

conditional distribution of φ given ρ is thus given by qβ(φ) = ced cos(φ−β) where
c and d are some positive constants. See [30]. Let

uβ(φ) = qβ(φ) + qβ

(
φ + π

2

)
+ qβ(φ + π) + qβ

(
φ + 3π

2

)

= ced cos(φ−β) + ce−d cos(φ−β) + ced sin(φ−β) + ce−d sin(φ−β).
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Then g(x; θ1, θ2, ρ) = 1 − ∫ φ0−φ0
uβ(φ)dφ, where φ0 = cos−1

√
λ+x
ρ

. Note that 0 <

φ0 ≤ π
4 .

It is easy to check that uβ(φ) has the following properties:

• It is periodic with period π
2 , uβ(φ) = uβ(φ + π

2 ).
• uβ(φ) attains its maximum when φ = β .
• uβ(β + x) = uβ(β − x).
• uβ is decreasing on the interval [β,β + π

4 ).

Noting the properties of uβ , it now follows from the rearrangement result in [20],
page 278, that the above integral is maximized when β = 0, which corresponds
to θ1 = ξ1/2 and θ2 = 0. Hence g(x; θ1, θ2, ρ) ≤ g(x; ξ1/2,0, ρ). This completes
the proof for m = 2. The general case now follows by first conditioning on X2

1 +
X2

2,X3, . . . ,Xm and then by induction. �

LEMMA 3. Let Zi
i.i.d.∼ N(0,1), i = 1, . . . ,mn, with mn ≥ n. Let γ > 0 be

fixed. Let τn,i ≥ 0, µn,i = E[(Z2
i − τn,i)+], σ 2

n,i = Var[(Z2
i − τn,i)+] and Vn =∑mn

i=1 σ 2
n,i . Then there exists some absolute constant c∗ > 0 such that for all suffi-

ciently large n

E

{[
mn∑
i=1

(
(Z2

i − τn,i)+ − µn,i

) − (γ Vn logn)1/2

]
+

}2

(39)
≤ (2γVn logn + c∗V 1/2

n )(γ logn)−1/4n−γ /4.

PROOF. Set An = E{(∑mn

i=1[(Z2
i − τn,i)+ − µn,i] − (γ Vn logn)1/2)+}2. The

Cauchy–Schwarz inequality then yields

An ≤
{
E

(
mn∑
i=1

[(Z2
i − τn,i)+ − µn,i] − (γ Vn logn)1/2

)4}1/2

×
{
P

(
mn∑
i=1

[(Z2
i − τn,i)+ − µn,i] > (γVn logn)1/2

)}1/2

.

It is easy to verify by direct calculations that

sup
τn,i≥0

E|(Z2
i − τn,i)+ − µn,i |3

σ 2
n,i

< ∞(40)

and that the characteristic functions of (Z2
i − τn,i)+ are analytic. It then follows

from [17], page 553, and the standard normal tail bound 	̃(z) ≤ z−1φ(z) for z > 0
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that there exists some n∗ > 0 such that for all n ≥ n∗

P

(
mn∑
i=1

[(Z2
i − τn,i)+ − µn,i] > (γVn logn)1/2

)
≤ (γ logn)−1/2n−γ /2.(41)

Set Bn = E(
∑mn

i=1[(Z2
i − τn,i)+ − µn,i] − (γ Vn logn)1/2)4. It then follows from

Rosenthal’s inequality ([19], page 23) that for some absolute constant c1 > 0

Bn ≤ 4E

(
mn∑
i=1

[(Z2
i − τn,i)+ − µn,i]

)4

+ 4(γ Vn logn)2

≤ c1

{
mn∑
i=1

E[(Z2
i − τn,i)+ − µn,i]4 + V 2

n

}
+ 4(γ Vn logn)2.

It is also easy to verify by direct calculations that

sup
τn,i≥0

E|(Z2
i − τn,i)+ − µn,i |4

σ 2
n,i

< ∞(42)

and hence Bn ≤ (4γ 2 log2 n + c1)V
2
n + c2Vn for some absolute constant c2 >

0. Therefore for some absolute constant c∗ > 0, An ≤ (2γVn logn + c∗V 1/2
n )

× (γ logn)−1/4n−γ /4 for all sufficiently large n. �

4.2. Proof of Proposition 1. The proof of Proposition 1 relies heavily on
Lemma 1. Denote by B(θ) and V (θ) the bias and variance of Q̂k∗ , respec-
tively. Set � = Lp(α,M). Let ξ0, ξmid and ξtail be given as in (15). Set ξmid1 =∑mk∗

i=m0+1 θ2
i , ξmid2 = ∑mJ

i=mk∗+1 θ2
i , ξ̂mid1 = (

∑mk∗
i=m0+1 Y 2

i − λk∗)+ and ξ̂mid2 =∑mJ

i=mk∗+1{(Y 2
i − τk∗,i

n
)+ − µk∗,i}.

