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Université Paris VI, Université Paris VI and Université Aix-Marseille 1

We consider the problem of estimation of a shift parameter of an un-
known symmetric function in Gaussian white noise. We introduce a notion
of semiparametric second-order efficiency and propose estimators that are
semiparametrically efficient and second-order efficient in our model. These
estimators are of a penalized maximum likelihood type with an appropriately
chosen penalty. We argue that second-order efficiency is crucial in semipara-
metric problems since only the second-order terms in asymptotic expansion
for the risk account for the behavior of the “nonparametric component” of
a semiparametric procedure, and they are not dramatically smaller than the
first-order terms.

1. Introduction. Semiparametric statistical models are the ones containing a
finite-dimensional parameter of interest θ and an infinite-dimensional nuisance pa-
rameter f which is a member of some large functional class. The goal is then to
estimate θ efficiently without knowing f . A comprehensive account of the the-
ory of semiparametric estimation is given in the book of Bickel, Klaassen, Ritov
and Wellner [3]. In particular, it is shown that for many semiparametric models
there exist estimators attaining the same asymptotic performance as efficient para-
metric estimators constructed for the problem where f is completely specified. In
other words, for such semiparametric models there is no loss of efficiency as com-
pared to the corresponding parametric models with known f . These semiparamet-
ric models are usually called adaptive, but we prefer here to call them S-adaptive,
or semiparametrically adaptive, in order to avoid confusion with nonparametric
adaptivity to unknown smoothness of f . Estimators attaining parametric efficiency
in S-adaptive models will be called S-adaptive (or efficient) estimators. Here and
in what follows efficiency is understood in a local asymptotic minimax sense.

There exist various methods of constructing S-adaptive estimators. A general
feature of these methods is that they proceed by “eliminating” the nonparamet-
ric component f , thus reducing the original semiparametric problem to a suitably
chosen parametric one. The most common approach is to specify a least favorable
parametric submodel of the full semiparametric model, locally in a neighborhood
of f , and to estimate θ in such a submodel ([3, 22, 24, 30–32] and the references
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cited therein). Least favorable parametric submodels turn out to depend on f only
via a score function. “Elimination” of f under this approach means to estimate
nonparametrically the efficient score function. Resulting estimators of θ are often
defined via one-step procedures that involve preliminary estimators of θ and non-
parametric estimators of the efficient score function. We note here, in connection
with the discussion that follows below, that results on efficiency and S-adaptivity
are not very sensitive to the choice of preliminary nonparametric estimates of
the efficient score function. For example, kernel, orthogonal series, nonparamet-
ric maximum likelihood and other estimates can be used, under rather wide as-
sumptions on their parameters, such as kernels, bandwidths, etc. The important
question of how to choose these parameters in practice is left open. Among other
approaches that allow one to eliminate f efficiently we mention profile likelihood
techniques [25] and invariance-based inference [13].

Thus, for a variety of semiparametric models, the statistician actually has an
entire library of efficient (S-adaptive) estimators of θ . Which estimator is the best
one? The theory discussed above does not answer this question because it deals
only with the first-order asymptotics, which is the same for all S-adaptive estima-
tors in a given model. Distinguishing between these estimators is possible on the
basis of higher-order asymptotics. This motivates us to study here second-order
asymptotics and second-order semiparametric efficiency. We would like to em-
phasize that a study of second-order effects is more important for semiparametric
models than for purely parametric ones and it is crucial for practical implementa-
tion, at least for the following reasons.

• This is a compelling way to distinguish between various efficient semiparamet-
ric methods and to choose the best among them. More specifically, it allows one
to choose optimally the smoothing parameters that define the “nonparametric
component” of a given family of efficient semiparametric procedures.

• Second-order terms in asymptotics for semiparametric estimators are not dra-
matically smaller than the first-order terms; they might be in fact quite compa-
rable to each other for moderate sample sizes. Second-order terms depend on the
smoothness of f . For example, in a typical case of twice differentiable f we get
second-order terms ∼ n−7/10, the first-order asymptotics being as usual n−1/2,
where n is the sample size. This differs from the purely parametric situation
where the second-order terms decrease as n−1 (cf. [20]).

Whereas first-order efficiency considerations for semiparametric models are es-
sentially of a parametric flavor, the second-order ones come from nonparametric
function estimation. Therefore, it is not surprising that the importance of second-
order semiparametric asymptotics was first realized in the literature on nonpara-
metric smoothing. Härdle and Tsybakov [15] pointed out that, in the single index
model, the second-order term of the risk of the average derivative estimator is not
significantly smaller than the first-order one and suggested choosing the optimal
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bandwidth by minimizing an asymptotic approximation of the second-order term.
Mammen and Park [21] proceeded in a similar way to derive the optimal band-
width for estimation of the efficient score function in the symmetric location prob-
lem. These papers considered specific families of estimators and did not deal with
second-order efficiency among all estimators. Golubev and Härdle [9, 10] studied
partial linear models and suggested second-order efficient estimators as well as
their nonparametrically adaptive versions. These results rely strongly on the lin-
earity and additivity of the parametric component in partial linear models. The
problem of how to treat second-order efficiency for essentially nonlinear models
has remained open, and our aim here is to give a solution to this problem.

We restrict our study to one basic model that seems to capture the main diffi-
culties in deriving second-order efficiency, being at the same time simple enough
to avoid unnecessary technicalities. Namely, we consider the estimation of a shift
parameter θ based on observations

xε(t) = f (t − θ) + εn(t), t ∈ [−1/2,1/2],(1)

where n(t) is the standard Gaussian white noise process on [−1/2,1/2] (cf. [16],
Chapter 3) and f (·) is a smooth symmetric [i.e., f (t) = f (−t),∀ t] periodic func-
tion with period 1, and 0 < ε < 1 is a known noise parameter. With ε = 1/

√
n,

where n is an equivalent sample size, model (1) can be viewed as a “Gaussian
white noise analog” of the classical symmetric location model [2, 26, 27].

