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ASYMPTOTIC NORMALITY OF EXTREME
VALUE ESTIMATORS ON C[0,1]

BY JOHN H. J. EINMAHL AND TAO LIN

Tilburg University and Xiamen University

Consider n i.i.d. random elements on C[0,1]. We show that, under an
appropriate strengthening of the domain of attraction condition, natural esti-
mators of the extreme-value index, which is now a continuous function, and
the normalizing functions have a Gaussian process as limiting distribution.
A key tool is the weak convergence of a weighted tail empirical process,
which makes it possible to obtain the results uniformly on [0,1]. Detailed
examples are also presented.

1. Introduction. Recently considerable progress has been made in the inter-
esting field of infinite-dimensional extreme value theory, where the data are (con-
tinuous) functions. After the characterization of max-stable stochastic processes in
C[0,1] by Giné, Hahn and Vatan [11], de Haan and Lin [4, 5] investigated the do-
main of attraction conditions and established weak consistency of estimators of the
extreme value index, the centering and standardizing sequences, and the exponent
measure.

Statistics of infinite-dimensional extremes will find various applications, for ex-
ample, to coast protection (flooding) and risk assessment in finance. For an appli-
cation to coast protection, consider the northern part of The Netherlands, which
lies for a substantial part below sea level. Since there is no natural coast defense
there, the area is protected by a long dike against inundation. Flooding of the dike
at any place could lead to flooding of the whole area, so the approach via function-
valued data is the appropriate one here. In finance, the intra-day return of a stock
is defined as the ratio of the price of a stock at a certain time t during the day to
the price at market opening. This process can be well described, when we mea-
sure time in days, with a continuous function on [0,1]. For various risk analysis
problems (e.g., problems dealing with options), intra-day returns of the stock need
to be taken into account, instead of just the daily returns (i.e., the function values
at 1). Sampling on n days puts us in a position to apply statistics of extremes to
these problems.

Also, from a mathematical point of view, the research is challenging, because of
the new features of C[0,1]-valued random elements, when compared to random

Received February 2002; revised January 2005.
AMS 2000 subject classifications. Primary 62G32, 62G30, 62G05; secondary 60G70, 60F17.
Key words and phrases. Estimation, extreme value index, infinite-dimensional extremes, weak

convergence on C[0,1].
469

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053605000000831
http://www.imstat.org
http://www.ams.org/msc/


470 J. H. J. EINMAHL AND T. LIN

variables or vectors, in particular, the uniformity in t ∈ [0,1] of the results asks for
novel approaches.

It is the purpose of this paper to establish asymptotic normality of estimators
of the extreme value index, which is now an element of C[0,1], and of the nor-
malizing sequences. In fact, we will show the asymptotic normality on C[0,1] of
the estimators under a suitable second-order condition and present all the limit-
ing processes involved in terms of one underlying Wiener process, which means
that we have the simultaneous weak convergence of all the estimators. The results
are, on the one hand, interesting in themselves, because the extreme value index
measures the tail heaviness of the distribution of the data, and, on the other hand,
the results are a major step toward the estimation of probabilities of rare events in
C[0,1]; see [7] for a study of this problem in the finite-dimensional case.

In order to be more explicit let us now specify the setup and introduce nota-
tion. Let ξ1, ξ2, . . . be i.i.d. random elements on C[0,1]. Define Ft : R → [0,1] by
Ft(x) = P {ξi(t) ≤ x}. Throughout assume that

P

{
inf

t∈[0,1] ξi(t) > 0
}

= 1(1)

and that

Ft is a continuous and strictly increasing function on its support.(2)

Define

Ut(s) = F←
t (1 − 1/s), s > 0,0 ≤ t ≤ 1.

We assume that the domain of attraction condition holds, that is,{(
max

i=1,...,n
ξi(t) − bt (n)

)/
at (n), t ∈ [0,1]

}
converges in distribution(3)

on C[0,1] to a stochastic process, η, say, with nondegenerate marginals, where
at (n) > 0 and bt (n) are continuous (in t) normalizing functions, chosen in such a
way that, for each t ,

P {η(t) ≤ x} = exp
(−(

1 + γ (t)x
)−1/γ (t));

see [4]. We can and will take bt ≡ Ut . Then γ : [0,1] → R, the extreme value index
(function), is continuous. Define

ζi(t) = 1

1 − Ft(ξi(t))
,

η̄(t) = (
1 + γ (t)η(t)

)1/γ (t)
,

and νs(E) = sP {ζi ∈ sE}, with sE = {sh :h ∈ E}. Clearly the ζi(t) are standard
Pareto random variables, that is, P {ζi(t) ≤ x} = 1 − 1/x, x ≥ 1. It follows from
Theorem 2.8 in [4] that there exists a measure ν on C[0,1] that is homogeneous
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[i.e., for a Borel set A and r > 0, ν(rA) = 1
r
ν(A)], such that for any positive

g ∈ C[0,1] and compact set K ⊂ [0,1],
P {η̄(t) < g(t), for all t ∈ K}

= exp
(−ν

({f ∈ C[0,1], f (t) ≥ g(t), for some t ∈ K}))
and

νs → ν as s → ∞,(4)

weakly on Sc := {f ∈ C[0,1] : supt∈[0,1] f (t) ≥ c} for any c > 0, and

Ut(nx) − Ut(n)

at (n)
→ xγ (t) − 1

γ (t)
as n → ∞,

uniformly in t ∈ [0,1] and locally uniformly in x ∈ (0,∞).
Throughout we assume that k = k(n) ∈ {1, . . . , n − 1} is a sequence of positive

integers satisfying

k → ∞ and
k

n
→ 0 as n → ∞.(5)

Fix t ∈ [0,1]. Let ξ1,n(t) ≤ ξ2,n(t) ≤ · · · ≤ ξn,n(t) be the order statistics of
ξi(t), i = 1,2, . . . , n. We define the following statistical functions:

M(r)
n (t) = 1

k

k−1∑
i=0

(
log ξn−i,n(t) − log ξn−k,n(t)

)r
, r = 1,2.(6)

Set γ +(t) = γ (t) ∨ 0, γ −(t) = γ (t) ∧ 0 and observe that γ (t) = γ +(t) + γ −(t).
Now we define estimators for γ +(t), γ −(t), γ (t), at (

n
k
) and bt (

n
k
) as in [9]:

γ̂ +
n (t) = M(1)

n (t) (Hill estimator);(7)

γ̂ −
n (t) = 1 − 1

2

(
1 − (M

(1)
n (t))2

M
(2)
n (t)

)−1

;(8)

γ̂n(t) = γ̂ +
n (t) + γ̂ −

n (t) (moment estimator);(9)

Ût

(
n

k

)
= ξn−k,n(t) (location estimator);(10)

ât

(
n

k

)
= ξn−k,n(t)γ̂

+
n (t)

(
1 − γ̂ −

n (t)
)

(scale estimator).(11)

For fixed t these are well-known one-dimensional estimators. Observe that γ̂ +
n (t)

and γ̂ −
n (t) are not equal to (γ̂n)

+(t) and (γ̂n)
−(t), respectively.

