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ADAPTIVE NONPARAMETRIC CONFIDENCE SETS

BY JAMES ROBINS AND AAD VAN DER VAART

Harvard University and Vrije Universiteit Amsterdam

We construct honest confidence regions for a Hilbert space-valued pa-
rameter in various statistical models. The confidence sets can be centered at
arbitrary adaptive estimators, and have diameter which adapts optimally to
a given selection of models. The latter adaptation is necessarily limited in
scope. We review the notion of adaptive confidence regions, and relate the
optimal rates of the diameter of adaptive confidence regions to the minimax
rates for testing and estimation. Applications include the finite normal mean
model, the white noise model, density estimation and regression with random
design.

1. Introduction. Consider an observation X(n) distributed according to a law
P

(n)
θ depending on a parameter θ that ranges over a subset � of a separable Hilbert

space. Specifically, we take the Hilbert space equal to R
n with the Euclidean norm,

or the sequence space �2 = {θ = (θ1, θ2, . . . ) :
∑∞

i=1 θ2
i < ∞} with the squared

norm ‖θ‖2 = ∑∞
i=1 θ2

i . Our aim is to construct (asymptotic) confidence sets Ĉn

of small diameter for the parameter θ , which are “honest” in the sense that, for a
given confidence level 1 − α,

lim inf
n→∞ inf

θ∈�
Pθ (θ ∈ Ĉn) ≥ 1 − α.(1.1)

This problem has been considered by, among others, Li [32] and Baraud [1] in the
case that � is equal to R

n and the observation is a Gaussian vector with mean θ

and covariance matrix the identity, by Hoffmann and Lepski [20] in the case that
θ ∈ �2 and the observation is an infinite sequence of Gaussian variables with means
θi and variance σ 2/n, and by Beran [4], Beran and Dümbgen [5] and Genovese
and Wasserman [18] in the case of the fixed design regression model. Our aim in
this paper is to propose new confidence procedures for these and related models,
which shed light on some of the questions raised in the discussion of the paper by
Hoffmann and Lepski [20]. We construct confidence sets with the properties:

(i) The confidence set is honest on the model �.
(ii) The confidence set is centered at an estimator of choice, for example, an

adaptive estimator.

Received June 2004; revised May 2005.
AMS 2000 subject classifications. 62G15, 62G20, 62F25.
Key words and phrases. Adaptation, white noise model, density estimation, regression, testing

rate.

229

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053605000000877
http://www.imstat.org
http://www.ams.org/msc/


230 J. ROBINS AND A. VAN DER VAART

(iii) The diameter of the confidence set adapts to submodels of � in a rate-
optimal way.

In the second and third points we improve on the results in the mentioned papers,
at least as regards rates. Our method in its simplest form as presented below leads
to an increase of the “constants.”

Since completing our paper we have learned about the work of Juditsky and
Lambert-Lacroix [25] and Cai and Low [11]. Juditsky and Lambert-Lacroix [25]
appear to deserve priority in discussing adaptive confidence sets. In their beautiful
paper they pose the problem within the setting of fixed-design regression with
Gaussian errors and obtain adaptation in the scale of Besov spaces, using wavelet-
based methods. An insightful discussion of the problem and basic insights about its
relationship to loss estimation and minimax estimation and testing can already be
found in this paper. Cai and Low [11] consider the problem of adaptive confidence
regions in the setting of the Gaussian white noise model, and obtain adaptation
in the scale of Besov spaces, also using wavelet-based estimators. Our method is
more flexible and applies to more settings, but we develop the results only for the
scale of Sobolev spaces. In certain respects it is close to the method of Juditsky
and Lambert-Lacroix [25].

As is pointed out in the preceding references, the desired honesty (i) severely
limits the possibility of adaptation as in aim (iii). In the past years many successes
have been obtained in the construction of estimators that are simultaneously min-
imax over a large selection of models. (See, e.g., [3, 2, 13–16, 19, 29–31, 34,
37].) These estimators are able to adapt to the “regularity” of the true underlying
parameter, without pre-knowledge of the parameter or its regularity. However, as
pointed out by Birgé [7], these estimators have the property of being close to the
true parameter without the statistician being able to tell how close it is. An adap-
tive estimator can adapt to an underlying model, but does not reveal which model
it adapts to, with the consequence that nonparametric confidence sets are necessar-
ily much wider than the actual discrepancy between an adaptive estimator and the
true parameter.

If one drops “honesty” (i) from the requirements of the confidence set, but re-
quires, for instance, only that the confidence set is honest over every submodel
�1 ⊂ � of interest [i.e., (1.1) with � replaced by �1], then this embarrassing
problem disappears, and it is possible to construct “confidence sets” of a diameter
that adapts to the estimation rate. Most procedures in the literature fall in this cat-
egory. However, dropping full honesty (i) appears to contradict the very definition
of a confidence set. In this paper we require honesty in the sense of (1.1) with �

the collection of all parameters deemed possible. Thus we consider a list of models
and require honesty on the “biggest model” � in the list.

Under this requirement the possibilities for adaptation are severely limited. For
a given submodel �1 ⊂ �, the diameter of a confidence region that is honest for
� cannot be of smaller order, uniformly over �1, than:
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(a) The “slowest rate” εn → 0 such that for any estimator sequence Tn and
some β > α

lim inf
n→∞ sup

θ∈�1

Pθ (‖Tn − θ‖ ≥ εn) > β.

This is typically the minimax rate of estimation for the model �1.
(b) The minimax rate of testing of the hypothesis H0 : θ ∈ �′

1 versus the alter-
native H1 : θ ∈ �,‖θ −�′

1‖ > εn, for any given �′
1 ⊂ �1, for example, a one-point

set �′
1 = {θ1}. This rate is often determined by the full model �, rather than the

submodel �1.

These lower bounds appear to be well known. Juditsky and Lambert-Lacroix [25]
discuss such bounds in the setting of Besov spaces. For completeness we give
precise statements in Section 6.

Our confidence sets have diameter of the order the maximum of the rates in
(a)–(b), simultaneously over many submodels, at least for regularity classes as in
the following example, and hence satisfy aim (iii).

EXAMPLE 1.1 (Regular parameters). A parameter θ ∈ �2 can be called
β-regular (for a given β > 0) if it belongs, for some L > 0, to the ellipsoid

S(β,L) =
{
θ ∈ �2 :

∞∑
i=1

θ2
i i2β ≤ L

}
.

If the coordinates of θ correspond to classical Fourier coefficients, then S(β,L)

corresponds to periodic functions with β derivatives bounded by a multiple of L

in L2[0,1]. (For real functions and the sine–cosine basis the correspondence is
more accurate if we replace i2β by (i − 1)2β for odd values of i. See, e.g., the
Appendix of [38].)

Consider inference on θ ∈ S(β,L) based on observing each θi with an inde-
pendent N(0, σ 2/n) error, or in one of the other models discussed below, which
yield similar results. The minimax estimation rate for S(β,L) is n−β/(2β+1) (cf.,
e.g., [9, 21, 22, 36]). For β1 > β and L1 ≤ L we have S(β1,L1) ⊂ S(β,L) and
the minimax testing rate of S(β1,L1) relative to S(β,L) in the sense of (b) is
n−β/(2β+1/2) 	 n−β/(2β+1). (See [23], Theorem 2.1 or 3.1, or [24].)

If the supermodel � is equal to S(β,L), then these bounds suggest that the
diameter of a confidence set can be of diameter of order n−β/(2β+1) uniformly
over �, and of order n−β1/(2β1+1) ∨n−β/(2β+1/2) uniformly over the smaller model
�1 = S(β1,L1) for β1 > β and L1 ≤ L. If β1 ∈ (β,2β), then the latter rate is
equal to n−β1/(2β1+1) and depends on the submodel. In that case we may say that
adaptation occurs.