If the signal f is known, the maximum likelihood estimator

θ̂ML = arg max
τ

∫ 1/2

−1/2
f (t − τ)xε(t) dt

is locally asymptotically minimax (e.g., [17]). In particular, its mean square risk
satisfies

lim
ε→0

sup
θ∈�

Eθ,f [(θ̂ML − θ)2I ε(f )] = 1,(2)

for any sufficiently small interval �, where

I ε(f ) = ε−2
∫ 1/2

−1/2
[f ′(t)]2 dt

is the Fisher information associated with model (1) and Eθ,f is the expectation
with respect to the distribution of the observation Xε = {xε(t), t ∈ [−1/2,1/2]} in
model (1). The corresponding probability measure will be denoted by Pθ,f .

In a semiparametric setup where f is not known, an efficient and S-adaptive
estimator of θ is suggested by Golubev [8] for a model close to (1) where the ob-
servations are available for all t ∈ R and f is not periodic. Härdle and Marron [14]
discussed semiparametric estimation for models with discrete observations similar
to (1) involving also a scale parameter.
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Here we construct an S-adaptive and second-order efficient semiparametric es-
timator of θ in model (1). It is of penalized maximum likelihood type with an
appropriately chosen penalty. To derive this estimator, we introduce a prior on f

and then maximize both in θ and f the posterior density of f given the observa-
tions. This procedure is of a Bayesian type w.r.t. f for fixed θ . It can be viewed in
the following way: we “eliminate” the nonparametric component using a Bayesian
argument, while the final estimation of θ is realized by maximum likelihood.

We conjecture that the penalized maximum likelihood approach using similar
arguments would be a proper tool to get second-order efficient estimators for other
semiparametric models, and we believe that our technique of proving minimax
lower bounds with second-order terms might be useful there as well.

This paper is organized as follows. In Section 2 we give some heuristics con-
cerning the first- and second-order efficiency in model (1). Section 3 contains the
argument leading to a class of estimators defined by a sequence of weights: we
show how these estimators (that are of penalized maximum likelihood type) are
derived from Bayesian considerations. In Section 4 we show that, under certain as-
sumptions on the sequence of weights, the estimators from this class are S-adaptive
and we study their second-order asymptotics. Section 5 discusses a minimax prob-
lem for the second-order term. In Section 6 we give a locally asymptotically min-
imax lower bound and suggest a second-order efficient estimator obtained with a
particular choice of weights. Sections 7–9 contain the proofs.

2. Some heuristics. This section provides some useful heuristics about first-
and second-order semiparametric efficiency in model (1).

We first explain the result (2) obtained for known f . An intuitive way to do this
is based on a local linear approximation of the signal f (t − θ). Suppose that θ

belongs to a small interval [θ0 − �ε, θ0 + �ε], where �ε > 0 and θ0 are known
and �ε → 0 as ε → 0. This assumption is essentially equivalent to the existence
of a �ε-consistent estimator of θ . For simplicity, we assume that �ε ∼ ε [for
rigorous proofs one needs to take �ε slightly larger than ε, so that �ε/ε → ∞,

as ε → 0, e.g., �ε = ε
√

log(ε−2) ]. Then, replacing f (t − θ) in (1) by its linear
approximation f (t − θ0) − f ′(t − θ0)(θ − θ0), we get the linear model

xε
L(t) = f (t − θ0) − f ′(t − θ0)(θ − θ0) + εn(t), t ∈ [−1/2,1/2].(3)

When f is known we can subtract f (t − θ0) from these observations, thus obtain-
ing an equivalent model,

yε(t) = f ′(t − θ0)(θ − θ0) + εn(t), t ∈ [−1/2,1/2].
Estimation of θ − θ0 in this linear regression model is now straightforward.
Multiplying the observation yε(t) by f ′(t − θ0), integrating over the interval
[−1/2,1/2] and dividing by I ε(f ) we get the Gaussian shift model

Y ε = θ − θ0 + [I ε(f )]−1/2ξ,(4)
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where ξ ∼ N (0,1). Clearly, Y ε is an efficient estimator of θ − θ0. Thus, the ar-
gument here is based on replacing the original nonlinear estimation problem by
a Gaussian shift experiment. A deep theoretical background for this argument is
given by Le Cam’s theory of asymptotic equivalence [19].

Suppose now that f is an unknown symmetric function. Then again we can use
model (3) to approximate the initial model (1). But the approximating model is
now nonlinear since it contains the product of unknown parameters (θ − θ0) and
f ′(t −θ0). Fortunately, this is not a problem, and in this case one can also construct
an efficient estimator.

Indeed, since f ′ is an odd function and f is an even function, projecting the
observations (3) on the spaces of even and odd functions we get

xε
e (t) = f (t − θ0) + εne(t),(5)

xε
o(t) = f ′(t − θ0)(θ − θ0) + εno(t),(6)

where no(t) and ne(t) are two independent Gaussian white noise processes. Based
on xε

e (t), we estimate the derivative f ′(t − θ0) and then plug this estimator into (6)
to recover the parameter of interest from the observation xε

o(t). This allows us to
obtain an efficient (S-adaptive) estimator of θ .

We turn now to a heuristic derivation of second-order asymptotics. In order to
do that we simplify our approximate statistical model (5)–(6) assuming that θ0 = 0
and translating the observations xε

o(t), xε
e (t) in a sequence space.

We will suppose throughout the paper that the unknown function f can be rep-
resented as

f (t) = √
2

∞∑
k=1

fk cos(2πkt),(7)

where the Fourier series converges for all t and the Fourier coefficients fk are
defined by

fk = √
2
∫ 1/2

−1/2
f (t) cos(2πkt) dt.