We shall consider the bias and variance separately. First consider the variance.
Note that m0 = n

(logn)2 and ξ = ∑∞
i=1 θ2

i ≤ A(�). Hence

Var(ξ̂0) =
m0∑
i=1

Var(Y 2
i ) = 4ξ0

n
+ 2m0

n2 ≤ 4A(�)

n

(
1 + o(1)

)
.(43)

Note that for any random variable X, Var((X)+) ≤ Var(X). See, for example, [10].
Hence Var(ξ̂mid1) ≤ ∑mk∗

i=m0+1 Var(Y 2
i ) = 4ξmid1

n
+ 2(mk∗−m0)

n2 . Lemma 1 yields that

Var(ξ̂mid2) ≤ 6ξmid2
n

+ ∑mJ

i=mk∗+1
4τ

1/2
k∗,i+18

n2e
(τk∗,i )/2 and consequently

Var(ξ̂mid) = Var(ξ̂mid1) + Var(ξ̂mid2)

≤ 6ξmid

n
+ 2mk∗

n2 +
mJ∑

i=mk∗+1

4τ
1/2
k∗,i + 18

n2e(τk∗,i )/2 .
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Note that for mk∗+j−1 + 1 ≤ i ≤ mk∗+j and j ≥ 1, τk∗,i = 2j . Hence

mJ∑
i=mk∗+1

4τ
1/2
k∗,i + 18

n2e(τk∗,i )/2 =
J−k∗∑
j=1

mk∗+j∑
i=mk∗+j−1+1

(
4(2j)1/2 + 18

)
e−jn−2

=
J−k∗∑
j=1

(
4(2j)1/2 + 18

)
e−j 2j−1mk∗n

−2(44)

≤ Cmk∗n
−2

for some constant C > 0, since
∑∞

j=1(4(2j)1/2 + 18)e−j 2j−1 < ∞. Therefore

Var(ξ̂mid) ≤ 6ξmidn
−1 + Cmk∗n

−2.(45)

For the tail component, note that Lemma 1 once again yields

Var(ξ̂tail) ≤ 6ξtail

n
+

∞∑
i=mJ +1

4γ
1/2
i (logn)1/2 + 18

n2+γi/2 .

Using similar derivation as in (44), we have
∑∞

i=mJ +1
4γ

1/2
i (logn)1/2+18

n2+γi /2 ≤ Cn−2 ×
(logn)1/2 for n ≥ 3 and some constant C > 0. Hence

Var(ξ̂tail) = o(n−1).(46)

We now turn to the bias. Note that

(Eθ ξ̂mid − ξmid)
2 ≤ 2(Eθ ξ̂mid1 − ξmid1)

2 + 2(Eθ ξ̂mid2 − ξmid2)
2

and

(Eθ ξ̂mid1 − ξmid1)
2 ≤ Eθ(ξ̂mid1 − ξmid1)

2

= Eθ

{( mk∗∑
i=m0+1

Y 2
i − λk∗

)
+

− ξmid1

}2

≤ Eθ

( mk∗∑
i=m0+1

Y 2
i

−
(

mk∗ − m0

n
+ ξmid1

)
−

(
λk∗ − mk∗ − m0

n

))2

= Var

( mk∗∑
i=m0+1

Y 2
i

)
+

(
λk∗ − mk∗ − m0

n

)2

≤ 4ξmid1

n
+ 5mk∗ logmk∗

n2 .
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On the other hand, Lemma 1 shows that

(Eθ ξ̂mid2 − ξmid2)
2 ≤

{
mJ∑

i=mk∗+1

min
(

2τk∗,i
n

, θ2
i

)}2

,

and consequently the squared bias of the middle component satisfies

(Eθ ξ̂mid − ξmid)
2 ≤ 8ξmid1

n
+ 10mk∗ logmk∗

n2
(47)

+ 2

{
mJ∑

i=mk∗+1

min
(

2τk∗,i
n

, θ2
i

)}2

.