The following weak consistency results have been shown in [5].
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THEOREM 1.1. If (1), (2), (3) and (5) hold, then

sup
0≤t≤1

|γ̂ +
n (t) − γ +(t)| P→ 0,(12)

sup
0≤t≤1

|γ̂n(t) − γ (t)| P→ 0,(13)

sup
0≤t≤1

∣∣∣∣ Ût (n/k) − Ut(n/k)

at (n/k)

∣∣∣∣ P→ 0,(14)

sup
0≤t≤1

∣∣∣∣ ât (n/k)

at (n/k)
− 1

∣∣∣∣ P→ 0.(15)

The main results of the paper and examples are presented in Section 2; the
proofs are deferred to Section 3.

2. Main results. In this section we present our main result, dealing with the
asymptotic normality of the estimators of which the weak consistency is shown
in Theorem 1.1. In order to establish our main result, we first present a result
that is a key tool for its proof. This result deals with the weak convergence of
a tail empirical process based on the ζi, i = 1, . . . , n. Write Ct,x = {h ∈ C[0,1] :
h(t) ≥ x} and define

Sn,t (x) = 1

n

n∑
i=1

1{ζi∈Ct,x} = 1

n

n∑
i=1

1{ζi (t)≥x}.

Denote, with k as in (5), the corresponding tail empirical process with

wn(t, x) = √
k

(
n

k
Sn,t

(
x

n

k

)
− 1

x

)
.

Let c > 0 and define C = {Ct,x : 0 ≤ t ≤ 1, x ≥ c}. Let W be a zero-mean Gaussian
process defined on C with EW(Ct,x)W(Cs,y) = ν(Ct,x ∩ Cs,y). Clearly, for fixed
t ∈ [0,1], {W(Ct,1/y), y ≤ 1

c
} is a standard Wiener process, since ν(Ct,1/y1 ∩

Ct,1/y2) = ν(Ct,1/(y1∧y2)) = y1 ∧ y2. For β > 0, set, for any (t, x), (s, y) ∈ [0,1]×
[c,∞),

d
(
(t, x), (s, y)

)
=

√
E

(
xβW(Ct,x) − yβW(Cs,y)

)2

=
√

(xβ − yβ)2ν(Ct,x ∩ Cs,y) + x2βν(Ct,x \ Cs,y) + y2βν(Cs,y \ Ct,x).

Observe that (4) implies that n
k
P {ζi(t) ≥ n

k
x, ζi(s) ≥ n

k
y} = νn/k(Ct,x ∩ Cs,y) →

ν(Ct,x ∩ Cs,y).
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Define, for K > 0,

Es,δ =
{
h ∈ C[0,1] :h ≥ 0,

|h(t) − h(s)|
h(s)

≤ K

(
log

1

δ

)−3

for all t ∈ [s, s + δ]
}

and assume that, for 0 ≤ β < 1
2 and all c1 > 0, for some K > 0 and for large

enough v there exists a δ0 > 0 such that for all δ ∈ (0, δ0],

sup
s∈[0,1]

P

{
ζ1 /∈ Es,δ

∣∣∣ sup
t∈[s,s+δ]

ζ1(t) ≥ v

}
≤ c1

(
log

1

δ

)−(2+2β)/(1−2β)

.(16)

For convenient presentation and convenient application in the proofs of the
main result, this result is presented in an approximation setting (with the random
elements involved defined on one probability space), via the Skorohod–Dudley–
Wichura construction. So the random elements wn and W in this theorem are only
equal in distribution to the original ones, but we do not add the usual tildes to the
notation.

THEOREM 2.1. Let 0 ≤ β < 1
2 . Suppose the conditions (2), (3), (5) and (16)

hold. Then for the new wn and W mentioned above, we have, for any c > 0,

sup
0≤t≤1,x≥c

xβ |wn(t, x) − W(Ct,x)| P→ 0 as n → ∞.(17)

Define Z(t, x) = xβW(Ct,x). Then the process Z is bounded and uniformly
d-continuous on [0,1] × [c,∞).

Note that it is well known that, for one fixed t , the restriction β < 1
2 is also

necessary for weak convergence of the (one-dimensional) tail empirical process.
So our condition on β in the present infinite-dimensional setting is the same as in
dimension one.

Condition (16) is needed to prove tightness. It prevents the continuous random
function from having extremely large oscillations. From the examples below we
see that it is a rather weak condition, since they amply satisfy this condition.

It is important to transform the ξi to processes with standard marginals, as we
did by transforming to the ζi . Although the choice of standard Pareto marginals is
convenient, it is also reasonable to transform to other marginal distributions, such
as the uniform-(0,1) distribution. Clearly, uniform-(0,1) marginals are obtained
by taking 1/ζi . It is interesting to note and readily checked that the set Es,δ used
in condition (16) is invariant under this transformation.

It can be useful to replace |h(t) − h(s)|/h(s) by | logh(t) − logh(s)| in the
definition of Es,δ used in condition (16). The thus obtained version of condition
(16) is equivalent to the stated one (K can be different), but it might be easier to
check for certain processes.

We also need the following corollary, which deals with certain quantiles and can
be obtained by the usual “inversion” from the tail empirical process theorem.
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COROLLARY 2.2. Let α ∈ C[0,1]. We have, under the conditions of Theo-
rem 2.1,

sup
0≤t≤1

∣∣∣∣√k

((
ζn−k,n(t)

k

n

)α(t)

− 1
)

− α(t)W(Ct,1)

∣∣∣∣ P→ 0 as n → ∞.(18)

Finally, we present the main result, which gives the asymptotic distributions of
the estimators of γ +, γ , a and b in terms of the process W , figuring in Theo-
rem 2.1.