Using this and projecting (5) and (6) on the trigonometric basis functions we obtain
the sequence model

Xk = fk + εξk, k = 1,2, . . . ,(8)

X∗
k = θ(2πk)fk + εξ∗

k , k = 1,2, . . . ,(9)

where (ξk, ξ
∗
k , k = 1,2, . . . ) are i.i.d. standard Gaussian random variables. The

nuisance parameters fk can be estimated from (8) by well-known techniques for
the Gaussian sequence model (see, e.g., [29]). In particular, it is natural to use
linear estimators of fk defined by f̂k = hkXk, where hk = hk(ε) are such that∑∞

k=1 h2
k < ∞. An example is hk = 1{k≤Nε} where 1{·} is the indicator function

and Nε is an integer such that Nε → ∞ as ε → 0.
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Next, considering separately model (9), it is not hard to show that if fk were
known the maximum likelihood (least squares) estimator

θ̂f =
∞∑

k=1

(2πk)fkX
∗
k

/ ∞∑
k=1

(2πk)2f 2
k(10)

would be asymptotically minimax for θ . At first sight, it seems natural to plug in
f̂k instead of fk in the expression for θ̂f , thus obtaining the estimator

θ̃ =
∞∑

k=1

(2πk)hkXkX
∗
k

/ ∞∑
k=1

(2πk)2h2
kX

2
k .(11)

However, this estimator is not optimal: it can have a very large bias. The reason is
that the functional

∑∞
k=1(2πk)2f 2

k in (10) is not estimated correctly. An improved
version of θ̃ can be suggested in the form

θ∗ =
∞∑

k=1

(2πk)hkXkX
∗
k

/ ∞∑
k=1

(2πk)2hk(X
2
k − ε2).(12)

As compared to (11), we replace h2
k by hk in the denominator and replace X2

k by
the unbiased estimator X2

k − ε2 of f 2
k . This turns out to improve significantly the

asymptotics of the risk.
We now give a heuristic analysis of the risk of θ∗. Using (8)–(9) and the notation

‖f ′‖2 = ε2I ε(f ) = ∑∞
k=1(2πk)2f 2

k , we obtain

(θ∗ − θ)
√

I ε(f ) = ‖f ′‖ χε − 	ε
1∑∞

k=1(2πk)2hkf
2
k + 	ε

2

,(13)

where

χε =
∞∑

k=1

(2πk)hkfkξ
∗
k + ε

∞∑
k=1

(2πk)hkξkξ
∗
k ,

	ε
1 = θ

∞∑
k=1

(2πk)2hkfkξk + θε

∞∑
k=1

(2πk)2hk(ξ
2
k − 1),

	ε
2 = 2ε

∞∑
k=1

(2πk)2hkfkξk + ε2
∞∑

k=1

(2πk)2hk(ξ
2
k − 1).

In order to simplify the expression in (13) we assume that
∑∞

k=1(2πk)4f 2
k < ∞

and that hk are chosen so that ε
∑∞

k=1(2πk)2hk < ∞. Under these conditions,
using |θ | ≤ �ε ∼ ε, one obtains that

Eθ,f [(	ε
1)

2] = O(ε2), Eθ,f [(	ε
2)

2] = O(ε2).
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It is also straightforward to see that Eθ,f (χε	ε
1) = 0, and to show, with some easy

algebra, that

Eθ,f [(χε)2	ε
2] = 4ε3

∞∑
k=1

h3
k(2πk)4f 2

k + 2ε4
∞∑

k=1

h3
k(2πk)4 = O(ε2).

Next note that we are allowed to drop the terms of order O(ε2) since their contri-
bution in the risk (asymptotically, in the mean absolute value) is smaller than the
final second-order asymptotics that we are going to obtain. Up to these terms, we
get from (13)

(θ∗ −θ)
√

I ε(f ) ≈ ‖f ′‖∑∞
k=1(2πk)2hkf

2
k

×
[
χε −	ε

1 −χε	ε
2

( ∞∑
k=1

(2πk)2hkf
2
k

)−1]
,

and thus

Eθ,f [(θ∗ − θ)2I ε(f )] ≈ ‖f ′‖2

( ∞∑
k=1

(2πk)2hkf
2
k

)−2

Eθ,f [(χε)2]

= ‖f ′‖2
∞∑

k=1

(2πk)2h2
k(ε

2 + f 2
k )

( ∞∑
k=1

(2πk)2hkf
2
k

)−2

.

This expression can be simplified if we assume that 0 ≤ hk ≤ 1 and[ ∞∑
k=1

(1 − hk)(2πk)2f 2
k

]2

= o

( ∞∑
k=1

(1 − hk)
2(2πk)2f 2

k

)
(14)

as ε → 0. Then, in particular,
∑∞

k=1(1 − hk)(2πk)2f 2
k = o(1), and one obtains

( ∞∑
k=1

(2πk)2hkf
2
k

)−2

=
(
‖f ′‖2 +

∞∑
k=1

(2πk)2(hk − 1)f 2
k

)−2

≈ ‖f ′‖−4

[
1 − 2‖f ′‖−2

∞∑
k=1

(2πk)2(hk − 1)f 2
k

]
.

Using this and (14) we derive the following expansion for the risk:

Eθ,f [(θ∗ − θ)2I ε(f )] ≈
[

1 + ‖f ′‖−2

( ∞∑
k=1

(2πk)2(ε2h2
k + (h2

k − 1)f 2
k

))]

×
[

1 − 2‖f ′‖−2
∞∑

k=1

(2πk)2(hk − 1)f 2
k

]
(15)

≈ 1 + ‖f ′‖−2Rε[f,h],
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where

Rε[f,h] =
∞∑

k=1

(2πk)2[(1 − hk)
2f 2

k + ε2h2
k].(16)

The second-order term in (15), that is, the functional ‖f ′‖−2Rε[f,h], has a clear
statistical meaning. Suppose that we know θ and we want to estimate the derivative
f ′(t − θ) based on observations (1). To measure the quality of an estimator f̂ ′(t −
θ) we choose the relative mean integrated squared error,

Err(f̂ ′, f ′) = 1

‖f ′‖2 Eθ,f

∫ 1/2

−1/2
[f̂ ′(t − θ) − f ′(t − θ)]2 dt.