Now consider the tail component. In this case Lemma 1 shows that the absolute
bias of the tail component satisfies

|Eθ ξ̂tail−ξtail| ≤
∞∑

i=mJ +1

min
(

2γi logn

n
, θ2

i

)
+

∞∑
i=mJ +1

4

(2πγi)1/2(logn)1/2n1+γi/2 .

Note that γi = 2(j + 2) for mJ+j + 1 ≤ i ≤ mJ+j+1 and j ≥ 0. Hence
∞∑

i=mJ +1

4

(2πγi)1/2(logn)1/2n1+γi/2

=
∞∑

j=0

mJ+j+1∑
i=mJ+j+1

4

(4π(j + 2))1/2(logn)1/2n3+j

=
∞∑

j=0

2j n2

(logn)2

4

(4π(j + 2))1/2(logn)1/2n3+j

≤ Cn−1(logn)−5/2

since
∑∞

j=0
2j

(j+2)1/2nj ≤ ∑∞
j=0

2j

(j+2)1/23j < ∞ whenever n ≥ 3. Hence the squared

bias of the tail component satisfies

(Eθ ξ̂tail − ξtail)
2 ≤

{ ∞∑
i=mJ +1

min
(

2γi logn

n
, θ2

i

)
+ Cn−1(logn)−5/2

}2

.(48)

We shall consider four separate cases.
Case 1. p ≥ 2 and α > 1

4 . In this case k∗ = 1. Note that

Var
(
Q̂k∗

) = Var(ξ̂0) + Var(ξ̂mid) + Var(ξ̂tail).

Note also that there exists a constant C > 0 such that for any m ≥ 1

sup
θ∈�

∞∑
i=m

θ2
i ≤ Cm−2α.(49)
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It then follows from (45) that supθ∈� Var(ξ̂mid) = o(n−1). This, together with (43)
and (46), shows that supθ∈� V (θ) = 4A(�)n−1(1 + o(1)).

Now consider the bias. Note that ξ̂0 is an unbiased estimator of ξ0. Hence

B2(θ) ≤ 2(Eθ ξ̂mid − ξmid)
2 + 2(Eθ ξ̂tail − ξtail)

2.

Note that in this case n
(logn)2 < mk∗ = 2m0 ≤ 2n

(logn)2 and α > 1
4 . Then (49) together

with (47) and (48) yield that

sup
θ∈�

(Eθ ξ̂mid − ξmid)
2 ≤ sup

θ∈�

{
8ξmid1

n
+ 10mk∗ logmk∗

n2 + 2

(
mJ∑

i=mk∗+1

θ2
i

)2}

= o(n−1)

and

sup
θ∈�

(Eθ ξ̂tail − ξtail)
2 ≤ sup

θ∈�

{ ∞∑
i=mJ +1

θ2
i + Cn−1(logn)−5/2

}2

= o(n−1)

and consequently supθ∈� B2(θ) = o(n−1).
Case 2. p ≥ 2 and α ≤ 1

4 . In this case mk∗ satisfies

1
2n2/(1+4α)(logn)−1/(1+4α) < mk∗ ≤ n2/(1+4α)(logn)−1/(1+4α).

It then follows from (45) and (49) that

sup
θ∈�

Var(ξ̂mid) ≤ Cn−8α/(1+4α)(logn)−1/(1+4α).

This together with (43) and (46) yield that supθ∈� V (θ) ≤ Cn−8α/(1+4α) ×
(logn)−1/(1+4α) for α < 1

4 and supθ∈� V (θ) = 4A(�)n−1(1 + o(1)) for α = 1
4 .

For the bias it follows from (47), (48) and (49) that

sup
θ∈�

(Eθ ξ̂mid − ξmid)
2 ≤ sup

θ∈�

{
8ξmid1

n
+ 10mk∗ logmk∗

n2 + 2

(
mJ∑

i=mk∗+1

θ2
i

)2}

≤ C

(
logn

n2

)4α/(1+4α)

,

sup
θ∈�

(Eθ ξ̂tail − ξtail)
2 ≤ sup

θ∈�

{ ∞∑
i=mJ +1

θ2
i + Cn−1(logn)−5/2

}2

= o
(
n−8α/(1+4α)),

and hence supθ∈� B2(θ) ≤ C(
logn

n2 )4α/(1+4α).

Case 3. p < 2 and α > 1
2p

. This case is similar to Case 1. Note that in this case
k∗ = 1. Note also that for p < 2 the Lp ball constraint (2) yields that for any m ≥ 1

∞∑
i=m

θ2
i ≤ M2m−2s .(50)



2316 T. T. CAI AND M. G. LOW

It then follows from (45) that supθ∈� Var(ξ̂mid) = o(n−1) and thus

sup
θ∈�

V (θ) = 4A(�)n−1(
1 + o(1)

)
.