This type of adaptation is very different from adaptation in the context of esti-
mation. For β1 ≥ 2β the diameter is n−β/(2β+1/2), independent of the exact value
of β1, so that further regularity does not yield smaller confidence regions. Even on
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TABLE 1
Order of maximal diameter of confidence regions on the submodel

S(β1,L1) ⊂ S(β,L), cut-off points and number of
observations needed to estimate σ 2

β β1 Radius on S(β1,L1) Cut-off Obs for σ 2

1 ≥2 n−2/5 n2/5 �n2/5

1 3/2 n−3/8 n2/5 �n2/5

1 1 n−1/3 n2/5 �n2/5

1/2 ≥1 n−1/3 n2/3 �n2/3

1/2 3/4 n−3/10 n2/3 �n2/3

1/2 1/2 n−1/4 n2/3 �n2/3

1/4 ≥1/2 n−1/4 n �n

1/4 1/4 n−1/6 n �n

1/8 ≥1/4 n−1/6 n4/3 �n4/3

0 ≥0 1 n2 �n2

very small submodels (β1 → ∞), the diameter of a confidence region is at least
of the order n−β/(2β+1/2), determined by the supermodel. As illustration, Table 1
gives the rates for some values of the regularity parameters. The meaning of the
last two columns of the table is explained later on in the paper.

Our method to construct confidence regions, described in Section 2, is based
on a sample-splitting procedure. We use half the data to construct centering es-
timators θ̂ (n), and an independent second half to construct a confidence region
around θ̂ (n). The nature of the initial estimator θ̂ (n) is irrelevant for the honesty
of the confidence procedure, and hence θ̂ (n) can be any of our favorite estimators.
In particular, it can be an estimator that adapts to a selection of models of our
choice. Our procedure borrows its adaptive strength from these initial estimators,
but of course only up to the limitations described earlier.

Refinements of this procedure would be to construct two confidence sets, with
the roles of the two half-samples interchanged, and to take the intersection, or to
split the sample into more parts. For restricted supermodels � the splitting may be
avoided altogether. This may lead to better constants in the centering and diameter
of the confidence set. In this paper we are interested in rates only, and for this our
simple sample-splitting scheme suffices.

In the case that the observations are a random sample, we can form the two
halves of the data by simply splitting the sample into two parts, using the first half-
sample to construct the estimator θ̂ (n) and the second to construct the confidence
region. In other examples of interest a similar situation can be created using a more
involved splitting device, which we describe below.

The organization of the paper is as follows. In Section 2 we describe the con-
struction in a general framework. In Sections 3, 4 and 5 we give the details for the
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three main examples, sequence models, density estimation and random regression.
Finally in Section 6 we relate the diameter of a confidence region to the testing and
estimation rates.

We close this introduction with a description of a number of examples to which
our construction applies, together with a review of the literature.

EXAMPLE 1.2 (Finite sequence model). In this model the observation is a
vector X(n) = (X1,X2, . . . ,Xn) from an n-dimensional normal distribution with
mean vector θ = (θ1, θ2, . . . , θn) and covariance matrix (σ 2/n)I . The variance σ 2

is known and the parameter θ is known to belong to a subset � of R
n, which may

be all of R
n.

This model was studied in [32] and [1] under the assumption that � = R
n. The

naive procedure in this situation is the chi-square region {θ ∈ R
n :‖θ − X(n)‖2 ≤

(σ 2/n)χ2
n,1−α}, which derives from inverting the likelihood ratio test. It has diam-

eter of order 1, uniformly in (and independently of) θ .
Li [32] showed that requiring honesty relative to all parameters θ ∈ R

n im-
plies that no confidence region can achieve a diameter that is uniformly smaller
than n−1/4, and exhibits confidence regions around shrinkage estimators that may
achieve the rate n−1/4 on the submodel where the shrinkage estimator performs
well. Li’s confidence sets improve on the naive chi-square procedure at true pa-
rameters where the shrinkage estimator improves upon the naive estimator X(n).
Baraud [1] constructs confidence regions that improve on the naive procedure in a
wider range of submodels. His procedure is based on comparing a range of sub-
models by chi-square tests. The confidence regions in the present paper manage to
adapt to still more submodels, if the initial estimators θ̂ (n) are chosen so as to fully
profit from the recent insights in adaptive estimation, such as in [8].

It is notable that in this model the variance σ 2 is assumed known. Baraud [1]
shows that in the case that σ 2 is an unknown parameter ranging over some interval
(even a very short one), confidence regions that are honest over � = R

n and σ 2

can never have diameter less than order 1.
Because the observations in this example are non-i.i.d., splitting the sample

is not a good device in order to separate constructing a center and a radius of
the confidence region. However, we may artificially produce two normal vectors
X′ and X′′ with means θ from a given Nn(θ, (σ 2/n)I)-distributed random vec-
tor X using randomization. Given a sample of independent, uniform variables Ui

independent of X, it suffices to define

X′
i = Xi + 	−1(Ui)σ/

√
n,

X′′
i = Xi − 	−1(Ui)σ/

√
n.

Then it can be verified that X′
i and X′′

i are independent random variables with
means θi and variances 2σ 2/n. Thus the observations can be duplicated at the cost
of multiplying the variance σ 2 by 2. In the remainder of the paper we shall assume
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that a device of this type has been applied, and write X(n) for the second sample
(on which the estimate of the radius of the confidence set is based), and assume
that this is independent of the initial estimator θ̂ (n) for θ .

Knowledge of σ 2 is crucial for this randomization step. Good estimators would
do as well, but it is impossible to estimate σ 2 in this model without restricting the
mean parameter θ to a proper subset � of R

n. Baraud [1] shows that the size of a
confidence set can never be of smaller order than the imprecision in σ .

EXAMPLE 1.3 (Infinite sequence model). In this model the observations are
an infinite sequence X(n) = (X1,X2, . . . ) of independent random variables Xi pos-
sessing normal distributions with means EXi = θi and variance σ 2/n. The para-
meter is the mean vector θ = (θ1, θ2, . . . ) and is known to belong to a subset �

of �2.
This model is a version of the white noise model, and is considered in connec-

tion to confidence regions in Hoffmann and Lepski [20]. (The focus of these au-
thors is on “random normalizing constants” rather than confidence regions, but, as
most of the discussants of their paper, we interpret their results with respect to their
implications for confidence regions.) Hoffmann and Lepski [20] assume that there
is a largest model � of interest, and exhibit confidence regions that are adaptive
to finitely many submodels. Our construction allows infinitely many submodels
and yields confidence regions around arbitrary initial estimators θ̂ (n), for example,
adaptive ones. Hoffmann and Lepski consider the general setting of anisotropic
regression models, but we illustrate our method for the regularity classes of Exam-
ple 1.1 only.

We can use the same device as in Example 1.2 to duplicate the observations, at
the cost of doubling the variance σ 2.

Typically one chooses � to be a relatively small subset of �2. Then it is easy
to find good estimators of σ 2, and it is not necessary to assume that σ 2 is a priori
known. For instance, if � is an ellipsoid of the form {θ ∈ �2 :

∑∞
i=1 θ2

i i2β < ∞},
then we may base an estimate of σ 2 on the observations Xk+1,Xk+2, . . . ,Xk+m

for sufficiently large integers k,m, which are approximately N(0, σ 2)-distributed
for large k. The availability of an infinite sequence allows one to control the bias
and variance of estimators of σ 2 to arbitrary precision by choosing k and m, re-
spectively, sufficiently large.

EXAMPLE 1.4 (Density estimation). In this model the observation is an i.i.d.
sample X1, . . . ,Xn from a density f relative to some measure µ on a measurable
space (X,A). The density f is known to belong to a subset F of L2(X,A,µ).

We can cast this example into a problem of estimating a sequence θ =
(θ1, θ2, . . . ) of parameters by expanding f on a fixed orthonormal basis e1, e2, . . .

of L2(X,A,µ). This expansion takes the form of the Fourier series f = ∑
i θiei ,

for the Fourier coefficients θi = 〈f, ei〉 = Eei(X1).
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The empirical Fourier coefficients Yi = n−1 ∑n
j=1 ei(Xj ) are unbiased estima-

tors of the parameters θi . However, they are only approximately normally dis-
tributed and not independent, and it seems not fruitful to cast this example into
the framework of the sequence model of Example 1.3 with observational vector
(Y1, Y2, . . . ). The Le Cam equivalence of the white noise model and the density
estimation model, proved under conditions by Nussbaum [35], offers a different
connection between the two examples, but can be used only if F is restricted and
yields regions of complicated form. (The latter objection is alleviated by the recent
constructions of Brown, Carter, Low and Zhang [10].) Our direct approach gives
concrete confidence sets and in wider generality.