THEOREM 2.3. Suppose the conditions of Theorem 2.1 and (1) are satisfied
and the following second-order condition holds: for every t ∈ [0,1], there exists
a function At not changing sign near infinity with limv→∞ sup0≤t≤1 |At(v)| = 0,
such that, as v → ∞,(

logUt(vx) − logUt(v)

at (v)/Ut (v)
− xγ −(t) − 1

γ −(t)

)/
At(v) → Hγ −(t),ρ(t)(x),(19)

uniformly in t ∈ [0,1] and locally uniformly in x > 0, with

Hγ −(t),ρ(t)(x) =
∫ x

1
yγ −(t)−1

∫ y

1
uρ(t)−1 dudy,

with ρ(t) ∈ [−∞,0] for all t ∈ [0,1].
If, as n → ∞,

√
k sup

0≤t≤1

∣∣∣∣At

(
n

k

)∣∣∣∣ → 0(20)

and
√

k sup
0≤t≤1

∣∣∣∣ at (n/k)

Ut(n/k)
− γ +(t)

∣∣∣∣ → 0,(21)

then we have

sup
0≤t≤1

∣∣√k
(
γ̂ +
n (t) − γ +(t)

) − γ +(t)P (t)
∣∣ P→ 0,(22)

sup
0≤t≤1

∣∣√k
(
γ̂n(t) − γ (t)

) − 
(t)
∣∣ P→ 0,(23)

sup
0≤t≤1

∣∣∣∣√k
Ût (n/k) − Ut(n/k)

at (n/k)
− U(t)

∣∣∣∣ P→ 0,(24)

sup
0≤t≤1

∣∣∣∣√k

(
ât (n/k)

at (n/k)
− 1

)
− A(t)

∣∣∣∣ P→ 0,(25)
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where P ,
,U and A are defined in terms of the process W as follows:

P (t) =
∫ ∞

1
W(Ct,x)

dx

x1−γ −(t)
− 1

1 − γ −(t)
W(Ct,1),

Q(t) = 2
∫ ∞

1
W(Ct,x)

xγ −(t) − 1

γ −(t)

dx

x1−γ −(t)

− 2
((

1 − γ −(t)
)(

1 − 2γ −(t)
))−1

W(Ct,1),


(t) = {
γ +(t) − 2

(
1 − γ −(t)

)2(
1 − 2γ −(t)

)}
P (t)

+ 1
2

(
1 − γ −(t)

)2(
1 − 2γ −(t)

)2Q(t),

U(t) = W(Ct,1),

A(t) = γ (t)W(Ct,1) + (
3 − 4γ −(t)

)(
1 − γ −(t)

)
P (t)

− 1
2

(
1 − γ −(t)

)(
1 − 2γ −(t)

)2Q(t), t ∈ [0,1].
Condition (19) is a uniform version of one of the natural, well-studied

second-order conditions of univariate extreme value theory; see [3] and [8]. For
ρ(t) > −∞, the absolute value of the function At is regularly varying of order
ρ(t) and specifies the rate of convergence in (3). For ρ(t) = −∞, we can choose
At such that its absolute value tends to 0 faster than a given power function. Large
values of |ρ(t)| yield fast convergence, whereas small values and, in particular, the
case ρ(t) = 0, correspond to (very) slow convergence.

Note that for the case inft∈[0,1] γ (t) > 0 and supt∈[0,1] ρ(t) < 0, it follows from
the second-order condition (19) that

sup
t∈[0,1]

∣∣∣∣ρ(t)((at (v)/Ut(v)) − γ +(t))

At (v)
− 1

∣∣∣∣ → 0 as v → ∞.(26)

So in this case (21) is superfluous, since it follows from (26) and (20). Also, note
that condition (20) can be replaced by the stronger, but easier-to-check condition:
for some ε > 0,

√
k

(
n

k

)ε+supt∈[0,1] ρ(t)

→ 0.

For the case supt∈[0,1] γ (t) < 0 and supt∈[0,1] ρ(t) < 0, it follows from the second-
order condition (19) that conditions (20) and (21) can be replaced by the stronger
condition: for some ε > 0,

√
k

(
n

k

)ε+supt∈[0,1] ρ(t)∨supt∈[0,1] γ (t)

→ 0.

When supt∈[0,1] ρ(t) = 0 or γ (t1) = 0 for some t1 ∈ [0,1] [this also implies
ρ(t1) = 0], we do not have a simple sufficient condition on the growth of k, but it
is necessary that k grow more slowly than any power of n.
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EXAMPLES. In order to illustrate the theory and for a better understanding of
the conditions in the theorem, we consider two classes of examples.

Let f be a unimodal, continuous probability density function on the real line
satisfying, for some K,δ0 > 0 and for all δ ≤ δ0,

sup
|t−s|≤δ

|f (t) − f (s)|
f (s)

≤ K

(
log

1

δ

)−3

.

This condition is satisfied by, for example, the double exponential density
((λ/2) exp(−λ|x|)) or the t-distribution for any number of degrees of freedom.
Let (Xj ,Yj ), j = 1,2, . . . , be an enumeration of the points of a homogeneous,
rate 1, Poisson process on R × R

+. Now define

ξ1(t) = sup
j

f (t + Xj)

Yj

for t ∈ [0,1].

This process is studied in detail in [1]; see also [6]. In particular, ξ1 is a continuous,
stationary, max-stable (i.e., limiting) process with marginals Ft(x) = P {ξ1(t) ≤
x} = exp(−1/x), x > 0 (for all t and i). Observe that γ ≡ 1 here.

For this process we will only check condition (16) in detail. The other conditions
are easily seen to hold. In particular, (3) holds since the process is max-stable and
(19) is well known to hold for the distribution function Ft in the univariate case,
that is, for fixed t . Since Ft does not depend on t , it therefore holds uniformly in t

and, hence, (19) holds. Note that ρ ≡ −1. We now check (16). We have that

1

1 − Ft(x)
= 1

1 − exp(−1/x)
=: g(x).

Hence, for large values of x the transformation g is close to the identity. Note that
g(x) ≥ x and g′(x) ≤ 1 for x > 0. Hence, for s, t and δ as above,

|g(ξ1(t)) − g(ξ1(s))|
g(ξ1(s))

≤ |g(supj f (t + Xj)/Yj ) − g(supj f (s + Xj)/Yj )|
g(supj f (s + Xj)/Yj )

≤ | supj f (t + Xj)/Yj − supj f (s + Xj)/Yj |
supj f (s + Xj)/Yj

≤ supj |f (t + Xj)/Yj − f (s + Xj)/Yj |
supj f (s + Xj)/Yj

≤ sup
j

|f (t + Xj)/Yj − f (s + Xj)/Yj |
f (s + Xj)/Yj

≤ sup
j

|f (t + Xj) − f (s + Xj)|
f (s + Xj)

≤ K

(
log

1

δ

)−3

.
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So condition (16) is satisfied since the probability involved in the condition is equal
to 0 for all s ∈ [0,1].