We now turn to the bias. Note that it is straightforward to verify that for all θ ∈
Lp(α,M) and all j ≥ 1

mk∗+j∑
i=mk∗+j−1+1

|θi |p ≤ Mp2ps2−jpsm
−ps
k∗ .(51)

Note also that for mk∗+j−1 + 1 ≤ i ≤ mk∗+j , τk∗,i = 2j . Hence

mJ∑
i=mk∗+1

min
(

2τk∗,i
n

, θ2
i

)
=

J−k∗∑
j=1

mk∗+j∑
i=mk∗+j−1+1

min
(

4j

n
, θ2

i

)

=
J−k∗∑
j=1

4j

n

mk∗+j∑
i=mk∗+j−1+1

min
(

1, θ2
i · n

4j

)

≤
J−k∗∑
j=1

4j

n

mk∗+j∑
i=mk∗+j−1+1

min
(

1,

{
θ2
i · n

4j

}p/2)
,

where the last step follows from the facts min(1, θ2
i · n

4j
) ≤ 1 and p

2 ≤ 1. Hence,

mJ∑
i=mk∗+1

min
(

2τk∗,i
n

, θ2
i

)
≤

J−k∗∑
j=1

(
4j

n

)1−p/2 mk∗+j∑
i=mk∗+j−1+1

|θi |p

≤
{
Mp2ps+2−p

J−k∗∑
j=1

j1−p/22−jps

}
· m−ps

k∗ np/2−1(52)

≤ Cm
−ps
k∗ n−(1−p/2)

for some constant C > 0, since
∑∞

j=1 j1−p/22−jps < ∞. Similarly,

∞∑
i=mJ +1

min
(

2γi logn

n
, θ2

i

)
≤ Cm

−ps
J n−(1−p/2)(logn)1−p/2.(53)

Note that mk∗ = 2m0 ≥ n(logn)−2 and mJ ≥ 1
4n2(logn)−2. Note also that

in this case αp > 1
2 . Hence m

−ps
k∗ n−(1−p/2) = o(n−1/2) and m

−ps
J n−(1−p/2) ×

(logn)1−p/2 = o(n−1/2). Bounds in (52) and (53) together with (47) and (48) yield

sup
θ∈�

(Eθ ξ̂mid − ξmid)
2 = o(n−1) and sup

θ∈�

(Eθ ξ̂tail − ξtail)
2 = o(n−1)

and consequently supθ∈� B2(θ) = o(n−1).
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Case 4. p < 2 and α ≤ 1
2p

. Note that in this case

1
2np/(1+2ps)(logn)−1/(1+2ps) < mk∗ ≤ np/(1+2ps)(logn)−1/(1+2ps).

It follows from (45) and (49) that supθ∈� Var(ξ̂mid) ≤ Cn−(2−p/(1+2ps)) ×
(logn)−1/(1+2ps). This together with (43) and (46) yield that supθ∈� V (θ) ≤
Cn−(2−p/(1+2ps))(logn)−1/(1+2ps) for α < 1

2p
and supθ∈� V (θ) = 4A(�)n−1(1+

o(1)) for α = 1
2p

.
On the other hand, (52) and (53) yield

mJ∑
i=mk∗+1

min
(

2τk∗,i
n

, θ2
i

)
≤ Cn−1/2(2−p/(1+2ps))(logn)ps/(1+2ps),(54)

∞∑
i=mJ +1

min
(

2γi logn

n
, θ2

i

)
≤ Cn−p(α+s)(logn)p(α+s)

(55)
= o

(
n−1/2(2−p/(1+2ps))).

It now follows from (47) and (48) that

sup
θ∈�

(Eθ ξ̂mid − ξmid)
2 ≤ Cn−(2−p/(1+2ps)(logn)2ps/(1+2ps),

sup
θ∈�

(Eθ ξ̂tail − ξtail)
2 = o

(
n−(2−p/(1+2ps))),

and hence supθ∈� B2(θ) ≤ Cn−(2−p/(1+2ps))(logn)2ps/(1+2ps).