Consider a linear estimator

f̃ ′
h(t − θ) = −2

∞∑
k=1

hk(2πk) sin[2πk(t − θ)]
∫ 1/2

−1/2
cos[2πk(t − θ)]xε(t) dt.

Using (7), it is easy to show that Err(f̃ ′
h, f

′) = ‖f ′‖−2Rε[f,h]. Thus, the expres-
sion ‖f ′‖−2Rε[f,h] is a relative mean integrated squared error for nonparametric
estimation of the derivative of f in the Gaussian white noise model. We see that
the second-order expansion (15) relates two statistical problems: semiparametric
estimation of θ and nonparametric estimation in L2-norm of the Fisher informant
f ′(t − θ). It also reveals a presumably general fact that second-order asymptotic
terms in semiparametric problems account for the mean integrated squared error
of recovering of the Fisher informant.

3. Penalized maximum likelihood estimator. In Section 2 we have sketched
second-order asymptotics for the estimator θ∗ in model (8)–(9), which is only a lo-
cal approximation of the original model (1) in a neighborhood of θ0 = 0. Thus, θ∗
is not directly applicable for model (1). Of course, the procedure can be corrected:
instead of replacing θ0 by 0, one should replace it by a preliminary ε-consistent
estimator of θ . This would lead to a two-stage estimation procedure that would
presumably have the desired second-order behavior under some conditions. There
exists, however, a direct and more elegant estimator achieving the same result. This
estimator is inspired by the Bayes argument that we are going to describe now.

Given model (1), we have at our disposition the following series of discrete
observations:

xk = fk cos(2πkθ) + εξk,
(17)

x∗
k = fk sin(2πkθ) + εξ∗

k , k = 1,2, . . . .

Here (ξk, ξ
∗
k , k = 1,2, . . . ) are i.i.d. standard Gaussian random variables,

xk = √
2
∫ 1/2

−1/2
xε(t) cos(2πkt) dt, x∗

k = √
2
∫ 1/2

−1/2
xε(t) sin(2πkt) dt,



SEMIPARAMETRIC SHIFT ESTIMATION 177

and (17) is obtained by projection of (1) on the trigonometric basis functions on
[−1/2,1/2] using (7).

Our aim is to define a suitable estimator of θ using these observations. A general
idea is to “eliminate” first the nonparametric component of the model represented
by the sequence of Fourier coefficients fk (which we consider to be nuisance pa-
rameters). We will proceed as follows. Assume for a moment that the fk’s are in-
dependent zero-mean Gaussian random variables with variances σ 2

k . Assume also
that they are independent of the noise sequence {ξk, ξ

∗
k }. We will replace the se-

quence {fk} by the most probable, with respect to the posterior distribution of {fk}
given {xk, x

∗
k }, sequence {f ∗

k }. Clearly, this sequence will depend only on {xk, x
∗
k }

and θ , and thus {fk} will be eliminated. The final step will be to maximize over θ

the remaining likelihood, thus obtaining an estimator of θ .
To define the procedure formally, note that the problem factorizes: it is sufficient

to find f ∗
k ’s for a fixed k, since the triples xk, x

∗
k , fk with different k are indepen-

dent. Maximizing over fk the posterior density of fk given xk, x
∗
k is equivalent to

maximizing the joint density of xk, x
∗
k , fk , which equals

pθ(xk, x
∗
k , fk) =

(
1√
2π

)3

σ−1
k exp

[
− f 2

k

2σ 2
k

]

× exp
[
−(xk − fk cos(2πkθ))2 + (x∗

k − fk sin(2πkθ))2

2ε2

]

= A(xk, x
∗
k )

× exp
[√

2fk

ε2

∫ 1/2

−1/2
cos[2πk(t − θ)]xε(t) dt − f 2

k (ε2 + σ 2
k )

2ε2σ 2
k

]
,

where A(xk, x
∗
k ) does not depend on fk and θ . The maximizer of pθ(xk, x

∗
k , fk)

over fk has the form

f ∗
k (θ) = √

2λk

∫ 1/2

−1/2
cos[2πk(t − θ)]xε(t) dt,

where λk = σ 2
k

σ 2
k + ε2

and

max
fk

pθ (xk, x
∗
k , fk)

= pθ

(
xk, x

∗
k , f ∗

k (θ)
)

(18)

= A(xk, x
∗
k ) exp

[
λk

(∫ 1/2

−1/2
cos[2πk(t − θ)]xε(t) dt

)2]
.

Set

θ̂PML = arg max
θ∈�

∞∏
k=1

pθ

(
xk, x

∗
k , f ∗

k (θ)
) = arg max

θ∈�

[
max{fk}

∞∏
k=1

pθ(xk, x
∗
k , fk)

]
,
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where � is a parameter set associated with the model. Thus, θ̂PML is the
θ -component of the overall maximum likelihood estimator corresponding to the
infinite product density

∏∞
k=1 pθ(xk, x

∗
k , fk). In view of (18), we may write this

estimator as

θ̂PML = arg max
τ∈�

{ ∞∑
k=1

λk

(∫ 1/2

−1/2
cos[2πk(t − τ)]xε(t) dt

)2
}
,(19)

or as

θ̂PML = arg max
τ∈�

max{gk}

[√
2

ε2

∞∑
k=1

gk

∫ 1/2

−1/2
cos[2πk(t − τ)]xε(t) dt

(20)