Let Y be a standard Pareto random variable, that is, P {Y ≤ x} = 1 − 1/x for
x ≥ 1, and let B be a random element of C[0,1] such that B(t) > 0, EB(t) = 1
for all t ∈ [0,1], and E supt B(t) < ∞. Assume Y and B are independent. Define

ξ1(t) = YB(t) for t ∈ [0,1];
see also [12]. We first show that ξ1 satisfies the domain of attraction condition (3);
more precisely, we show that 1

n
maxi=1,...,n ξi converges in distribution to η, where

ξ1, . . . , ξn are i.i.d. We need to show the convergence of the finite-dimensional
distributions and tightness. For the convergence of the finite-dimensional distribu-
tions, let t1, . . . , tk ∈ [0,1], x1, . . . , xk ≥ 0 and maxj=1,...,k xj > 0. Now we have

logP

{
1

n
max

i=1,...,n
YiBi(t1) ≤ x1, . . . ,

1

n
max

i=1,...,n
YiBi(tk) ≤ xk

}

= n logP

{
1

n
YB(t1) ≤ x1, . . . ,

1

n
YB(tk) ≤ xk

}

= n log
[
1 − P

{
1

n
YB(t1) > x1 or . . . or

1

n
YB(tk) > xk

}]

∼ −nP

{
1

n
YB(t1) > x1 or . . . or

1

n
YB(tk) > xk

}

= −nP

{
Y > min

j=1,...,k

nxj

B(tj )

}

= −nE

{(
max

j=1,...,k

B(tj )

nxj

)
∧ 1

}

= −E

{(
max

j=1,...,k

B(tj )

xj

)
∧ n

}

→ −E

{
max

j=1,...,k

B(tj )

xj

}
as n → ∞.

This settles the convergence of the finite-dimensional distributions. Note that
for k = 1 the last expression is simply −1/x1, which means that again γ ≡ 1.
Next we consider the tightness. From the derivation above, it follows that
P { 1

n
maxi=1,...,n YiBi(0) > M} can be made arbitrarily small for M and n large

enough. So it remains to show that for ε > 0 there exists a δ > 0 such that, for
large n large enough,

P

{
sup

|t−s|<δ

∣∣∣∣1

n
max

i=1,...,n
YiBi(t) − 1

n
max

i=1,...,n
YiBi(s)

∣∣∣∣ > ε

}
< ε.
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We have
1

ε
P

{
sup

|t−s|<δ

∣∣∣∣1

n
max

i=1,...,n
YiBi(t) − 1

n
max

i=1,...,n
YiBi(s)

∣∣∣∣ > ε

}

≤ 1

ε
P

{
max

i=1,...,n
sup

|t−s|<δ

∣∣∣∣1

n
YiBi(t) − 1

n
YiBi(s)

∣∣∣∣ > ε

}

≤ n

ε
P

{
sup

|t−s|<δ

∣∣∣∣1

n
YB(t) − 1

n
YB(s)

∣∣∣∣ > ε

}

= n

ε
EP

{
Y >

nε

sup|t−s|<δ |B(t) − B(s)|
∣∣∣ sup
|t−s|<δ

|B(t) − B(s)|
}

≤ n

ε
E

{sup|t−s|<δ |B(t) − B(s)|
nε

}

= 1

ε2 E

{
sup

|t−s|<δ

|B(t) − B(s)|
}
.

Since B ∈ C[0,1], we have sup|t−s|<δ |B(t) − B(s)| → 0. But sup|t−s|<δ |B(t) −
B(s)| ≤ 2 supt B(t) and, by assumption, E supt B(t) < ∞, so by Lebesgue’s dom-
inated convergence theorem E{sup|t−s|<δ |B(t) − B(s)|} → 0 as δ ↓ 0. This com-
pletes the proof of the tightness.

In the sequel we will make the specific choice B(t) = exp(W(t)− t
2), t ∈ [0,1],

with W a standard Wiener process. B is a geometric Brownian motion. Note that
this process satisfies the conditions on B specified in the beginning of this example.
In particular, E supt B(t) < ∞ follows from simply bounding W(t) − t

2 by W(t)

and the fact that the distribution function of supt W(t) is well known to be 2
− 1,
where 
 is the standard normal distribution function. The corresponding process
ξ1 = YB has been introduced in [12]. It remains to consider (19) and (16) for
this process. It follows from a straightforward calculation that, for every M > 1,
uniformly in t ∈ [0,1],

1

u
≥ P

{
Y exp

(
W(t) − t

2

)
> u

}
≥ 1

u
− 1

uM+3 ,

for u large enough. Hence

u ≤ 1

1 − Ft(u)
≤ u

1 − u−(M+2)
,(27)

and for large v,

v ≥ Ut(v) ≥ v − v−M.

Now we consider (19) and note that x0−1
0 should be read as usual as logx. We see

that, with at/Ut ≡ 1,

logUt(vx) − logUt(v) − logx

≤ logvx − logv − log
(
1 − v−(M+1)) − logx ≤ 2v−(M+1)
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and similarly,

− logUt(vx) + logUt(v) + logx ≤ 2(vx)−(M+1).

This implies (19) with At(v) = v−M and ρ ≡ −∞.
Finally, we have to show (16), which has to be proved for the transformed

process ζ1. As we see from (27), for large values of v this transformation is very
close to the identity function. So the transformed and untransformed processes
are very close for high values. Nevertheless, the proof of (16) for the transformed
process is more cumbersome than that for the untransformed process. We there-
fore confine ourselves to proving (16) for the untransformed process, since this
proof contains the main ideas. Also, we will use the modified version of Es,δ , as
described below Theorem 2.1, but we will keep the same notation. We have, for
large enough v,

P

{
ζ1 /∈ Es,δ

∣∣∣ sup
t∈[s,s+δ]

ζ1(t) ≥ v

}

≤ P

{
ζ1 /∈ Es,δ, sup

t∈[s,s+δ]
ζ1(t) ≥ v

}/
P {ζ1(s) ≥ v}

≤ 2vP

{
ζ1 /∈ Es,δ, sup

t∈[s,s+δ]
ζ1(t) ≥ v

}

≤ 2vP

{
ζ1 /∈ Es,δ, ζ1(s) ≥ v

2

}
+ 2vP

{
sup

t∈[s,s+δ]
ζ1(t) − ζ1(s) ≥ v

2

}

=: D1 + D2.

Consider D1 and use the independent increments property of a Wiener process:

D1 = 2vP

{
sup

t∈[s,s+δ]
∣∣ log

(
YeW(t)−t/2) − log

(
YeW(s)−s/2)∣∣ > K

(
log

1

δ

)−3

,

Y eW(s)−s/2 ≥ v

2

}

= 2vP

{
sup

t∈[s,s+δ]
|W(t) − W(s) − (t/2 − s/2)| > K

(
log

1

δ

)−3}

× P

{
YeW(s)−s/2 ≥ v

2

}

≤ 4P

{
sup

t∈[s,s+δ]
|W(t) − W(s)| > K

2

(
log

1

δ

)−3}
≤ exp

(
− 1√

δ

)
,

where, for the last inequality, one of the well-known bounds for the oscillations of
the Wiener process is used. For D2 we obtain again, by the independent increments
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property,

D2 = 2vP

{
Y sup

t∈[s,s+δ]
(
eW(t)−t/2 − eW(s)−s/2) ≥ v

2

}

≤ 2vP

{
YeW(s)−s/2 sup

t∈[s,s+δ]
(
eW(t)−t/2−(W(s)−s/2) − 1

) ≥ v

2

}

≤ 2vP

{
YeW(s)−s/2 sup

y∈[0,1]
(
e
√

δV (y) − 1
) ≥ v

2

}
=: D3,

where V is a standard Wiener process independent of W and Y . So the three terms
in the latter probability are independent. Recall that EeW(s)−s/2 = 1. Now

E sup
y∈[0,1]

(
e
√

δV (y) − 1
) = E

(
e
√

δ supy∈[0,1] V (y) − 1
) =

∫ ∞
0

e
√

δx2φ(x) dx − 1,

with φ the standard normal density. A straightforward calculation shows that the
latter quantity is equal to 2eδ/2(1 − 
(−√

δ )) − 1 ≤ √
δ. Hence

D3 = 2vEP

{
Y ≥ v

2eW(s)−s/2 supy∈[0,1](e
√

δV (y) − 1)

∣∣∣
eW(s)−s/2 sup

y∈[0,1]
(
e
√

δV (y) − 1
)}

≤ 2v
2

v
EeW(s)−s/2E sup

y∈[0,1]
(
e
√

δV (y) − 1
) ≤ 4 · 1 · √δ.