REMARK. An inspection of the proof of Proposition 1 yields the following
maximum mean squared error results for � = Lp(α,M) and � = Bα

p,q(M) which
are useful for the proof of Theorem 2:

sup
θ∈�

Eθ(ξ̂0 − ξ0)
2 = 4A(�)n−1(

1 + o(1)
)
,(56)

sup
θ∈�

Eθ

(
ξ̂k∗ − ξmid

)2 =



o(n−1), if αp∗ > 1
2 ,

Cn−(2−p∗/(1+2p∗s∗))(logn)2p∗s∗/(1+2p∗s∗),
if αp∗ ≤ 1

2 ,

(57)

sup
θ∈�

Eθ(ξ̂tail − ξtail)
2 =

{
o(n−1), if αp∗ > 1

2 ,

o
(
n−(2−p∗/(1+2p∗s∗))), if αp∗ ≤ 1

2 .
(58)

It should be stressed that in (57) ξ̂k∗ is the estimator defined by (24) which corre-
sponds to a fixed Besov or Lp ball.



2318 T. T. CAI AND M. G. LOW

4.3. Proof of Theorem 2. Let the estimator Q̂ be given as in (31) and set � =
Lp(α,M). Note that Q(θ) = ξ0 + ξmid + ξtail. Note also that ξ̂0 is an unbiased
estimate of ξ0 and is independent of ξ̂mid and ξ̂tail. Let the estimator Q̂ be written
as in (33). Then

Eθ

(
Q̂ − Q(θ)

)2 = Eθ(ξ̂0 − ξ0 + ξ̂mid − ξmid + ξ̂tail − ξtail)
2

= Eθ(ξ̂0 − ξ0)
2 + Eθ(ξ̂mid − ξmid)

2 + Eθ(ξ̂tail − ξtail)
2

(59)
+ 2Eθ(ξ̂mid − ξmid)Eθ (ξ̂tail − ξtail)

≤ Eθ(ξ̂0 − ξ0)
2 + 2Eθ(ξ̂mid − ξmid)

2 + 2Eθ(ξ̂tail − ξtail)
2.

The difficulty lies in the analysis of Eθ(ξ̂mid − ξmid)
2 where ξ̂mid is given in (32),

since the other terms Eθ(ξ̂0 − ξ0)
2 and Eθ(ξtail − ξtail)

2 satisfy (56) and (58). Set

ωk = 6
√

mk logn
n

. A simple but important observation is that

(ξ̂mid − ξmid)
2 =

(
max

1≤k≤J
{ξ̂k − ωk} − ξmid

)2

≤ min
1≤k≤J

{(ξ̂k − ωk − ξmid)
2} +

J∑
k=1

[(ξ̂k − ωk − ξmid)+]2.

Hence

Eθ(ξ̂mid − ξmid)
2 ≤ min

1≤k≤J
{Eθ(ξ̂k − ωk − ξmid)

2}

+
J∑

k=1

Eθ [(ξ̂k − ωk − ξmid)+]2

(60)
≤ Eθ

(
ξ̂k∗ − ωk∗ − ξmid

)2

+
J∑

k=1

Eθ [(ξ̂k − ωk − ξmid)+]2

where k∗ is defined as in (23). The major difficulty in the analysis which follows
is to show that the second term on the right-hand side of (60) is always negligible
compared to the minimax risk. The first term is the dominant term and its analysis
is made straightforward by the bounds given in (57).

For analysis of the second term on the right-hand side of (60), first consider
the term Eθ [(ξ̂k − ωk − ξmid)+]2. Let ξk,1 = ∑mk

i=m0+1 θ2
i , ξk,2 = ∑mJ

i=mk+1 θ2
i ,

ξ̂k,1 = (
∑mk

i=m0+1 Y 2
i − λk)+ and ξ̂k,2 = ∑mJ

i=mk+1[(Y 2
i − τk,i

n
)+ − µk,i]. Note that

it follows from the elementary inequality (x +y)+ ≤ (x)+ + (y)+ for x, y ∈ R that

Eθ [(ξ̂k − ωk − ξmid)+]2 ≤ 2Eθ [(ξ̂k,1 − ξk,1)+]2

(61)
+ 2Eθ [(ξ̂k,2 − ωk − ξk,2)+]2.
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For the analysis of the first of these terms note that

[(ξ̂k,1 − ξk,1)+]2 =
[(

mk∑
i=m0+1

Y 2
i − λk − ξk,1

)
+

]2

=
[(

1

n

mk∑
i=m0+1

z2
i − λk + 2n−1/2

mk∑
i=m0+1

θizi

)
+

]2

.