−
∞∑

k=1

g2
k

(
1

2ε2 + 1

2σ 2
k

)]
,

where max{gk} denotes the maximum over sequences {gk} belonging to a subset
of �2, and we suppose that f satisfies conditions such that the infinite sums con-
verge almost surely. We will call θ̂PML a penalized maximum likelihood estimator
(PMLE), although this is not a PMLE in the usual sense. Comparing θ̂PML with
the maximum likelihood estimator θ̂ML, we see that θ̂PML can be interpreted as a
penalized version of θ̂ML corresponding to a function f (·) = fτ (·) whose Fourier
coefficients are the maximizers {g∗

k (τ )} of the term in square brackets in (20) over
{gk} for fixed τ and to the penalty

∑∞
k=1(g

∗
k (τ ))2( 1

2ε2 + 1
2σ 2

k

) (up to a multiplica-

tive constant, cf. definition of θ̂ML). Thus, the difference of θ̂PML from the “pure”
PMLE is in the fact that f (·) = fτ (·) is not fixed and known: it depends on the
parameter τ over which the maximization is carried out.

To make the estimator θ̂PML feasible, it is natural to consider only finite sums
in (19), (20), including the terms with k ≤ Nε , for some Nε that depends on ε

and tends to ∞ as ε → 0. In particular, this will be the case for the second-order
minimax estimator that we derive below.

Note that the estimator (12) defined in Section 2 is nothing but a local version
of the estimator (19) in a neighborhood of θ0 = 0. In fact, differentiating formally
the expression in curly brackets in (19) we obtain that θ̂PML is a solution of the
equation

∞∑
k=1

λk(2πk)

(∫
cos[2πk(t − τ)]xε(t) dt

)
(21)

×
(∫

sin[2πk(t − τ)]xε(t) dt

)
= 0.

The integrals in (21) are equal to yk = xk cos(2πkτ) + x∗
k sin(2πkτ) and y′

k =
x∗
k cos(2πkτ) − xk sin(2πkτ), respectively, allowing one to reduce (21) to

∞∑
k=1

λk(2πk){xkx
∗
k cos(4πkτ) − [x2

k − (x∗
k )2] sin(4πkτ)/2} = 0.
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Linearizing this equation in the vicinity of τ = 0, we get the following approximate
formula for a solution of (21):

θ̂PML ≈
∞∑

k=1

(2πk)λkxkx
∗
k

/ ∞∑
k=1

(2πk)2λk[x2
k − (x∗

k )2].(22)

It can be shown, using the argument from Section 2 that (22) is asymptotically
analogous to the estimator θ∗ given by (12) with hk = λk . One difference is that
here we have xk, x

∗
k instead of Xk,X

∗
k , but xk ≈ Xk and x∗

k ≈ X∗
k for θ close

to 0. Another point is that these estimators have somewhat different denominators.
However, for small θ both denominators estimate the same quadratic functional∑∞

k=1(2πk)2f 2
k and one can show that they are quite close to each other, so that

their difference does not appear in the second-order asymptotics of the risk.

4. Second-order asymptotics of the estimators. In this section we consider
the class of estimators defined by

θ̂AD = arg max
τ∈�

{ ∞∑
k=1

hk

(∫ 1/2

−1/2
cos[2πk(t − τ)]xε(t) dt

)2
}
,(23)

where {hk} is a sequence of real numbers satisfying some general conditions. For
a particular choice hk = λk the estimator θ̂AD is equal to the penalized maximum
likelihood estimator (19) obtained from a Bayesian argument with λk = σ 2

k /(σ 2
k +

ε2), but we also allow other weights hk . In particular, the weights {hk} such that
hk = 1 for some initial values of k play an important role in our further argument,
while we always have λk < 1 for θ̂PML.

We will show that under some assumptions on {hk} the estimator θ̂AD is
S-adaptive and we will give explicit second-order asymptotics for the risk of θ̂AD.
In what follows we will suppose that hk �= 0 for only a finite (typically, depending
on ε and growing to ∞, as ε → 0) number of integers k. This assumption is nat-
ural, since otherwise the estimator θ̂AD is not feasible. In order not to specify the
set where hk �= 0 we keep in the notation the sums over all integers k.

We first define the parametric set � where θ lies. Since f is symmetric and
periodic with period 1, we get that s(t) = f (1/2 − t) is also symmetric and pe-
riodic with period 1. Hence, the observations xε(t) corresponding to parameters
(θ, f (·)) and (θ − 1/2, s(·)) have the same probability distribution. So we can-
not discriminate between values θ, θ + 1/2, θ + 1, . . . in model (1) if we suppose
that f belongs to the class of symmetric and periodic functions with period 1. In
order that the model be identifiable, � should be strictly included in an interval of
length 1/2. For definiteness, we assume the following.

ASSUMPTION A1. � = {θ : |θ | ≤ τ0} where 0 < τ0 < 1/4.
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Next, we define the class of functions F where f lies. Let ρ and C0 be positive
constants. Denote by F = F(ρ,C0) the class of all functions f : [−1/2,1/2] → R
that admit the Fourier expansion (7) with coefficients fk satisfying the following
assumptions.

ASSUMPTION A2. f 2
1 ≥ ρ.

ASSUMPTION A3. ‖f ′′‖2 ≤ C0.

Here and in the sequel, for a sequence of real numbers {ak}, we use the notation

‖a‖2 =
∞∑

k=1

a2
k , ‖a′‖2 =

∞∑
k=1

a2
k (2πk)2, ‖a′′‖2 =

∞∑
k=1

a2
k (2πk)4.

Assumptions A2 and A3 imply that

C0 ≥ ‖f ′‖2 ≥ (2π)2ρ ∀f ∈ F.(24)

Furthermore, we impose some conditions on the weight sequence {hk}, assuming
that it depends on ε.