So D1 + D2 ≤ 5
√

δ. This is much smaller than the bound required in (16). Hence,
we have proved that condition.

It should be observed that, for both examples, condition (16) trivially remains
satisfied if we transform the process ξ1 by transformations of the marginals by in-
creasing, continuous functions. So as long as these transformations yield a process
that satisfies the other conditions (including that the transformed process is an el-
ement of C[0,1]), we have a new process for which Theorem 2.3 is valid. In this
way we can obtain processes with many different, and nonconstant, extreme value
index functions.

3. Proofs.

PROOF OF THEOREM 2.1. We only give a proof for the case c = 1; for general
c > 0 the proof is similar. For any β ∈ [0, 1

2) define

ft,x = 1Ct,x x
β,

F = {ft,x : 0 ≤ t ≤ 1, x ≥ 1}.
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Also, define the random measures

Zn,i = 1√
k
δζik/n;

Zn,i is a random function on F with

Zn,i(ft,x) = 1√
k
1{ζi (t)k/n≥x}xβ.

Then

xβwn(t, x) =
n∑

i=1

(
Zn,i(ft,x) − EZn,i(ft,x)

)
.

First we are going to prove the tightness of {∑n
i=1(Zn,i(f ) − EZn,i(f )), f ∈ F }.

We need the following version of Theorem 2.11.9 in [13] (note that, indeed, the
middle condition there is not needed here).

DEFINITION 3.1. For any ε > 0, the bracketing number N[·](ε,F ,Ln
2) is the

minimal number of sets Nε in a partition F = ⋃Nε

j=1 Fεj of the index set into sets
Fεj independent of n such that, for every partitioning set Fεj ,

n∑
i=1

E∗ sup
f,g∈Fεj

|Zn,i(f ) − Zn,i(g)|2 ≤ ε2.(28)

THEOREM 3.2. For each n, let Zn,1,Zn,2, . . . ,Zn,n be independent stochas-
tic processes with finite second moments indexed by a totally bounded semimetric
space (F , d). Suppose

n∑
i=1

E∗‖Zn,i‖F 1{‖Zn,i‖F >λ} → 0 for every λ > 0,(29)

where ‖Zn,i‖F = supf ∈F |Zn,i(f )| and

∫ δn

0

√
logN[·](ε,F ,Ln

2) dε → 0 for every δn ↓ 0.(30)

Then the sequence
∑n

i=1(Zn,i −EZn,i) is asymptotically tight in �∞(F ) and con-
verges weakly, provided the finite-dimensional distributions converge weakly.

We can define d on F by d(ft,x, fs,y) = d((t, x), (s, y)); see the first paragraph
of Section 2. We first show briefly that our class of functions F is totally bounded
under the metric d . We consider w.l.o.g. only the case x ≤ y. Since ν is a finite, and
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hence, tight measure on {h ∈ C[0,1] : supt∈[0,1] h(t) ≥ 1}, we can, for any δ1 > 0,
find a δ2 > 0 such that if |t − s| ≤ δ2, then

ν(Cs,y \ Ct,x) ≤ ν
(
Cs,y \ Cs,y+δ1/2

) + ν
(
Cs,y+δ1/2 \ Ct,x

)
≤ 1

y
− 1

y + δ1/2
+ 1

2
δ1 ≤ δ1

and (hence), if 1
x

− 1
y

≤ δ1, then

ν(Ct,x \ Cs,y) ≤ ν(Ct,x \ Ct,y) + ν(Ct,y \ Cs,y) ≤ 1

x
− 1

y
+ δ1 ≤ 2δ1.

Now we have, for |t − s| ≤ δ2 and 1
x

− 1
y

≤ δ1,

d2(ft,x, fs,y)

= (yβ − xβ)2ν(Ct,x ∩ Cs,y) + x2βν(Ct,x \ Cs,y) + y2βν(Cs,y \ Ct,x)

≤ (yβ − xβ)2ν(Cs,y) + x2β

(
1

x
∧ 2δ1

)
+ y2β

(
1

y
∧ δ1

)
(31)

≤
(
xyβ

(
1

x
− 1

y

))2 1

y
+ x2β

(
1

x
∧ 2δ1

)
+ y2β

(
1

y
∧ δ1

)

≤ x1+2β

(
1

x
− 1

y

)2

+ x2β

(
1

x
∧ 2δ1

)
+ y2β

(
1

y
∧ δ1

)

≤ δ
1−2β
1 + 2δ

1−2β
1 + δ

1−2β
1 = 4δ

1−2β
1 .

So, since 1 − 2β > 0, we see that for ε > 0 we can find a δ1 > 0 such that
d(ft,x, fs,y) ≤ ε, for 1

x
− 1

y
≤ δ1 and |t − s| ≤ δ2. Since obviously F is totally

bounded under the metric d0(ft,x, fs,y) = | 1
x

− 1
y
| + |t − s|, the total boundedness

under d follows.
To prove (29), observe

‖Zn,i‖F = 1√
k

sup
0≤t≤1

(
ζi(t)

k

n

)β

.

So
n∑

i=1

E‖Zn,i‖F 1{‖Zn,i‖F >λ}

= n√
k
E

(
sup

0≤t≤1
ζi(t)

k

n

)β

1{sup0≤t≤1 ζi (t)(k/n)>(
√

kλ)1/β }

= n√
k

∫ ∞
(
√

kλ)1/β
xβ dFn(x)(32)
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= − n√
k
xβ(

1 − Fn(x)
)|∞

(
√

kλ)1/β

+ β
n√
k

∫ ∞
(
√

kλ)1/β
xβ−1(

1 − Fn(x)
)
dx,

where 1 − Fn(x) = P {sup0≤t≤1 ζi(t)
k
n

≥ x}. Note that P {sup0≤t≤1 ζi(t) ≥ x} =
x−1νx({h ∈ C[0,1] : sup0≤t≤1 h(t) ≥ 1}). Hence it follows from (4) that the func-
tion x �→ P {sup0≤t≤1 ζi(t) ≥ x} is regularly varying at infinity with exponent −1,
so

lim
u→∞

P {sup0≤t≤1 ζi(t) ≥ ux}
P {sup0≤t≤1 ζi(t) ≥ u} = 1

x
, x > 0.