We can split the sample into two independent halves to construct the center θ̂ (n)

and the radius Rn(θ̂
(n)) of the confidence set.

There is no parameter σ 2 to be dealt with in this example.

EXAMPLE 1.5 (Random regression). In this model the observation is an i.i.d.
sample (X1, Y1), . . . , (Xn,Yn) from the distribution of a vector (X,Y ) described
structurally as Y = f (X) + ε, for (X, ε) a random vector with E(ε|X) = 0 and
E(ε2|X) < ∞ almost surely. The regression function f is known to belong to a
subset F of L2(X,A,PX) for PX the marginal distribution of X, which is as-
sumed known. The variance function σ 2(x) = E(ε2|X = x) need not be known,
although for confidence intervals that are honest in σ 2 we need a known upper
bound. We do not assume that the errors are normally distributed, and we do not
assume that X and ε are independent.

As in Example 1.4 we can cast this example into a problem of estimating a
sequence θ = (θ1, θ2, . . . ) of parameters by expanding f on a fixed orthonor-
mal basis e1, e2, . . . of L2(X,A,PX). The Fourier coefficients take the form
θi = 〈f, ei〉 = Eei(X)Y .

The Fourier coefficients can be estimated unbiasedly by the estimators Zi =
n−1 ∑n

j=1 Yjei(Xj ), but, as in Example 1.4, it appears not useful to try and reduce
the model to the sequence model of Example 1.3 by considering (Z1,Z2, . . . ) as
the observation.

The assumption that the design distribution PX is known may be realistic in
some practical situations, but is unpleasant. Perhaps it is a little surprising that
it is not a merely technical assumption, but essential for the construction of our
confidence sets. We intend to show elsewhere that the radius of the confidence
sets will increase if PX is unknown, in varying amount, depending on what a pri-
ori assumptions are made on PX . If PX is completely unknown, then intuitively
this model should be equivalent to the fixed design regression model discussed in
Example 1.6.

EXAMPLE 1.6 (Fixed regression). In this model the observation is a vector
Y = (Y1, . . . , Yn) of independent random variables distributed according to the re-
gression model Yi = f (xi) + εi , for ε1, . . . , εn i.i.d. normal variables with Eεi = 0
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and Eε2
i = σ 2 and x1, . . . , xn known constants. The variance σ 2 is known and the

function f is known to belong to a subset F of L2(X,A,µ) for some distribu-
tion µ.

Genovese and Wasserman [18] put this model in a sequence framework by ex-
pansion of the regression function on an empirical wavelet basis. They justify
Beran [4] and Beran and Dümbgen [5] REACT confidence sets in terms of an
honest confidence set over β-regular regression functions f , described in terms
of a wavelet expansion. This is also the model treated by Juditsky and Lambert-
Lacroix [25].

The model can be seen to reduce to a version of the finite sequence model of Ex-
ample 1.2. All information about the regression function f outside the design set
{x1, . . . , xn} must stem from the model and not from the data. This point was made
previously in Li [32], who gives the regression model as motivation for studying
the finite sequence model. We shall not further discuss this model separately.

2. Construction of confidence regions. Our method is based on sample split-
ting. We suppose that initial estimators θ̂ (n) are given, and construct the confidence
region based on θ̂ (n) and an additional independent observation X(n). It was dis-
cussed previously how to split the data into independent “halves” that can be used
for constructing θ̂ (n) and X(n). The nature of the initial estimator θ̂ (n) is irrelevant
for the honesty of the confidence procedure, and hence θ̂ (n) can be any of our fa-
vorite estimators. In particular, it can be an estimator that adapts to a selection of
models of our choice.

Our confidence regions are based on estimators Rn(θ̂
(n)) = Rn(θ̂

(n),X(n)) of
the squared norm ‖θ − θ̂ (n)‖2 such that

lim inf
n→∞ inf

θ∈�
Pθ

(
Rn

(
θ̂ (n)) − ∥∥θ − θ̂ (n)

∥∥2 ≥ −zατ̂n,θ |θ̂ (n)) ≥ 1 − α,(2.1)

for “scale estimators” τ̂n,θ and “quantiles” zα . The probability is computed con-
ditionally given the estimators θ̂ (n), and hence refers only to the observation X(n)

used to calculate Rn(θ̂
(n)) and τ̂n,θ . In view of Fatou’s lemma the unconditional

coverage probability will also be at least 1 − α. Then the set

Ĉn = {
θ ∈ � :

∥∥θ − θ̂ (n)
∥∥ ≤

√
zατ̂n,θ + Rn

(
θ̂ (n)) }

(2.2)

is an honest confidence region with coverage probability at least 1 − α. (Define√
x to be 0 if x < 0.) The confidence region Ĉn is in general not a ball. However,

in all our examples the scale estimators τ̂n,θ satisfy

τ̂n,θ � τ̂n + ‖θ − θ̂ (n)‖√
n

,

where � denotes smaller than up to a constant which is fixed by the setting and τ̂n

is independent of θ and determined by the size of the parameter set �. It can be
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seen from this that the diameter of the confidence region satisfies

diam(Ĉn) �
√

τ̂n +
√

Rn

(
θ̂ (n)) + n−1/2.(2.3)

(See the proof of the proposition below for a precise argument.) The last term on
the right is the parametric rate of estimation and is typically negligible relative to
the other terms. The first term

√
τ̂n depends on the supermodel � and its size is

typically the same on every submodel.
The possibility of adaptation hinges on the second term. Typically (2.1) extends

to a full, two-sided comparison, of the form |Rn(θ̂
(n)) − ‖θ − θ̂ (n)‖2| = OPθ (τ̂n,θ )

uniformly in θ ∈ �. Then it follows that the diameter of Ĉn is of the order, uni-
formly in θ ∈ �,

diam(Ĉn) = OPθ

(√
τ̂n + ∥∥θ̂ (n) − θ

∥∥ + n−1/2)
.

The diameter of the confidence set on a given submodel �1 ⊂ � is bounded above
by the biggest order of the expression on the right-hand side under θ , for θ ranging
over �1. For small submodels, or more generally submodels where the estimators
θ̂ (n) perform well, the diameter will be dominated by the term

√
τ̂n, the rate of

the estimators of ‖θ − θ̂ (n)‖2. On the other hand, in bigger submodels the term
‖θ̂ (n) − θ‖ may dominate. It is thus that we achieve adaptation to smaller models,
but only up to the order

√
τ̂n.

It is apparent from the preceding description that our confidence regions depend
crucially on good estimators of the squared distance ‖θ − θ̂ (n)‖2 of the parameter
θ to the point θ̂ (n). The latter point θ̂ (n) may be considered fixed, as we condi-
tion on the initial estimator. The problem of constructing such estimators is there-
fore closely connected to the problem of estimating the squared norm ‖θ‖2 of a
Hilbert space-valued parameter. In some examples this is straightforward, but in
the situations of density estimation and regression this problem is more involved.
Fortunately, in the latter cases the estimation of a “quadratic functional” has been
studied in detail by, among others, Fan [17], Bickel and Ritov [6], Laurent [26, 27]
and Laurent and Massart [28], whose work obtains additional relevance in the
present paper. The more recent papers consider adaptive estimators of the squared
norm, but for our purposes optimal estimation under the biggest model will be
sufficient. In view of their simplicity we shall adapt the constructions of Laurent
[26, 27] to our purposes, but other approaches could be used as well.