ASSUMPTION B. The weight sequence {hk} is such that h1 = 1, 0 ≤ hk ≤ 1
for all k, and

B1. ‖h′‖ ≥ ρ1 log2(ε−2)maxk hk(2πk), where ρ1 > 0 is a constant that does not
depend on ε,

B2. ε2 ∑∞
k=1 hk(2πk)4 ≤ C1, where C1 is a constant that does not depend on ε.

We remark that the condition 0 ≤ hk ≤ 1 here is quite natural: if hk /∈ [0,1],
projecting hk on [0,1] only improves the second-order asymptotics (cf. the ex-
pression for Rε[f,h] in (16)). Note also that Assumption B2 and the fact that
0 ≤ hk ≤ 1 imply the finiteness of ‖h′‖ for any ε. Assumptions B1 and B2 are not
very restrictive. For example, consider the projection weights hk = 1{k≤Nε} where
Nε is an integer such that Nε → ∞ as ε → 0. Then Assumption B1 is equivalent
to Nε ≥ C log4(ε−2) for some constant C > 0, and Assumption B2 is satisfied if
Nε = O(ε−2/5) as ε → 0.

Finally, we will need the following assumption involving both f and {hk}.
ASSUMPTION C. The weight sequence {hk} is such that, uniformly in f ∈ F ,[ ∞∑

k=1

(1 − hk)(2πk)2f 2
k

]2

= o

( ∞∑
k=1

(1 − hk)
2(2πk)2f 2

k

)
as ε → 0.

Note that, again, Assumption C is quite mild. For the projection weights hk =
1{k≤Nε} it means that

∑
k≥Nε

(2πk)2f 2
k → 0 as ε → 0, uniformly in f ∈ F , which

is true due to Assumption A3.
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THEOREM 1. Let Assumptions A1–A3, B and C be satisfied. Then, uniformly
in f ∈ F and in θ ∈ �,

Eθ,f [(θ̂AD − θ)2I ε(f )] = 1 + (
1 + o(1)

)Rε[f,h]
‖f ′‖2 as ε → 0,

where the functional Rε[f,h] is defined in (16).

Proof of Theorem 1 is given in Section 7.
Assumptions A3, B and C imply that

sup
f ∈F

Rε[f,h] = o(1) as ε → 0.

In fact, it follows from Assumptions B1 and B2 that ε2 ∑∞
k=1 h2

k(2πk)2 = o(1),
while Assumptions A3 and C yield

∑∞
k=1(1 − hk)

2(2πk)2f 2
k = o(1) as ε → 0.

Thus, Theorem 1 shows that θ̂AD has the same first-order asymptotics as the ef-
ficient estimator θ̂ML [cf. (2)], that is, θ̂AD is S-adaptive under the assumptions
of Theorem 1. But Theorem 1 says more than that, because it also provides an
asymptotically exact second-order expansion for the risk of θ̂AD.

5. Minimax problem for second-order term. It follows from Theorem 1
that the second-order term of the risk of θ̂AD depends on the coefficients {hk} only
via the functional Rε[f,h]. We would like to make this term as small as possible
by minimizing it over hk . Since we do not know the nuisance parameters fk we
consider a minimax setting: we look for h = {hk} that minimizes the maximum of
the functional Rε[f,h] over a suitably chosen set of sequences {fk}. Namely, we
consider a Sobolev ball

W(β,L) =
{
f :

∞∑
k=1

(2πk)2βf 2
k ≤ L

}
,

where β > 1 and L > 0 are given constants. A minimax sequence of weights q =
{qk} ∈ �2 is defined by

sup
f ∈W(β,L)

Rε[f, q] = inf
h∈�2

sup
f ∈W(β,L)

Rε[f,h].

It is well known (see, e.g., [1] or [23]) that such a sequence q exists and it has the
form

qk =
[
1 −

(
k

Wε

)β−1]
+
,(25)

where x+ = max(x,0) and Wε is a solution of the equation

ε2
∞∑

k=1

[(
Wε

k

)β−1

− 1
]
+
(2πk)2β = L.(26)
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As ε → 0, we have

Wε = (
1 + o(1)

)( L

ε2

(β + 2)(2β + 1)

(2π)2β(β − 1)

)1/(2β+1)

.(27)

Moreover, the functional Rε[f,h] has a saddle point on W(β,L) × �2 (cf. [1],
[23] or [29], Chapter 3) with components s, q , where s = {sk} is any sequence
satisfying

s2
k = ε2 qk

1 − qk

= ε2
[(

Wε

k

)β−1

− 1
]
+
.(28)

The existence of a saddle point at (s, q) means that

inf
h∈�2

sup
f ∈W(β,L)

Rε[f,h] = sup
f ∈W(β,L)

inf
h∈�2

Rε[f,h] = Rε[s, q].

Using (25), (26) and (28), the value Rε[s, q] can be expressed explicitly, which
yields

inf
h∈�2

sup
f ∈W(β,L)

Rε[f,h] = sup
f ∈W(β,L)

Rε[f, q] = ε2
∞∑

k=1

(2πk)2qk
def= rε.(29)

Note finally that, as ε → 0,

rε = (2π)2(β − 1)

3(β + 2)
ε2W 3

ε

(
1 + o(1)

)
(30)

= C∗(β,L)ε(4β−4)/(2β+1)(1 + o(1)
)
,

where

C∗(β,L) = 1

3

(
β − 1

2π(β + 2)

)(2β−2)/(2β+1)(
L(2β + 1)

)3/(2β+1)
.

The rate ε(4β−4)/(2β+1) in (30) characterizes the ratio of second-order terms to first-
order terms in the asymptotic expansion for the nonnormalized risk Eθ,f [(θ̂ε −
θ)2]. This ratio is not dramatically small for β not too large; for example, it equals
ε4/5 for β = 2. Thus, the second-order terms might be comparable with the first-
order ones. In absolute value, the first-order term of nonnormalized risk decreases
as ε2 and the second-order term as ε(8β−2)/(2β+1).