Let 0 < τ < 1. Now it immediately follows from Potter’s inequality (see, e.g., [2])
that, for large n and x ≥ 1,

(n/k)P {sup0≤t≤1 ζi(t) ≥ (n/k)x}
(n/k)P {sup0≤t≤1 ζi(t) ≥ (n/k)} ≤ 2xτ−1.

Also, we have as n → ∞,

n

k
P

{
sup

0≤t≤1
ζi(t)

k

n
≥ 1

}
= νn/k

({
f ∈ C[0,1] : sup

0≤t≤1
f (t) ≥ 1

})

→ ν

({
f ∈ C[0,1] : sup

0≤t≤1
f (t) ≥ 1

})
=: C

3
,

for some positive, finite C. So for large n and x ≥ 1,

1 − Fn(x) ≤ C
k

n
xτ−1.(33)

Hence, the right-hand side of (32) is bounded from above by

Ck(2β+τ−1)/(2β)λ(β+τ−1)/β + βC
√

k

∫ ∞
(
√

kλ)1/β
xβ+τ−2 dx

= C
1 − τ

1 − β − τ
λ(β+τ−1)/βk(2β+τ−1)/(2β) → 0,

for τ small enough, since β < 1
2 . That is (29).

Next we will prove (30). For any (small) ε > 0, let a = ε3/(2β−1), δ =
exp{−ε−1} and θ = 1/(1 − Kε3). Define

F (a) = {ft,x ∈ F , x > a},
F (l, j) = {ft,x ∈ F , lδ ≤ t < (l + 1)δ, θj ≤ x ≤ θj+1}.
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Then we have the “partition” F = F (a) ∪ ⋃�1/δ�
l=0

⋃�loga/log θ�
j=0 F (l, j). First we

check (28) for F (a):

n∑
i=1

E sup
f,g∈F (a)

|Zn,i(f ) − Zn,i(g)|2

= nE sup
f,g∈F (a)

(
Zn,i(f ) − Zn,i(g)

)2

≤ 4nE sup
f ∈F (a)

Z2
n,i(f )

≤ 4n

k
E

(
sup

0≤t≤1
ζi(t)

n

k

)2β

1{sup0≤t≤1 ζi (t)k/n≥a}

= 4n

k

∫ ∞
a

x2β dFn(x)

≤ 4C
1 − τ

1 − 2β − τ
a2β+τ−1

= 4C
1 − τ

1 − 2β − τ
ε3(2β+τ−1)/(2β−1),

where the last inequality follows from integration by parts and (33). Clearly, the
latter expression is bounded from above by ε2 for τ (and ε) small enough.

Now we consider (28) for the F (l, j). First note that

sup
f ∈F (l,j)

Zn,i(f ) ≤ 1√
k
1{suplδ≤t<(l+1)δ ζi (t)(k/n)≥θj }θ(j+1)β

= 1√
k
1{suplδ≤t<(l+1)δ ζi (t)(k/n)≥θj ,ζi∈Es,δ}θ

(j+1)β

+ 1√
k
1{suplδ≤t<(l+1)δ ζi (t)(k/n)≥θj ,ζi /∈Es,δ}θ

(j+1)β .

Suppose ζi ∈ Es,δ and suplδ≤t<(l+1)δ ζi(t)
k
n

≥ θj . Then for small enough δ,

sup
lδ≤t<(l+1)δ

ζi(t) − ζi(lδ) ≤ Kε3ζi(lδ),

and, hence, ζi(lδ)
k
n

≥ θj−1. So

sup
f ∈F (l,j)

Zn,i(f ) ≤ 1√
k
1{ζi (lδ)(k/n)≥θj−1,ζi∈Es,δ}θ

(j+1)β

+ 1√
k
1{suplδ≤t<(l+1)δ ζi (t)(k/n)≥θj ,ζi /∈Es,δ}θ

(j+1)β .
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Similarly, it can be shown that

inf
f ∈F (l,j)

Zn,i(f ) ≥ 1√
k
1{ζi (lδ)(k/n)≥θj+2,ζi∈Es,δ}θ

jβ.

This yields
n∑

i=1

E∗ sup
f,g∈F (l,j)

|Zn,i(f ) − Zn,i(g)|2

≤ nE∗
(

sup
f ∈F (l,j)

Zn,i(f ) − inf
f ∈F (l,j)

Zn,i(f )

)2

≤ n

k
E

(
1{ζi (lδ)(k/n)≥θj−1,ζi∈Es,δ}θ

(j+1)β

+ 1{suplδ≤t<(l+1)δ ζi (t)(k/n)≥θj ,ζi /∈Es,δ}θ
(j+1)β

− 1{ζi (lδ)(k/n)≥θj+2,ζi∈Es,δ}θ
jβ)2

= n

k
E

(
1{ζi (lδ)(k/n)≥θj−1,ζi∈Es,δ}θ

(j+1)β − 1{ζi (lδ)(k/n)≥θj+2,ζi∈Es,δ}θ
jβ)2

+ n

k
P

{
sup

lδ≤t<(l+1)δ

ζi(t)
k

n
≥ θj , ζi /∈ Es,δ

}
θ2(j+1)β

=: T1 + T2.

We have

T1 ≤ n

k
E

((
θ(j+1)β − θjβ)

1{ζi (lδ)(k/n)≥θj−1} + θjβ1{θj+2>ζi(lδ)(k/n)≥θj−1}
)2

≤ 2θ2(j+1)β(1 − θ−β)2 1

θj−1 + 2θ2jβ

(
1

θj−1 − 1

θj+2

)

≤ 2θj+1(1 − θ−1/2)2 1

θj−1 + 2θj

(
1

θj−1 − 1

θj+2

)

≤ 3(Kε3 + 3Kε3) ≤ 1

2
ε2,

and for large n,

T2 ≤ n

k
P

{
sup

t∈[lδ,(l+1)δ)

ζi(t)
k

n
≥ 1, ζi /∈ Es,δ

}
θ2(j+1)β

≤ n

k
P

{
sup

t∈[lδ,(l+1)δ)

ζi(t)
k

n
≥ 1

}
P

{
ζi /∈ Es,δ

∣∣∣ sup
t∈[lδ,(l+1)δ)

ζi(t) ≥ n

k

}
a2βθ2β

≤ C · c1

(
log

1

δ

)−(2+2β)/(1−2β)

a2β ≤ 1

2
ε2.
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Hence, we have shown (28).
It is easy to see that the number of elements of the partition is bounded by

exp(2/ε), which leads to (30). Hence, by Theorem 3.2 we have proved the asymp-
totic tightness condition.