This method consists of estimating the squared norm ‖�kθ − �kθ̂
(n)‖2 of the

projection of the difference θ − θ̂ (n) [where �kθ = (θ1, . . . , θk,0,0, . . . )] unbias-
edly and trading off the resulting (squared) bias versus the variance of the estima-
tor. Under the assumption that θ̂ (n) takes its values in �, the bias is bounded by a
multiple of

B2
k := sup

θ∈�

‖θ − �kθ‖2.(2.4)
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The variance turns out to be of the order, for a parameter σ 2 that depends on the
setting,

τ̂ 2
k,n,θ := 2σ 4k

n2 + 4σ 2‖�kθ − �kθ̂
(n)‖2

n
.(2.5)

The root τ̂k,n,θ of this variance and the bias B2
k must be incorporated into the

variable τ̂n,θ as in (2.1). We define τ̂n = √
2σ 2

√
k/n + B2

k , and conclude, in view
of (2.3), that the diameter of the resulting confidence set (2.2) is of the order

σk1/4
√

n
+ B2

k + ∥∥θ − θ̂ (n)
∥∥ + σ√

n
.(2.6)

We can now choose an optimal value of k by trading off k1/4/
√

n versus Bk .
The parameter σ may depend on the unknown θ , but in that case must be uni-

formly bounded over the supermodel �.
For later reference we formalize the preceding as a proposition. Rather than

making assumptions on bias and variance, we assume that the estimation rate of
the estimators Rk,n(θ̂

(n)) is of the order as in the preceding discussion: for τ̂k,n,θ

as in (2.5), some number zα and any sequences kn → ∞ and Mn → ∞,

lim sup
n→∞

sup
θ∈�

Pθ

(
Rkn,n

(
θ̂ (n)) − ∥∥�knθ − �knθ̂

(n)
∥∥2 ≤ −zατ̂kn,n,θ

) ≤ α,(2.7)

lim sup
n→∞

sup
θ∈�

Pθ

(∣∣Rkn,n

(
θ̂ (n)) − ∥∥�knθ − �knθ̂

(n)
∥∥2∣∣ ≥ Mnτ̂kn,n,θ

) → 0.(2.8)

Of course, the second equation implies that the first is satisfied for sufficiently
large zα , whereas an “absolute version” of the first equation for all α ∈ (0,1) will
imply the second one.

PROPOSITION 2.1. Suppose that Rk,n(θ̂
(n)) are estimators that satisfy

(2.7)–(2.8) for τ̂k,n,θ given in (2.5) and some σ ∈ (0, σ̄ ]. Assume that θ̂ (n) takes its
values in �. Then for Bk given in (2.4) the sets

Ĉn = {
θ ∈ � :

∥∥θ − θ̂ (n)
∥∥ ≤

√
zατ̂kn,n,θ + Rkn,n

(
θ̂ (n)) + 2Bkn

}
are honest (1 − α)-confidence sets for θ ∈ �, for any kn → ∞, with diameter
satisfying, for any Mn → ∞,

lim sup
n→∞

sup
θ∈�

Pθ

(
diam(Ĉn) ≥ Mn

[
σ̄ k

1/4
n√
n

+ Bkn + ∥∥θ − θ̂ (n)
∥∥])

= 0.

PROOF. By (2.4) the difference ‖θ − θ̂ (n)‖ is bounded above by ‖�k(θ −
θ̂ (n))‖ + 2Bk . Therefore, by the definition of Ĉn,

Pθ (θ /∈ Ĉn) ≤ Pθ

(∥∥�k

(
θ − θ̂ (n))∥∥ >

√
zατ̂kn,n,θ + Rkn,n

(
θ̂ (n)) )

.
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In view of (2.7) the right-hand side is asymptotically bounded above by α, uni-
formly in θ ∈ �. Hence Ĉn is an asymptotic confidence region of confidence level
1 − α.

In view of the form (2.5) of τ̂k,n,θ every element θ of Ĉn satisfies

∥∥θ − θ̂ (n)
∥∥ ≤

√
zα

√
2σ 2

√
k

n
+ Rkn,n

(
θ̂ (n)

) + 2Bkn +
√

zα2σ

n1/4

√∥∥θ − θ̂ (n)
∥∥.

The inequality x ≤ B + A
√

x for real numbers x and positive real numbers
A and B implies that x ≤ 2B + 2A2. We conclude that the diameter of Ĉn is
bounded by a multiple of

σ̄ k1/4
√

n
+

√
Rkn,n

(
θ̂ (n)

) + Bkn + σ̄√
n
.

The variables Rkn,n(θ̂
(n)) are with Pθ -probability tending to 1 bounded above by

a multiple of ‖�knθ − �knθ̂
(n)‖2 + Mnτ̂kn,n,θ , for any given Mn → ∞, by (2.8).

Therefore, with probability tending to 1 the diameter of Ĉn is bounded by

σ̄ k1/4
√

n
+ ∥∥θ − θ̂ (n)

∥∥ + √
Mnτ̂k,n,θ + Bkn + σ̄√

n
.

Here the last term is negligible relative to the first. The proposition follows in
view of the form (2.5) of τ̂k,n,θ and the inequality σk1/4/

√
n+√

σ
√

x/n1/4 +x ≤
2σk1/4/

√
n + 2x, which is valid for any k ≥ 1, x ≥ 0 and σ > 0. �

The natural (or “naive”) estimators Rn(θ̂
(n)) of ‖θ − θ̂ (n)‖2 in our examples

assume negative values, which could lead to a confidence set Ĉn in (2.2) of zero
diameter. This is unlike the usual situation in parametric models, where

√
n times

the radius of a confidence region for θ generally has the desirable property of tend-
ing in probability to a positive constant. In practice it might be useful to eliminate
the possibility of radii of zero by substituting for the right-hand side of (2.2) a
more conservative cut-off, given by the maximum of the current right-hand side
and

√
zατ̂n,θ (or perhaps

√
zατ̂n,θ /2 ).

EXAMPLE 2.1 (Model of dimension n). If � = R
n, then we can avoid a bias

by choosing k = n. Then the diameter of the confidence sets is of the order equal
to the maximum of n−1/4 and the estimation error ‖θ − θ̂ (n)‖.

EXAMPLE 2.2 (Regular models). The usual models to define regular parame-
ter are the ellipsoids S(β,L) = {θ ∈ �2 :

∑∞
i=1 θ2

i i2β ≤ L2}, for β > 0 and L > 0
given. Suppose we choose � = S(β,L) for fixed values of β and L as the super-
model, on which we require honesty, and consider adaptation on ellipsoids defined
by different parameter values.



240 J. ROBINS AND A. VAN DER VAART

If we cut off the series expansion at level k, then the maximal squared bias is
equal to

sup
θ∈S(β,L)

∞∑
i=k+1

θ2
i ≤ sup

θ∈S(β,L)

∞∑
i=k+1

θ2
i

(
i

k

)2β

≤ L2

k2β
.

This leads to the trade-off k1/4/
√

n ∼ L/kβ , resulting in a cut-off of the order

k ∼ L4/(4β+1)n1/(2β+1/2)

and a bias of the order n−β/(2β+1/2)L1/(4β+1).
This choice of k is compatible with k ≤ n only if β ≥ 1/4. Thus if θ is restricted

to R
n, as in the finite sequence model, then we consider submodels S(β,L) with

β ≥ 1/4 only.
For this choice of k we obtain a confidence region for the full parameter θ ∈ �2

of diameter of order equal to the maximum of n−β/(2β+1/2) and the estimation
error ‖θ − θ̂ (n)‖. The lower bound n−β/(2β+1/2) and the cut-off k are for some
values of β given in the third and fourth columns of Table 1.

Thus the role of the minimal diameter n−1/4 in the preceding example is now
taken over by n−β/(2β+1/2).

For the initial estimators θ̂ (n) there is a variety of choices. A relatively simple
scheme is to choose θ̂ (n) to adapt to all regularity classes S(γ,M) in the sense that,
for all γ ≥ β and all M > 0, for some constants Cγ,M ,

sup
θ∈S(γ,M)

Eθ

(
θ̂ (n) − θ

)2 ≤ Cγ,Mn−2γ /(2γ+1).