It then follows from the inequality

[(x + y)+]2 ≤ 2[(x)+]2 + 2y2(62)

for any real numbers x and y that

Eθ [(ξ̂k,1 − ξk,1)+]2 ≤ 2E

[(
1

n

mk∑
i=m0+1

z2
i − λk

)
+

]2

+ 8n−1E

(
mk∑

i=m0+1

θizi

)2

≤ 2

n2 E

[(
mk∑

i=m0+1

z2
i − nλk

)
+

]2

+ 8ξk,1n
−1.

Set m = mk − m0. It then follows from Theorem 2.1 of [21] that

E

[(
mk∑

i=m0+1

z2
i − nλk

)
+

]2

≤ 8
(

2
√

m logm + m

2
√

m logm + 2

)2

P
(
Xm ≥ m + 2

√
m logm

)
,

where Xm is a central chi-square random variable with m degrees of freedom. It
then follows from Lemma 2 of [8] on the tail probability bounds of the chi-square
distribution and by noting log(1 + x) ≤ x − 1

2x2 + 1
3x3 for all x ≥ 0 that

P
(
Xm ≥ m + 2

√
m logm

) ≤ 1

2
exp

(
−m

2

[
2

√
logm

m
− log

(
1 + 2

√
logm

m

)])

≤ 1

2
exp

(
− logm + 4(logm)3/2

3m1/2

)
≤ 3

m
,

where the last inequality follows from the fact that (logm)3/2

m1/2 attains its maximum

at m = e3 and hence 1
2 exp(

4(logm)3/2

3m1/2 ) ≤ 3. Therefore

E

[(
mk∑

i=m0+1

z2
i − nλk

)
+

]2

≤ 8
(

2
√

m logm + m

2
√

m logm + 2

)2

· 3

m
≤ 24

logm

and hence

Eθ [(ξ̂k,1 − ξk,1)+]2 ≤ 48

n2 log(mk − m0)
+ 8ξk,1

n
.(63)

We now turn to Eθ [(ξ̂k,2 − ωk − ξk,2)+]2 and show that the follow bound holds.
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LEMMA 4. For some constant C > 0 and for all sufficiently large n

Eθ [(ξ̂k,2 − ωk − ξk,2)+]2 ≤ Cn−1(logn)−5/4 + 4ξk,2n
−1 log2 n.(64)

PROOF. Set Dk,2 = Eθ [(ξ̂k,2 − ωk − ξk,2)+]2. Note that

ξ̂k,2 =
mJ∑

i=mk+1

[(
Y 2

i − τk,i

n

)
+

− µk,i

]
=

J−k∑
j=1

mj+k∑
i=mj+k−1+1

[(
Y 2

i − 2j

n

)
+

− µk,i

]
.

Set ηj = ∑mj+k

i=mj+k−1+1 θ2
i for 1 ≤ j ≤ J − k. It follows from Lemma 2 that for

a fixed value of ηj on a block mj+k−1 +1 ≤ i ≤ mj+k ,
∑mj+k

i=mj+k−1+1(Y
2
i − 2j

n
)+ is

stochastically maximized when θmj+k−1+1 = η
1/2
j and the remaining θi = 0. Hence

Dk,2 ≤ E

{(
J−k∑
j=1

[ (
ηj + 2η

1/2
j n−1/2zmj+k−1+1 + 1

n
z2
mj+k−1+1 − 2j

n

)
+

− µk,mj+k−1+1

]

+
J−k∑
j=1

mj+k∑
i=mj+k−1+2

[(
1

n
z2
i − 2j

n

)
+

− µk,i

]
− ωk − ξk,2

)
+

}2

.

Noting
∑J−k

j=1 ηj = ξk,2, it then follows from the fact that (x + y)+ ≤ (x)+ + (y)+
and (62) that

Dk,2 ≤ E

{(
J−k∑
j=1

2η
1/2
j n−1/2(

zmj+k−1+1
)
+

+
J−k∑
j=1

mj+k∑
i=mj+k−1+1

[(
1

n
z2
i − 2j

n

)
+

− µk,i

]
− ωk

)
+

}2

(65)

≤ 2n−2E

{(
J−k∑
j=1

mj+k∑
i=mj+k−1+1

[(z2
i − 2j)+ − nµk,i] − nωk

)
+

}2

+ 2n−1E

{
J−k∑
j=1

2η
1/2
j

(
zmj+k−1+1

)
+

}2

.