It remains to prove that the finite-dimensional distributions of
∑n

i=1(Zn,i −
EZn,i) converge weakly. This follows from the fact that multivariate weak conver-
gence follows from weak convergence of linear combinations of the components
and the (univariate) Lindeberg–Feller central limit theorem. It is easily seen that
the Lindeberg condition is fulfilled for the linear combinations, since the ft,x are
made up of indicators and hence bounded.

The fact that Z is bounded and uniformly d-continuous follows from the general
theory of weak convergence and properties of Gaussian processes; see Section 1.5
in [13]. �

PROOF OF COROLLARY 2.2. Write Vn,t = ζn−k,n(t)
k
n

. We first show the re-
sult for α = −1, that is,

sup
0≤t≤1

∣∣∣∣√k

(
1

Vn,t

− 1
)

+ W(Ct,1)

∣∣∣∣ P→ 0.(34)

Clearly,

sup
0≤t≤1

∣∣∣∣√k

(
1

Vn,t

− 1
)

+ wn(t,Vn,t )

∣∣∣∣ P→ 0,

so (17), with β = 0, yields

sup
0≤t≤1

∣∣∣∣√k

(
1

Vn,t

− 1
)

+ W
(
Ct,Vn,t

)∣∣∣∣ P→ 0.

Now by the boundedness and uniform d-continuity of W we obtain (34). Finally,
write

√
k
(
V

α(t)
n,t − 1

) = √
k(V −1

n,t − 1)
V

α(t)
n,t − 1

V −1
n,t − 1

.

Since, by (34),

sup
0≤t≤1

∣∣∣∣V
α(t)
n,t − 1

V −1
n,t − 1

+ α(t)

∣∣∣∣ P→ 0,

we obtain, again using (34), (18). �

PROOF OF THEOREM 2.3. First, from (19) we can prove, for any ε > 0, there
exists sε > 0 such that if v > vε and x ≥ 1, we have, for all 0 ≤ t ≤ 1,∣∣∣∣

(
logUt(vx) − logUt(v)

at (v)/Ut (v)
− xγ −(t) − 1

γ −(t)

)/
At(v) − Hγ −(t),ρ(t)(x)

∣∣∣∣(35)

≤ ε
(
1 + xγ −(t)+ε);
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the proof follows along the lines of that for the one-dimensional situation in [3];
see also [8]. Inequality (35) implies

∣∣∣∣ logUt(vx) − logUt(v)

at (v)/Ut (v)
− xγ −(t) − 1

γ −(t)

∣∣∣∣ ≤ |At(v)|(Cε + xε),(36)

where Cε ∈ (0,∞) is a constant. Note that

M(1)
n (t) = 1

k

k−1∑
i=1

logUt(ζn−i,n(t)) − logUt(ζn−k,n(t)).

Hence, we have, for sufficiently large n,

1

k

k−1∑
i=0

(ζn−i,n(t)/ζn−k,n(t))
γ −(t) − 1

γ −(t)

− |At(ζn−k,n(t))|
(
Cε + 1

k

k−1∑
i=0

(
ζn−i,n(t)

ζn−k,n(t)

)ε
)

≤ M
(1)
n (t)

at (ζn−k,n(t))/Ut(ζn−k,n(t))
(37)

≤ 1

k

k−1∑
i=0

(ζn−i,n(t)/ζn−k,n(t))
γ −(t) − 1

γ −(t)

+ |At(ζn−k,n(t))|
(
Cε + 1

k

k−1∑
i=0

(
ζn−i,n(t)

ζn−k,n(t)

)ε
)
.

As before, write Vn,t = ζn−k,n(t)
k
n

. Next

√
k

(
1

k

k−1∑
i=0

(ζn−i,n(t)/ζn−k,n(t))
γ −(t) − 1

γ −(t)
− 1

1 − γ −(t)

)

= √
k

(∫ ∞
Vn,t

(x/Vn,t )
γ −(t) − 1

γ −(t)
d

(
−n

k
Sn,t

(
x

n

k

))
− 1

1 − γ −(t)

)

= √
k

(
V

−γ −(t)
n,t

∫ ∞
Vn,t

n

k
Sn,t

(
x

n

k

)
xγ −(t)−1 dx −

∫ ∞
1

xγ −(t)−2 dx

)

= V
−γ −(t)
n,t

∫ ∞
Vn,t

wn(t, x)xγ −(t)−1 dx

+ √
k
(
V

−γ −(t)
n,t − 1

) ∫ ∞
Vn,t

xγ −(t)−2 dx + √
k

∫ 1

Vn,t

xγ −(t)−2 dx.
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So

√
k

(
1

k

k−1∑
i=0

(ζn−i,n(t)/ζn−k,n(t))
γ −(t) − 1

γ −(t)
− 1

1 − γ −(t)

)
− P (t)

= V
−γ −(t)
n,t

∫ ∞
Vn,t

(
wn(t, x) − W(Ct,x)

)
xγ −(t)−1 dx

+ (
V

−γ −(t)
n,t − 1

) ∫ ∞
V n,t

W(Ct,x)x
γ −(t)−1 dx

(38)
+ (√

k
(
V

−γ −(t)
n,t − 1

) + γ −(t)W(Ct,1)
) ∫ ∞

Vn,t

xγ −(t)−2 dx

+
(√

k

∫ 1

Vn,t

xγ −(t)−2 dx + W(Ct,1)

)

−
∫ Vn,t

1
W(Ct,x)x

γ −(t)−1 dx + γ −(t)W(Ct,1)

∫ Vn,t

1
xγ −(t)−2 dx.

From Theorem 2.1 we obtain, for the first term on the right-hand side in (38),

sup
t∈[0,1]

V
−γ −(t)
n,t

∣∣∣∣
∫ ∞
Vn,t

(
wn(t, x) − W(Ct,x)

)
xγ −(t)−1 dx

∣∣∣∣
≤ sup

t∈[0,1]
V

−γ −(t)
n,t · sup

t∈[0,1],x≥Vn,t

xβ |wn(t, x) − W(Ct,x)|(39)

× sup
t∈[0,1]

∫ ∞
Vn,t

yγ −(t)−1−β dy.

Now it follows from Theorem 2.1 with β positive (this is crucial) and Corollary 2.2
that the right-hand side of (39) converges to 0 in probability. It readily follows from
Corollary 2.2 that the five other terms on the right-hand side of (38) converge to 0
in probability. So we have

sup
0≤t≤1

∣∣∣∣∣
√

k

(
1

k

k−1∑
i=0

(ζn−i,n(t)/ζn−k,n(t))
γ −(t) − 1

γ −(t)

− 1

1 − γ −(t)

)
− P (t)

∣∣∣∣∣ P→ 0(40)

as n → ∞.