Such estimators exist in the examples considered in the Introduction. In fact, there
exist estimators that adapt to a much larger collection of submodels than only the
Sobolev models considered in this paper. Combined with our construction this
will lead to a confidence region around θ̂ (n) of diameter of the order n−γ /(2γ+1)

uniformly over S(γ,M) if γ ∈ [β,2β], and of the order n−β/(2β+1/2) over S(γ,M)

for other indices γ .

3. Sequence models. Suppose that we observe an infinite sequence X =
(X1,X2, . . . ) of independent random variables Xi possessing means EXi = θi

and variances σ 2/n. The parameter θ = (θ1, θ2, . . . ) is known to belong to a sub-
set � of �2. This formulation encompasses both the finite and the infinite se-
quence models of Examples 1.2 and 1.3, if in the former case it is understood
that � ⊂ Rn := {θ ∈ �2 : θi = 0, i > n} and that Xn+1,Xn+2, . . . may not be used
to estimate σ 2. Our main interest is in the case where the Xi are also normally
distributed, but we also consider the more general situation. The assumption of
normality allows a precise and simple derivation of the radius of a confidence re-
gion. In a final subsection we also indicate how to obtain confidence sets with
guaranteed level for finite n.
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3.1. Normal distributions. In this section we assume in addition to the preced-
ing that each Xi is normally distributed.

Given an initial estimator θ̂ (n), based on observations that are independent of X,
our estimator for ‖θ − θ̂ (n)‖2 is given by

Rk,n

(
θ̂ (n)) =

k∑
i=1

(
Xi − θ̂

(n)
i

)2 − kσ 2

n
.(3.1)

Here k = kn is chosen dependent on � and/or �1, where we must have k ≤ n in the
finite sequence model. This estimator is combined with the estimator of variance
(random only in its dependence on θ̂ (n))

τ̂ 2
k,n,θ = 2kσ 4

n2 + 4σ 2

n

k∑
i=1

(
θi − θ̂

(n)
i

)2
.(3.2)

We shall show that Rk,n(θ̂
(n)) tends in distribution to a normal distribution, uni-

formly in θ ∈ �2. This allows us to construct confidence sets of the type (2.2)
by using normal quantiles for the values zα . [Because Rk,n and τ̂k,n,θ depend in
fact only on (θ1, . . . , θk), “uniformly in θ ∈ �2” means effectively “uniformly in
(θ1, . . . , θk) ∈ R

k .”] Because Rk,n(θ̂
(n)) is a sum of independent variables, its as-

ymptotic normality is not a surprise. The main contribution of the following theo-
rem is that this asymptotic normality is uniform in θ , without any conditions on the
initial estimators θ̂ (n). This depends crucially on the normality of the observations.

The convergence in the following theorem may be understood in the almost
sure sense. As the proof shows, the weak convergence is actually uniform in the
values θ̂ (n).

THEOREM 3.1. For any kn → ∞ as n → ∞,

sup
θ∈�2

sup
x∈R

∣∣∣∣Pθ

(
Rkn,n(θ̂

(n)) − ∑kn

i=1(θi − θ̂
(n)
i )2

τ̂kn,n,θ

≤ x
∣∣∣θ̂ (n)

)
− 	(x)

∣∣∣∣ → 0.

PROOF. We can express the variable (Rk,n(θ̂
(n)) − ∑k

i=1(θi − θ̂
(n)
i )2)/τ̂k,n,θ

in the independent standard normal variables εi defined by Xi = θi + (σ/
√

n )εi

as

1

τ̂k,n,θ

(
k∑

i=1

(ε2
i − 1)

σ 2

n
+ 2σ√

n

k∑
i=1

(
θi − θ̂

(n)
i

)
εi

)

= 1√
2k

k∑
i=1

(ε2
i − 1)An,k(θ) +

∑k
i=1(θi − θ̂

(n)
i )εi√∑k

i=1(θi − θ̂
(n)
i )2

Bn,k(θ),
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for the positive constants whose squares are given by

Ak,n(θ)2 = 1

1 + (2n/kσ 2)
∑k

i=1(θi − θ̂
(n)
i )2

,

Bk,n(θ)2 =
∑k

i=1(θi − θ̂
(n)
i )2

(kσ 2/2n) + ∑k
i=1(θi − θ̂

(n)
i )2

.

By the rotational invariance of the multivariate standard normal distribution, for
any vector ψ with norm 1 the random vector ((2k)−1/2 ∑k

i=1(ε
2
i − 1),

∑k
i=1 ψiεi)

is equal in distribution to the random vector ((2k)−1/2 ∑k
i=1(ε

2
i − 1),

k−1/2 ∑k
i=1 εi). The latter vector tends in distribution to a vector of two indepen-

dent standard normal variables, as n → ∞. The coefficients Ak,n(θ) and Bk,n(θ)

are contained in the unit interval and satisfy A2
k,n(θ)+B2

k,n(θ) = 1, for any k,n, θ .
We can complete the proof by noting that if a sequence of random vectors

(Xn,Yn) converges in distribution to a random vector (X,Y ), then the sequence
AXn + BYn tends in distribution to AX + BY , uniformly in coefficients (A,B)

belonging to a compact set. �

The theorem shows that Rk,n(θ̂
(n)) is a good estimator of the squared norm

of the projection �k(θ − θ̂ (n)) of θ − θ̂ (n) onto the k-dimensional subspace
{θ ∈ �2 : θi = 0, i > k}, and justifies (2.8) with τ̂ 2

k,n,θ of the order as in (2.5). Thus
Proposition 2.1 yields a confidence region of diameter of the order

σ̄

(
kn

n2

)1/4

+ Bkn + ∥∥θ − θ̂ (n)
∥∥.

EXAMPLE 3.1 (Finite sequence model). In the finite sequence model of Ex-
ample 1.2 with � = R

n, we have bias Bk zero if we choose k = n. This leads to
confidence sets of diameter of the order equal to the maximum of n−1/4 and the
estimation error ‖θ − θ̂ (n)‖.

As was shown by Li [32] and Baraud [1] the n−1/4 lower bound cannot be
improved upon without losing full honesty.

We can influence the term ‖θ − θ̂ (n)‖ by choosing our favorite estimators θ̂ (n).
For instance, we may choose any of the adaptive penalized minimum contrast esti-
mators considered in [8]. As shown by Birǵe and Massart [8] we can adapt to large
classes of a priori models by choosing appropriate penalties.

One choice of penalties leads to estimators that, among other good properties,
satisfy, for every D,

sup
θ∈�D

Eθ

∥∥θ̂ (n) − θ
∥∥2 � σ 2

n

[
D + log

(
2n

D

)
+ 1

]
,

where �D = {θ ∈ Rn : #(θi �= 0) ≤ D}. The confidence sets centered at these es-
timators attain a uniform order equal to the maximum of n−1/4 and

√
D/n +
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√
log(2n/D)/n. As long as D 	 n this improves upon the order 1 rate attained

by the naive chi-square procedure, and we obtain the best possible rate n−1/4 uni-
formly over every set �D with D ≤ √

n. Thus these excellent adaptation properties
of θ̂ (n) result in smaller confidence regions, for more submodels, than those found
in [1], pages 533–536, by a direct construction.

The estimators Rk,n(θ̂
(n)) and τ̂k,n,θ in the preceding theorem depend on σ 2

and hence so far we have implicitly assumed that (an upper bound on) the variance
σ 2 is known. The preceding remains true if it is replaced by a good estimator.

THEOREM 3.2. The assertion of Theorem 3.1 remains true if σ 2 in the defin-
itions (3.1) and (3.2) of Rk,n and τ̂k,n,θ is replaced by estimators σ̂ 2

n such that

sup
θ∈�

Pθ

(√
kn|σ̂ 2

n − σ 2| > ε | θ̂ (n)) → 0.

PROOF. Represent the observations as Xi = θi + (σ/
√

n )ei for independent
standard normal variables ei . It suffices to prove the uniform asymptotic normality
of the variables∑k

i=1(e
2
i − 1)σ 2/n + k(σ 2/n − σ̂ 2/n) + (2σ/

√
n )

∑k
i=1(θi − θ̂

(n)
i )ei√

(2σ̂ 4k/n2) + (4σ̂ 2/n)
∑k

i=1(θi − θ̂
(n)
i )2

.