It is easy to see that the second term

2n−1E

{
J−k∑
j=1

2η
1/2
j

(
zmj+k−1+1

)
+

}2

≤ 2n−1J

J−k∑
j=1

4ηjE
{(

zmj+k−1+1
)
+

}2

(66)
= 4Jξk,2n

−1.
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We now use Lemmas 1 and 3 to bound E{(∑J−k
j=1

∑mj+k

i=mj+k−1+1[(z2
i − 2j)+ −

nµk,i] − nωk)+}2. First note that equation (37) in Lemma 1 yields that

Var
(
(z2

i − 2j)+
) ≤ [16(2j)−1/2 − 9(2j)−3/2 + 9(2j)−5/2] · (2π)−1/2e−j

and consequently

Vn ≡
J−k∑
j=1

mj+k∑
i=mj+k−1+1

(
Var(z2

i − 2j)+
)

≤ mk

J−k∑
j=1

[16(2j)−1/2 − 9(2j)−3/2 + 9(2j)−5/2] · (2π)−1/2
(

e

2

)−j

≤ 9mk,

where the last step follows from the fact that

∞∑
j=1

[16(2j)−1/2 − 9(2j)−3/2 + 9(2j)−5/2] · (2π)−1/2
(

e

2

)−j

< 9,

which can be verified by direct calculations. It then follows from Lemma 3
with γ = 4 that for all sufficiently large n

E

{(
J−k∑
j=1

mj+k∑
i=mj+k−1+1

[(z2
i − 2j)+ − nµk,i] − nωk

)
+

}2

(67)
≤ Cmk(logn)3/4n−1,

where C > 0 is a constant. Noting mk ≤ mJ ≤ n2

(logn)2 and J ≤ log2 n, (65),
(66) and (67) together yield that

Eθ [(ξ̂k,2 − ωk − ξk,2)+]2 ≤ Cmk(logn)3/4n−3 + 4Jξk,2n
−1

≤ Cn−1(logn)−5/4 + 4ξk,2n
−1 log2 n

and Lemma 4 is thus proved. �

We now return to the proof of Theorem 2. Lemma 4 together with (61) and (63)
yield that for all sufficiently large n

J∑
k=1

Eθ [(ξ̂k − ωk − ξmid)+]2 ≤ CJn−2(logn)−1 + CJn−1(logn)−5/4

+ 4Jξmidn
−1 log2 n

≤ C{n−2 + n−1(logn)−1/4 + ξmidn
−1(logn)2}.
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It then follows from (49) for p ≥ 2 and (50) for p < 2 that

sup
θ∈�

J∑
k=1

Eθ [(ξ̂k − ωk − ξmid)+]2 = o(n−1)(68)

and is thus negligible relative to the minimax risk.
The rest of the proof is now straightforward. It follows from (59) and (60) that

Eθ

(
Q̂ − Q(θ)

)2 ≤ Eθ(ξ̂0 − ξ0)
2 + 2Eθ

(
ξ̂k∗ − ωk∗ − ξmid

)2

+ 2
J∑

k=1

Eθ [(ξ̂k − ωk − ξmid)+]2 + 2Eθ(ξ̂tail − ξtail)
2

(69)
≤ {Eθ(ξ̂0 − ξ0)

2 + 4Eθ(ξ̂k∗ − ξmid)
2 + 2Eθ(ξ̂tail − ξtail)

2}

+ 4ω2
k∗ + 2

J∑
k=1

Eθ [(ξ̂k − ωk − ξmid)+]2.

The remainder of the proof can be separated into two cases, αp∗ ≤ 1
2 and

αp∗ > 1
2 . First consider the case when αp∗ ≤ 1

2 . In this case it follows from the
definition of mk∗ given in (23) that

ω2
k∗ = 36mk∗ logn

n2 ≤ 72n−(2−p∗/(1+2p∗s∗))(logn)2p∗s∗/(1+2p∗s∗).(70)

For this case the theorem now immediately follows from (69), (68), (70) and
(56)–(58).

For the case αp∗ > 1
2 first note that k∗ = 1 and ωk∗ = 2m0 = o(n−1). The the-

orem then immediately follows in this case from this observation, (69), (68) and
(56)–(58).

4.4. Proof of Theorem 1. We divide the proof into two cases, p ≥ 2 and 0 <

p < 2, which correspond to the cases p∗ = 2 and p∗ < 2, respectively. The case
where p ≥ 2 is standard but we include a brief outline for the sake of completeness.
In this case we apply Theorem 2.1 of [14] combined with Theorem 4 of [11]. Let

ω(δ) = sup

{
Q(θ) :

∞∑
i=1

θ2
i ≤ δ2, θ ∈ Lp(α,M)

}

be the modulus of continuity introduced in [13]. For small δ let N ∼ δ−2/(4α+1).
Let θ = (θ1, θ2, . . .), where θi = cδ(2α+1)/(4α+1) for i = 1, . . . , n and otherwise
θi = 0. It is easy to check that θ ∈ Lp(α,M) for sufficiently small c > 0. Simple
calculations then show that ω(δ) ≥ Dδ4α/(4α+1) for some D > 0.