For the remainder term of

M
(1)
n (t)

at (ζn−k,n(t))/Ut(ζn−k,n(t))
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in (37), note that we obtain from Lemma 3.2 in [5] that, for 0 ≤ ε < 1,

sup
0≤t≤1

∣∣∣∣1

k

k−1∑
i=0

(
ζn−i,n(t)

ζn−k,n(t)

)ε

− 1

1 − ε

∣∣∣∣ P→ 0 as n → ∞.(41)

It can be derived from the second-order condition (19) and Corollary 2.2 that

sup
0≤t≤1

∣∣∣∣ At(n/k)

At(ζn−k,n(t))
− 1

∣∣∣∣ P→ 0.

Using this in combination with (20) and (41), we see that the remainder term
in (37) is negligible, so we obtain that

sup
0≤t≤1

∣∣∣∣√k

(
M

(1)
n (t)

at (ζn−k,n(t))/Ut(ζn−k,n(t))
− 1

1 − γ −(t)

)
− P (t)

∣∣∣∣ P→ 0(42)

as n → ∞. Similarly,

sup
0≤t≤1

∣∣∣∣√k

(
M

(2)
n (t)

(at (ζn−k,n(t))/Ut (ζn−k,n(t)))2

(43)

− 2

(1 − γ −(t))(1 − 2γ −(t))

)
− Q(t)

∣∣∣∣ P→ 0

as n → ∞. Hence, we get

sup
0≤t≤1

∣∣√k
(
γ̂ −
n (t) − γ −(t)

) − M(t)
∣∣ P→ 0(44)

as n → ∞, where

M(t) = −2
(
1 − γ −(t)

)2(
1 − 2γ −(t)

)
P (t) + 1

2

(
1 − γ −(t)

)2(
1 − 2γ −(t)

)2
Q(t).

We now prove (22). Write
√

k
(
γ̂ +
n (t) − γ +(t)

) − γ +(t)P (t)

= at (ζn−k,n(t))

Ut (ζn−k,n(t))

(√
k

(
M

(1)
n (t)

at (ζn−k,n(t))/Ut (ζn−k,n(t))
− 1

1 − γ −(t)

)
− P (t)

)

+ √
k

(
at (ζn−k,n(t))

Ut (ζn−k,n(t))
− γ +(t)

)
1

1 − γ −(t)

+
(

at (ζn−k,n(t))

Ut (ζn−k,n(t))
− γ +(t)

)
P (t).

If we show that

sup
0≤t≤1

∣∣∣∣√k

(
at (ζn−k,n(t))

Ut (ζn−k,n(t))
− γ +(t)

)∣∣∣∣ P→ 0,(45)
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then (22) follows from (42). We have

√
k

(
at (ζn−k,n(t))

Ut (ζn−k,n(t))
− γ +(t)

)

= √
k

(
at (n/k)

Ut(n/k)
− γ +(t)

)
at (ζn−k,n(t))/Ut (ζn−k,n(t))

at (n/k)/Ut (n/k)

+ √
k

(
at (ζn−k,n(t))/Ut(ζn−k,n(t))

at (n/k)/Ut(n/k)
−

(
ζn−k,n(t)

k

n

)γ −(t))
γ +(t)

+ √
k

((
ζn−k,n(t)

k

n

)γ −(t)

− 1
)
γ +(t).

From [8] and [10] it follows that (19) implies

(at (xv)/Ut (xv))/(at (v)/Ut (v)) − xγ −(t)

At (v)
→ xγ −(t) x

ρ(t) − 1

ρ(t)
(46)

as v → ∞,

uniformly in t ∈ [0,1] and locally uniformly in x > 0. Using (21), (20) and Corol-
lary 2.2, we indeed obtain (45) and, hence, we have proved (22). Finally, we obtain
(23) from (22) and (44).

For (24), note

√
k
Ût (n/k) − Ut(n/k)

at (n/k)

= √
k

logUt(ζn−k,n(t)) − logUt(n/k)

at (n/k)/Ut (n/k)

×
(

log
(

ξn−k,n(t)

Ut (n/k)

))−1(
ξn−k,n(t)

Ut (n/k)
− 1

)

and

ξn−k,n(t)

Ut (n/k)
− 1 = ξn−k,n(t) − Ut(n/k)

at (n/k)

at (n/k)

Ut (n/k)
.

From Lemma 3.4 in [5] we obtain

lim
n→∞ sup

0≤t≤1

∣∣∣∣ at (n/k)

Ut(n/k)
− γ +(t)

∣∣∣∣ = 0.

Combining this with (14) yields

sup
0≤t≤1

∣∣∣∣ξn−k,n(t)

Ut (n/k)
− 1

∣∣∣∣ P→ 0 as n → ∞.
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Hence,

sup
0≤t≤1

∣∣∣∣
(

log
(

ξn−k,n(t)

Ut (n/k)

))−1(
ξn−k,n(t)

Ut (n/k)
− 1

)
− 1

∣∣∣∣ P→ 0 as n → ∞.

A proof similar to the one leading to (42) shows

sup
0≤t≤1

∣∣∣∣√k
logUt(ζn−k,n(t)) − logUt(n/k)

at (n/k)/Ut (n/k)
− U(t)

∣∣∣∣ P→ 0 as n → ∞.

So we have obtained (24).
For (25), we use
√

k

(
ât (n/k)

at (n/k)
− 1

)

= √
k

(
M

(1)
n

at (ζn−k,n)/Ut(ζn−k,n)
− 1

1 − γ −(t)

)(
1 − γ̂ −

n (t)
)at (ζn−k,n(t))

at (n/k)

− √
k
(
γ̂ −
n (t) − γ −(t)

) 1

1 − γ −(t)

at (ζn−k,n(t))

at (n/k)

+ √
k

(
at (ζn−k,n(t))

at (n/k)
− 1

)
.

Now
√

k

(
at (ζn−k,n(t))

at (n/k)
− 1

)

= √
k

(
at (ζn−k,n(t))/Ut(ζn−k,n(t))

at (n/k)/Ut (n/k)
−

(
k

n
ζn−k,n(t)

)γ −(t))Ut(ζn−k,n(t))

Ut (n/k)

+ √
k

((
k

n
ζn−k,n(t)

)γ −(t)

− 1
)

Ut(ζn−k,n(t))

Ut (n/k)

+ √
k
Ut(ζn−k,n(t)) − Ut(n/k)

at (n/k)

at (n/k)

Ut(n/k)
.

From (46) and (20), we know the first term tends to 0 in probability, uniformly in
t ∈ [0,1]. Hence Corollary 2.2 and (24) yield

sup
0≤t≤1

∣∣∣∣√k

(
at (ζn−k,n(t))

at (n/k)
− 1

)
− γ (t)W(Ct,1)

∣∣∣∣ P→ 0.

Using (42), (44) and Theorem 1.1, (25) now follows. �
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