Therefore, it suffices to prove that, uniformly in θ ∈ �,

2σ̂ 4/n2 + 4σ̂ 2/nk
∑k

i=1(θi − θ̂
(n)
i )2

2σ 4/n2 + (4σ 2/nk)
∑k

i=1(θi − θ̂
(n)
i )2

− 1
P→ 0,(3.3)

√
k

n

(σ̂ 2 − σ 2)√
2σ 4/n2 + (4σ 2/nk)

∑k
i=1(θi − θ̂

(n)
i )2

P→ 0.(3.4)

The absolute value of the left-hand side of (3.3) can be rewritten in the form, for
the constants Cn,k(θ) = 2n/(kσ 2)

∑k
i=1(θi − θ̂

(n)
i )2,

σ̂ 2

σ 2

∣∣∣∣ σ̂
2/σ 2 + Cn,k(θ)

1 + Cn,k(θ)
− 1

∣∣∣∣ ≤
∣∣∣∣ σ̂

2

σ 2 − 1
∣∣∣∣.

Thus this reduces to σ̂ /σ
P→ 1, uniformly in θ . Assertion (3.4) is true as soon as√

k(σ̂ 2 − σ 2)
P→ 0, uniformly in θ . �

In the finite sequence model with � = R
n there is no possibility to estimate σ 2,

and the same is true in the infinite sequence model without some restriction on
the parameter set �. On the other hand, in the infinite sequence model with a
restriction to regular parameters, estimation of σ 2 is easy.
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EXAMPLE 3.2 (Regular models). For given integers l and m consider the es-
timator σ̂ 2 = (n/l)

∑m+l
i=m+1 X2

i . This has mean and variance given by

Eθ σ̂
2 = n

l

m+l∑
i=m+1

(
σ 2

n
+ θ2

i

)
= σ 2 + n

l

m+l∑
i=m+1

θ2
i ,

varθ σ̂ 2 = n2

l2

m+l∑
i=m+1

(
4σ 2θ2

i

n
+ 2σ 4

n2

)
=

(
4nσ 2

l2

m+l∑
i=m+1

θ2
i + 2σ 4

l

)
.

It follows that the mean squared error over the regularity class S(β,L) can be
bounded as

sup
θ∈S(β,L)

Eθ (σ̂
2 − σ 2)2 � n2

l2

1

m4β
+ n

l2

1

m2β
+ 1

l
.

In view of Theorem 3.2 we wish this to be of smaller order than 1/k.
In the infinite sequence model with � = S(β,L) as the biggest model, we

choose k = n1/(2β+1/2) (cf. Example 2.2), and hence we must choose l �
n1/(2β+1/2). These values are shown for some values of β in Table 1. For the min-
imal value of l we must choose m ≥ n1/(2β+1/2) and then the estimator for σ 2

becomes independent of Rk,n(θ̂
(n)). A variety of other combinations of (m, l) will

do as well.
In the finite sequence model with � restricted to S(β,L), truncated to R

n, the
choice l � n1/(2β+1/2) can be realized with l ≤ n only if β > 1/4. We can then
combine it with m of the order n1/(2β+1/2).

3.2. Nonnormal distributions. The assumed normality of the observations
X1,X2, . . . in the preceding section helps one to obtain precise critical values, but
it is not important for the general ideas. In this section let Xi = θi + (σ/

√
n )εi for

an i.i.d. sequence ε1, ε2, . . . with mean zero, variance 1 and finite fourth moment.
Then define Rk,n(θ̂

(n)) as in (3.1) and define the variance estimator

τ̂ 2
k,n,θ = kσ 4 var(ε2

1)

n2 + 4σ 2

n

k∑
i=1

(
θi − θ̂

(n)
i

)2 + 4σ 3

n
√

n

k∑
i=1

(
θi − θ̂

(n)
i

)
cov(ε2

1, ε1).

THEOREM 3.3. For any k and n,

inf
θ∈�2

Pθ

(∣∣∣∣Rk,n(θ̂
(n)) − ∑k

i=1(θi − θ̂
(n)
i )2

τ̂k,n,θ

∣∣∣∣ ≤ 1√
α

∣∣∣θ̂ (n)

)
≥ 1 − α.

PROOF. The quantity Rk,n(θ̂
(n)) is an unbiased estimator of

∑k
i=1(θi − θ̂

(n)
i )2,

and τ̂ 2
k,n,θ is equal to its variance. Therefore, the inequality follows by Chebyshev’s

inequality. �
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The preceding theorem is based on Chebyshev’s inequality, which is notably
imprecise. However, this crude device costs only in terms of the constants and
not in terms of the rate. If Z is exactly standard normal distributed, then we
have that P(|Z| ≥ 1.96) = 0.05, whereas the use of Chebyshev’s inequality
P(|Z| ≥ M) ≤ M−2 would replace the normal quantile 1.96 by M = 0.05−1/2 ≈
4.5, so that the resulting confidence set would be a bit more than two times too
wide.

For many estimators θ̂ (n) we can avoid this penalty, because the quantities
Rk,n(θ̂

(n)) will be asymptotically normal, at least under the overall probability law
governing the initial estimators θ̂ (n) and the observations X(n). This will depend on
the initial estimators θ̂ (n), but the following assumption appears to be reasonable.
Assume that the initial estimators satisfy, for some sequence εn → 0,

sup
θ∈�

Pθ

(
max

1≤i≤kn

∣∣θ̂ (n)
i − θi

∣∣2 > εn

kn∑
i=1

(
θ̂

(n)
i − θi

)2
)

→ 0.(3.5)

THEOREM 3.4. For any kn → ∞ as n → ∞ such that (3.5) holds,

sup
θ∈�2

sup
x∈R

∣∣∣∣Pθ

(
Rkn,n(θ̂

(n)) − ∑kn

i=1(θi − θ̂
(n)
i )2

τ̂kn,n,θ

≤ x

)
− 	(x)

∣∣∣∣ → 0.

PROOF. We can express the variable (Rk,n(θ̂
(n)) − ∑k

i=1(θi − θ̂
(n)
i )2)/τ̂k,n,θ

in the form
k∑

i=1

Ak,n(θ)(ε2
i − 1) +

k∑
i=1

Bi,k,n(θ)εi,(3.6)

for the positive constants given by

Ak,n(θ) = σ 2

nτ̂k,n,θ

,

Bk,n(θ) = 2σ(θi − θ̂
(n)
i )√

nτ̂k,n,θ

.

The terms in the sum (3.6) are conditionally independent under P
(n)
θ given θ̂ (n),

and the sum has conditional mean and variance equal to 0 and 1. If the terms of
the sum also satisfy the conditional Lindeberg condition in probability, then the
variables (3.6) converge conditionally in distribution, in probability. We wish to
show that this is true uniformly in θ ∈ �.

Thus it suffices to prove that for every kn → ∞, every δ > 0 and any sequence
{θn} ⊂ � as n → ∞,

kn∑
i=1

Eθn

(
Akn,n(θn)(ε

2
i − 1) + Bi,kn,n(θn)εi

)21|Akn,n(θn)(ε2
i −1)+Bi,kn,n(θn)εi |>δ → 0.
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For any c ∈ [0,1) and positive numbers A,B we have that (1 − c)(A2 + B2) ≤
A2 +B2 − 2cAB . Because the correlation c between ε2

1 and ε1 is nonnegative and
strictly smaller than 1, this inequality can be used to see that

(1 − c)

(
kσ 4 var(ε2

1)

n2 + 4σ 2

n

k∑
i=1

(
θi − θ̂ (n))2

)
≤ τ̂ 2

k,n,θ .

Consequently,

max
1≤i≤k

(
A2

k,n(θ) + B2
i,k,n(θ)

)
� 1

k
+ max1≤i≤k(θi − θ̂

(n)
i )2∑k

i=1(θi − θ̂
(n)
i )2

.