6. Locally minimax lower bound and second-order efficiency. In this sec-
tion we obtain a lower bound for the minimax risk and construct a second-order
efficient estimator of θ .

Let f̄ be a fixed function from F(ρ,C0) with the Fourier coefficients denoted
by f̄k . For δ > 0 define a vicinity of f̄ by

Fδ(f̄ ) = {f = f̄ + v :‖v‖ ≤ δ, v ∈ W(β,L)}.(31)
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It is assumed that β ≥ 2. Recall that ‖f̄ ′′‖ < ∞ since f̄ ∈ F(ρ,C0) (cf. Assump-
tion A3). If δ is small enough, Fδ(f̄ ) ⊆ F(ρ′,C′

0) for some ρ′ > 0, C′
0 > 0 de-

pending only on ρ,C0,L.

THEOREM 2. Let the real number δ = δε be such that limε→0 δε = 0 and
limε→0 δ2

ε/(ε
2W 1+α

ε ) = ∞ for some α > 0, where Wε satisfies (27). Then, as
ε → 0,

inf
θ̂ε

sup
θ∈�,f ∈Fδε (f̄ )

Eθ,f [(θ̂ε − θ)2I ε(f )] ≥ 1 + (
1 + o(1)

) rε

‖f̄ ′‖2
.(32)

Here and in what follows inf
θ̂ε

(or inf
θ̂
) is the infimum over all estimators based

on the observation Xε , and rε is the minimax value defined in (29).

The proof of Theorem 2 is given in Section 8.
Motivated by the above results, we introduce the following notion of semipara-

metric second-order efficiency.

DEFINITION 1. An estimator θ∗
ε is called second-order efficient at f̄ ∈ F if

sup
θ∈�,f ∈Fδε (f̄ )

Eθ,f [(θ∗
ε − θ)2I ε(f )] = 1 + (

1 + o(1)
) rε

‖f̄ ′‖2
as ε → 0,(33)

for some δε > 0 such that limε→0 δε = 0.

Comparing Theorems 1 and 2 we see that if there exists a sequence of weights
hk = λ∗

k for which Assumptions B and C are satisfied and

sup
f ∈Fδε (f̄ )

Rε[f,λ∗] ≤ rε(1 + o(1)
)
,(34)

where λ∗ = {λ∗
k}, then the estimator θ̂AD with this choice of weights is second-

order efficient. At first sight, it seems that one can take λ∗
k = qk from (25). How-

ever, for hk = qk Assumption C is not fulfilled. Therefore we correct qk , taking

λ∗
k =




1, k ≤ γεWε,[
1 −

(
k

Wε

)β−1]
+
, k > γεWε,

where Wε is a solution of (26) and γε = 1/ log(ε−2). For k > γεWε , the weights
λ∗

k induce a prior on {fk} analogous to the one that appears in the proof of the
lower bound of Theorem 2. The corresponding penalized maximum likelihood
type estimator has the form

θ∗
PML = arg max

τ∈�

{ ∞∑
k=1

λ∗
k

(∫ 1/2

−1/2
cos[2πk(t − τ)]xε(t) dt

)2
}
.(35)
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THEOREM 3. Let a function f̄ ∈ F be such that, for some p > β > 1,
∞∑

k=1

(2πk)2pf̄ 2
k < ∞(36)

and limε→0 δε = 0, limε→0 δε/(ε
2W 1+α

ε ) = ∞, for some α > 0, where Wε satis-
fies (27). Then, as ε → 0, the local asymptotic minimax risk admits the second-
order expansion

inf
θ̂ε

sup
θ∈�,f ∈Fδε (f̄ )

Eθ,f [(θ̂ε − θ)2I ε(f )] = 1 + (
1 + o(1)

) rε

‖f̄ ′‖2
.(37)

Moreover, the estimator θ∗
PML defined in (35) is second-order efficient at f̄ .

The proof of Theorem 3 is given in Section 9.

REMARK 1. Theorems 2 and 3 are local in f and nonlocal in θ . Inspection
of the proofs shows that they can be turned into local ones in θ as well, that is,
that one can replace supθ∈� by sup|θ−θ0|≤t where t > 0 is a small number (fixed
or tending to 0 with ε not too fast) and θ0 is an interior point of �.

REMARK 2. In the argument of Section 3, λk = σ 2
k /(σ 2

k + ε2). The values
(σ ∗

k )2 corresponding to λ∗
k for k > γεWε are thus

(σ ∗
k )2 = λ∗

kε
2

1 − λ∗
k

= ε2
[(

Wε

k

)β−1

− 1
]
+
.

One can interpret these (σ ∗
k )2 as variances of the prior distributions of the fk’s

introduced in Section 3. These variances appear also in the proof of the lower
bound [cf. (46)]. The fact that the initial values of λ∗

k are equal to 1 means that
we do not put any prior distribution on the Fourier coefficients fk for k ≤ γεWε .
Note that this is a particular choice of a prior associated with the Sobolev classes
of functions.

REMARK 3. It is interesting to compare results on nonparametric and semi-
parametric second-order efficiency. Golubev and Levit [11, 12] and Dalalyan and
Kutoyants [6] considered nonparametric problems where there exist

√
n-consistent

first-order efficient estimators (such as estimation of the cumulative distribution
function). In these problems there are simple efficient estimators, as the empirical
c.d.f. and smoothed estimators allow one to improve upon these simple estimators,
so that the second-order asymptotic terms are always negative. On the contrary,
in semiparametric problems, as in the one considered here, simple empirical esti-
mators are not efficient, and one has to use smoothing already to attain first-order
efficiency. As we see from Theorems 1–3 (cf. also Golubev and Härdle [9, 10],
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who studied partial linear models), in semiparametric problems second-order as-
ymptotic terms are positive, so that they always spoil asymptotics. This suggests
that the choice of correct smoothing that allows one to optimize second-order as-
ymptotic terms is more important in semiparametrics than in nonparametrics.