It then follows from Theorem 2.1 of [14] and Theorem 4 of [11] that if Q̂

satisfies (10) then

sup
θ∈�

(
EθQ̂ − Q(θ)

)2 ≥ ω2
(
d

√
logn

n

)
− 2

√
Cn−γ /2ω

(
d

√
logn

n

)
nd2

.(71)
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Equation (11) follows by taking a sufficiently small d .
We now turn to the case where p < 2 and α < 1

2p
, in which case p∗ = p and

s∗ = s. The proof follows a similar argument to one given in [10] for minimax
lower bounds. The main idea is to place a prior on the union of the zero vector and
the vertices of a suitable collection of hypercubes. The constrained risk inequality
given in Theorem 4 of [11] can then be used to yield a lower bound for the maxi-
mum mean squared error over the vertices of the hypercubes given an upper bound
on the mean squared error at the origin.

More precisely, let �k,m be the union of the zero vector θ0 = (0,0, . . .) and
the collection of vectors which have exactly k nonzero coordinates equal to 1√

n

in the first m coordinates and are otherwise equal to zero. It is straightforward to
check that �(k,m) ⊂ Lp(α,M) when m = np/(1+2ps)(logn)−1/(1+2ps) and k =√

bm logm for sufficiently small constant b > 0.
As in [10] let I(k,m) be the class of all subsets of {1, . . . ,m} of k elements

and for I ∈ I(k,m) let θI ∈ �k,m be the vector where the j th coordinate is zero if
j /∈ I and is equal to 1√

n
for j ∈ I .

Let ψµ be the density of a normal distribution with mean µ and variance 1
n

.
And for I ∈ I(k,m) let gI (y1, . . . , ym) = ∏m

j=1 ψµj
(yj ), where µj = 1√

n
1(j ∈ I ).

Finally let g = 1
(m

k)

∑
I∈I(k,m) gI and f be the density of m independent normal

random variables each with mean 0 and variance 1
n

. Note that a similar mixture
prior was used in [2] to give lower bounds in a nonparametric testing problem.

The application of the constrained risk inequality of [11] requires an upper
bound on the chi-squared distance between f and g. Cai and Low [10] shows that∫ g2

f
= EeJ where J has the hypergeometric distribution P(J = j) = (k

j)(
m−k
k−j )

(m
k )

.

Now note from [16], page 59, that

P(J = j) ≤
(

k

j

)(
k

m

)j(
1 − k

m

)k−j(
1 − k

m

)−k

.

For k = √
bm logm, (1 − k

m
)−k ≤ ek2/m ≤ mb and it follows that

∫
g2

f
≤ m

(
1 + (e − 1)

k

m

)k

≤ me(e−1)k2/m ≤ mbe.(72)

The constrained risk inequality in Theorem 4 of [11] then yields that if for any

ε > 0, Ef (Q̂ − Q(θ0))
2 ≤ m1−ε

n2 , then for b ≤ ε
e(

EgQ̂ − k
ρ2

n

)2

≥ k2

n2 − 2mbe/2 k

n

m(1−ε)/2

n
= k2

n2

(
1 + o(1)

)
(73)

= bm logm

n2

(
1 + o(1)

)
.
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Hence for some constant C1 > 0

inf
Q̂

sup
θ∈Lp(α,M)

(
EθQ̂ − Q(θ)

)2

≥ inf
Q̂

sup
θ∈�k,m

(
EθQ̂ − Q(θ)

)2 ≥ bm logm

n2

≥ C1n
p/(1+2ps)−2(logn)2ps/(1+2ps)(1 + o(1)

)
.

REFERENCES

[1] BARAUD, Y. (2000). Model selection for regression on a fixed design. Probab. Theory Related
Fields 117 467–493. MR1777129

[2] BARAUD, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8
577–606. MR1935648

[3] BARRON, A. R., BIRGÉ, L. and MASSART, P. (1999). Risk bound for model selection via
penalization. Probab. Theory Related Fields 113 301–413. MR1679028

[4] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1993). Efficient and
Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore.
MR1245941

[5] BICKEL, P. J. and RITOV, Y. (1988). Estimating integrated squared density derivatives: Sharp
best order of convergence estimates. Sankhyā Ser. A 50 381–393. MR1065550
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