By assumption the right-hand side converges to zero in probability, as k = kn → ∞
and n → ∞. We also have that

∑k
i=1(A

2
k,n(θ) + B2

i,k,n(θ)) is uniformly bounded.
We can conclude that the Lindeberg condition is satisfied. �

3.3. Exact simulation. The procedures in the preceding section can be imple-
mented as soon as the lower-order moments of the errors εi are known (or can
be estimated). If the full distribution of the errors is available, then we may also
obtain exact, finite-sample confidence regions. This observation is even of interest
in the case of Gaussian errors.

The variable (Rk,n(θ̂
(n))−∑k

i=1(θi − θ̂
(n)
i )2)/τ̂k,n,θ can be written as a function

Sk,n(ε1, . . . , εn, θ, θ̂ (n)), as in (3.6) in the proof of Theorem 3.4. This representa-
tion allows simulation of the distribution of the given variable under θ , for every
fixed θ ∈ �. Thus in principle we can find the α-quantile −zα(θ) of this distribu-
tion, for every θ . Then Ĉn given in Proposition 2.1, but with zα replaced by zα(θ),
is a valid (1 − α)-confidence region.

Under the conditions of Theorem 3.4 the quantiles zα(θ) converge to Gaussian
quantiles, uniformly in θ .

4. Density estimation. Suppose that we observe an i.i.d. sample X1, . . . ,Xn

from a density f relative to some measure µ on a measurable space (X,A). Let
θ = (θ1, θ2, . . . ) be the Fourier coefficients of f relative to a given orthonormal ba-
sis of L2(X,A,µ), and let � correspond to the collection of all densities deemed
possible. Assume that the densities θ ∈ � are uniformly bounded.

Given an initial estimator θ̂ (n) our estimator for ‖θ − θ̂ (n)‖2 is given by

Rk,n

(
θ̂ (n)) = 1

n(n − 1)

n∑∑
r �=s=1

k∑
i=1

(
ei(Xr) − θ̂

(n)
i

)(
ei(Xs) − θ̂

(n)
i

)
.

Here k = kn is chosen dependent on �. We combine this with the variance estima-
tor

τ̂ 2
k,n,θ = 2k‖f ‖2∞

n(n − 1)
+ 4‖f ‖∞

n

k∑
i=1

(
θi − θ̂

(n)
i

)2
.
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THEOREM 4.1. For any k,n,

sup
θ∈�

Eθ

((
Rk,n(θ̂

(n)) − ∑k
i=1(θi − θ̂

(n)
i )2

τ̂k,n,θ

)2∣∣∣θ̂ (n)

)
≤ 1.

PROOF. The estimator Rk,n(θ̂
(n)) is a U -statistic of order 2 with kernel

h(x, y) = ∑k
i=1(ei(x) − θ̂

(n)
i )(ei(y) − θ̂

(n)
i ). Its mean is equal to

Eh(X1,X2) =
k∑

i=1

(
θi − θ̂

(n)
i

)2
.

Its Hoeffding decomposition (e.g., [39], Section 11.4) is

Rk,n(θ̂
(n)) = Eh(X1,X2) + 1

n

n∑
r=1

P1h(Xr)

(4.1)

+ 1

n(n − 1)

∑∑
r �=s

P1,2h(Xr,Xs),

for the “kernel functions” given by

P1h(x) = 2
k∑

i=1

(
θi − θ̂

(n)
i

)(
ei(x) − θi

)
,

P1,2h(x, y) =
k∑

i=1

(
ei(x) − θi

)(
ei(y) − θi

)

=
k∑

i=1

ei(x)ei(y) −
k∑

i=1

θi

(
ei(x) + ei(y)

) +
k∑

i=1

θ2
i .

The three terms of the Hoeffding decomposition and also each of the individ-
ual terms in its sums are uncorrelated. Furthermore, the variance of the last term
in (4.1) is equal to 2/(n(n − 1))varP1,2h(X1,X2).

The variance of a factor in the linear term can be bounded as

var(P1h(X1)) = 4E

(
k∑

i=1

(
θi − θ̂

(n)
i

)
ei(X1)

)2

≤ 4‖f ‖∞
∫ (

k∑
i=1

(
θi − θ̂

(n)
i

)
ei

)2

dµ = 4‖f ‖∞
k∑

i=1

(
θi − θ̂

(n)
i

)2
,

by the orthonormality of the functions ei in L2(µ).



248 J. ROBINS AND A. VAN DER VAART

The variables
∑k

i=1(ei(X1) − θi)(ei(X2) − θi) and
∑k

i=1 θi(ei(X1) + ei(X2))

are uncorrelated and their sum is
∑k

i=1 ei(X1)ei(X2) + ∑k
i=1 θ2

i . It follows that

var
(
P1,2h(X1,X2)

) = var
k∑

i=1

ei(X1)ei(X2) − var
k∑

i=1

θi

(
ei(X1) + ei(X2)

)
.

This becomes bigger if we leave out the second variance on the right and re-
place the first variance on the right by the second moment E(

∑k
i=1 ei(X1)ei(X2))

2,
which can be bounded by

‖f ‖2∞
∫ ∫ (

k∑
i=1

ei(x)ei(y)

)2

dµ(x) dµ(y) = k‖f ‖2∞,

by the orthonormality of the functions ei in L2(µ). �

By Markov’s inequality, if we choose zα = √
1/α, then

inf
θ∈�

Pθ

(∣∣∣∣∣Rk,n

(
θ̂ (n)) −

k∑
i=1

(
θi − θ̂

(n)
i

)2

∣∣∣∣∣ ≤ zατ̂k,n,θ | θ̂ (n)

)
≥ 1 − α.

The present variance τ̂ 2
k,n,θ has exactly the same form as in Section 3, with ‖f ‖∞

playing the role of σ 2. For more precision we can express ‖f ‖∞ in θ , and it is not
necessary to know a uniform bound on the regression functions. The approxima-
tion (2.8) with τ̂ 2

k,n,θ of the order as in (2.5) is again satisfied and Proposition 2.1
yields a confidence region of diameter of the order, with M a uniform bound on �,

M

(
kn

n2

)1/4

+ Bkn + ∥∥θ − θ̂ (n)
∥∥.

The corollaries for, for example, regular models are the same.
Depending on the basis functions ei , the resulting confidence region can be

tightened by using higher moments or exponential bounds. Finding an exact limit
distribution appears to be not straightforward. Existing limit results for U -statistics
with changing kernels (e.g. [33]) are based on approximation of the kernel by a
finite product kernel of fixed dimension. In our case the kernel is already in product
form, but the increase in its dimension k is essential.

5. Random regression. Suppose that we observe an i.i.d. sample (X1, Y1),

. . . , (Xn,Yn) from the distribution of a vector (X,Y ) described structurally as Y =
f (X)+ε, for (X, ε) a random vector with E(ε | X) = 0 and σ 2(x) = E(ε2 | X = x)

admitting a bounded version. The distribution PX of X is known and θ1, θ2, . . . are
the Fourier coefficients of the regression function f relative to a given orthonor-
mal basis e1, e2, . . . of L2(PX). We assume that the set of regression functions is
uniformly bounded.
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Given an initial estimator θ̂ (n) our estimator for ‖θ − θ̂ (n)‖2 is given by

Rk,n

(
θ̂ (n)) = 1

n(n − 1)

n∑∑
r �=s=1

k∑
i=1

(
Yrei(Xr) − θ̂

(n)
i

)(
Ysei(Xs) − θ̂

(n)
i

)
.

Here k = kn is chosen dependent on �. We combine this with the variance estima-
tor

τ̂ 2
k,n,θ = 2k(‖f ‖2∞ + ‖σ 2‖∞)2

n(n − 1)
+ 4‖f ‖2∞ + 4‖σ‖2∞

n

k∑
i=1

(
θi − θ̂

(n)
i

)2
.

THEOREM 5.1. For any k,n,

sup
θ∈�

Eθ

((
Rk,n(θ̂

(n)) − ∑k
i=1(θi − θ̂

(n)
i )2

τ̂k,n,θ

)2∣∣∣θ̂ (n)

)
≤ 1.

PROOF. The proof is similar to the proof of Theorem 4.1. The variable
Rk,n(θ̂

(n)) is again a U -statistic of order 2. It has mean
∑k

i=1(θi − θ̂
(n)
i )2 and

Hoeffding decomposition [cf. (4.1), but replace Xi by (Xi, Yi)] with kernels of the
form

P1h(x, y) = 2
k∑

i=1

(
θi − θ̂

(n)
i

)(
yei(x) − θi

)
,

P1,2h(x1, y1, x2, y2) =
k∑

i=1

(
y1ei(x1) − θi

)(
y2ei(x2) − θi

)

=
k∑

i=1

y1y2ei(x1)ei(x2)

−
k∑

i=1

θi

(
y1ei(x1) + y2ei(x2)

) +
k∑

i=1

θ2
i .

By the orthonormality of the functions ei and arguments as in the proof of Theo-
rem 4.1,

varP1h(X,Y ) ≤ 4‖E(Y 2|X)‖∞
k∑

i=1

(
θi − θ̂

(n)
i

)2
,

varP1,2h(X1, Y1,X2, Y2) ≤ ‖E(Y 2|X)‖2∞k.

From Y = f (X) + ε and E(ε|X) = 0 it follows that E(Y 2|X) = f 2(X) +
E(ε2|X) ≤ ‖f ‖2∞ + ‖σ 2‖∞. Combining the preceding bounds we obtain the theo-
rem. �



250 J. ROBINS AND A. VAN DER VAART

The bound given by the preceding theorem is of the same form as the bounds
given in the preceding sections, but with ‖f ‖2∞ +‖σ 2‖∞ playing the role of σ 2 in
Section 3. Again (2.8) is justified with τ̂ 2

k,n,θ of the order as in (2.5). Proposition 2.1
gives the same corollaries for confidence regions.

6. Lower bounds. In this section we relate the minimum diameter of a confi-
dence region to the minimax rates for testing and estimation. Consider a sequence
of statistical experiments (P

(n)
θ : θ ∈ �) indexed by a parameter θ ∈ � in a metric

space (�,d) and a submodel indexed by a subset �1 ⊂ �. We are interested in the
maximal diameter over �1 of confidence regions that are honest over the whole
model �.

We shall silently understand that appropriate measurability assumptions regard-
ing the confidence regions are satisfied.

Given 0 < α < β < 1, let εn be a sequence of positive numbers such that there
exists no sequence of tests φn satisfying the two requirements, for some given
subsets �n,1 ⊂ �1,

lim sup
n→∞

sup
θ∈� : d(θ,�n,1)>εn

P
(n)
θ φn < α,(6.1)

lim sup
n→∞

sup
θ∈�n,1

P
(n)
θ (1 − φn) < β.(6.2)

This can only be satisfied if α + β ≤ 1, because otherwise the trivial test φn ≡ α′
for some α′ with α′ < α and 1 − α′ < β satisfies (6.1)–(6.2). For β ≤ 1 − α < 1,
the condition is satisfied for εn equal to what Ingster [23] calls a rate of “not as-
ymptotic indistinguishability of the hypotheses.” The following lemma shows that
the diameter over �1 of an honest confidence set is at least of the order εn.

LEMMA 6.1. For given 0 < α < β < 1 and subsets �n,1 ⊂ �1, if there exists
no sequence of tests φn satisfying (6.1)–(6.2), then for any sequence of confidence
sets Ĉn satisfying (1.1),

lim sup
n→∞

sup
θ∈�1

P
(n)
θ

(
diam(Ĉn) ≥ εn

)
> β − α.

PROOF. Let �n,0 = {θ ∈ � :d(θ,�n,1) > εn}. Given a sequence of confi-
dence sets Ĉn satisfying (1.1) define tests by φn = 1

d(Ĉn,�n,0)>0.

If θ ∈ �n,0 and d(Ĉn,�n,0) > 0, then θ /∈ Ĉn. Therefore, from (1.1) it is imme-
diate that these tests satisfy (6.1).

If θ ∈ �n,1, d(Ĉn,�n,0) = 0 and θ ∈ Ĉn, then diam(Ĉn) ≥ εn. [Indeed, for
every δ > 0 there exist points c ∈ Ĉn and θn ∈ �n,0 with d(c, θn) < δ. By the def-
inition of �n,0 we have d(θn,�n,1) > εn and hence d(θn, θ) > εn. By the triangle
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inequality d(c, θ) > εn − δ.] It follows that, for every θ ∈ �n,1,

P
(n)
θ (1 − φn) = P

(n)
θ

(
d(Ĉn,�n,0) = 0

)
≤ P

(n)
θ

(
diam(Ĉn) ≥ εn

) + P
(n)
θ (θ /∈ Ĉn).

By (1.1) the second term on the right-hand side is strictly asymptotically smaller
than α, uniformly in θ ∈ �. If the first term on the right-hand side were asymptot-
ically smaller than β − α, uniformly in θ ∈ �1, thus contradicting the assertion of
the lemma, then the left-hand side would be asymptotically strictly less than β , so
that the tests would also satisfy (6.2). �

To obtain a lower bound for supθ∈�1
P

(n)
θ (diam(Ĉn) > εn) we can apply the

preceding lemma with �n,1 = �1, but also with every subset of �1. In particular,
we may apply the lemma with a one-point set �n,1 = {θ1}, for any θ1 ∈ �1. For
regularity models �, Ingster [23] characterizes the minimax rate for exactly these
one-point problems. He shows that there exists a rate ε∗

n such that the sum of
the error probabilities (6.1)–(6.2) goes to zero if εn/ε

∗
n → ∞ and goes to 1 if

εn/ε
∗
n → 0. Thus the condition of the lemma is satisfied for any 0 < α < β < 1

with α + β ≤ 1 and εn with εn/ε
∗
n → 0. The lemma then says that the weak limit

points in [0,∞] of the distribution of diam(Ĉn)/ε
∗
n have a component of size at

least β − α concentrated on (0,∞]. In other words, the order of the diameter is at
least ε∗

n.
The relationship between the diameter of confidence regions and the minimax

rate for estimation is less perfect, due to the fact that the risk for estimation con-
cerns the complete distribution of an estimator, whereas a confidence region at
level 1 − α leaves a mass of size α completely undiscussed.

A key result is as follows. Let β ≥ 0 be given, and let εn be a sequence of
positive numbers such that for every estimator sequence Tn

lim inf
n→∞ sup

θ∈�1

P
(n)
θ

(
d(Tn, θ) ≥ εn

)
> β.(6.3)

LEMMA 6.2. For given 0 < α < β < 1, if (6.3) holds for every estimator
sequence Tn, then for any sequence of confidence sets Ĉn satisfying (1.1),

lim inf
n→∞ sup

θ∈�1

P
(n)
θ

(
diam(Ĉn) ≥ εn

)
> β − α.

PROOF. Given a sequence of confidence sets Ĉn, define for each n an estima-
tor Tn to be an arbitrary point in Ĉn. Then, for any θ ∈ �1,

P
(n)
θ

(
d(Tn, θ) ≥ εn

) ≤ P
(n)
θ

(
diam(Ĉn) ≥ εn

) + P
(n)
θ (θ /∈ Ĉn).

By (1.1) the second term on the right-hand side is asymptotically smaller than α,
uniformly in θ ∈ �. By assumption the lim inf of the supremum of the left-hand
side over θ ∈ �1 is bounded below by β . �
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If we choose εn faster than the minimax rate, then typically (6.3) holds for some
β > 0. In particular this is true if the minimax rate ε∗

n has the property that for a
“best” estimator sequence Tn the sequence d(Tn, θ)/ε∗

n has all its limit points on
(0,∞]. In that case d(Tn, θ)/εn → ∞, and the right-hand side of (6.3) is 1, for any
sequence εn with εn/ε

∗
n → 0. We may then apply the lemma with any β < 1. More

generally, this argument works if the weak limit points of the sequence d(Tn, θ)/ε∗
n

in [0,∞] possess a point mass of at most β at 0.
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