7. Proof of Theorem 1. In what follows we use the same notation C for finite
positive constants that may be different in different occasions and can depend only
on τ0, ρ,C0, ρ1 and C1.

The first step of the proof of Theorem 1 is to show that estimator θ̂AD is
ε-consistent.

7.1. Consistency of θ̂AD. The estimator θ̂AD is a maximizer of the contrast
function

L(τ) =
∞∑

k=1

hk

{√
2
∫ 1/2

−1/2
cos[2πk(t − τ)]xε(t) dt

}2

=
∞∑

k=1

hk

(
fk cos[2πk(τ − θ)] + εξk(0) cos(2πkτ) + εξ∗

k (0) sin(2πkτ)
)2

=
∞∑

k=1

hkf
2
k cos2[2πk(τ − θ)] + 2ε‖f ′‖η1(τ ) + ε2η2(τ ),

where θ is the true value of the parameter,

ξk(u) = √
2
∫ 1/2

−1/2
cos[2πk(t − u)]n(t) dt,

ξ∗
k (u) = √

2
∫ 1/2

−1/2
sin[2πk(t − u)]n(t) dt

and

η1(τ ) = 1

‖f ′‖
∞∑

k=1

hkfk cos[2πk(τ − θ)](ξk(0) cos(2πkτ) + ξ∗
k (0) sin(2πkτ)

)
,

η2(τ ) =
∞∑

k=1

hk

(
ξk(0) cos(2πkτ) + ξ∗

k (0) sin(2πkτ)
)2

.

The following three lemmas allow us to control the first derivatives of η1(τ ) and
η2(τ ).

LEMMA 1. Uniformly in f ∈ F we have

P
{

sup
τ∈�

|η′
1(τ )| > x

}
≤ c1 exp(−c2x

2) ∀x > 0,

where the constants c1 > 0 and c2 > 0 depend only on ρ and C0.
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PROOF. Note that η′
1(τ ) is a stationary Gaussian random process with mean 0

and twice continuously differentiable correlation function r(·) such that r ′′(0) �= 0.
It follows from the Rice formula ([18], Theorem 7.3.2, or [5], Chapter 13.5, page
294; see also Proposition 2 in [28]) that for all x > 0,

P
{

sup
τ∈�

|η′
1(τ )| > x

}
≤ C

[(
r ′′(0)/r(0)

)2 + 1
]

exp
(
− x2

2r2(0)

)
,(38)

where C > 0 is a universal constant. Now, since f ∈ F ,

r2(0) = E[η′
1(τ )2] = ‖f ′‖−2

∞∑
k=1

h2
kf

2
k (2πk)2 ≥ (2π)2‖f ′‖−2ρ,

(r ′′(0))2 = E[η′′
1(τ )2] = ‖f ′‖−2

∞∑
k=1

h2
kf

2
k (2πk)4 ≤ C0‖f ′‖−2,

which together with (38) proves the lemma. �

We will use the following simple fact about moderate deviations of the random
variable:

ς =
∞∑
i=1

ai(ξ
2
i − 1),

where the ξi ’s are i.i.d. standard normal random variables and {ak} is a sequence
belonging to �2, so that the random series converges almost surely.

LEMMA 2. Let ak �≡ 0, {ak} ∈ �2. For any 0 < x ≤ ‖a‖/maxk |ak| we have

P
{|ς | ≥ x

√
E[ς2] } ≤ 2 exp(−x2/16).

This result follows, for example, from (27) of Lemma 2 in [4].

LEMMA 3. For any 0 < x ≤ ‖h′‖/maxk hk(2πk)

P

{
sup
τ∈�

|η′
2(τ )| > 4

∞∑
k=1

hk(2πk) + x‖h′‖
}

≤ 4 exp(−c3x
2),

where c3 > 0 is a universal constant.

PROOF. Using the Cauchy–Schwarz inequality we get

sup
τ

|η′
2(τ )| ≤ 2

∞∑
k=1

hk(2πk) sup
τ

{|ξk(0) cos(2πkτ) + ξ∗
k (0) sin(2πkτ)|

× |−ξk(0) sin(2πkτ) + ξ∗
k (0) cos(2πkτ)|}

≤ 2
∞∑

k=1

hk(2πk)[ξ2
k (0) + ξ∗2

k (0)].
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The rest follows from Lemma 2. �

Consider now the expectation of the contrast function L(·)

E[L(τ)] =
∞∑

k=1

hkf
2
k cos2[2πk(τ − θ)].

LEMMA 4. Let Assumptions A1–A3 and B be satisfied. Then

E[L(τ)] − E[L(θ)] ≤ −C|τ − θ |2 ∀ τ ∈ �,

where the constant C > 0 depends only on τ0, ρ and C0.

PROOF. The derivatives of the function G(τ) = E[L(τ)] satisfy G′(θ) = 0,
G′′(θ) = −2

∑∞
k=1 hkf

2
k (2πk)2 ≤ −2(2π)2ρ. Thus, the assertion of the lemma

holds for τ in some neighborhood of θ . Since also E[L(τ)] < E[L(θ)] for all
τ ∈ �, τ �= θ , and � is a bounded interval (cf. Assumption A1), the lemma follows.

�

Now we are ready to show that θ̂AD is ε-consistent.

LEMMA 5. Let Assumptions A1–A3 and B be satisfied. Then, uniformly in
f ∈ F and in θ ∈ �,

Pθ,f

{|θ̂AD − θ |
√

I ε(f ) > x
} ≤ c4 exp(−c5x

2)

for all x ∈ [x0,‖h′‖/maxk hk(2πk)], where c4 > 0, c5 > 0, x0 > 0 are constants
depending only on τ0, ρ, C0, C1.

PROOF. Due to Lemma 4 we have

Pθ,f

{|θ̂AD − θ |
√

I ε(f ) > x
}

≤ P
{

max
τ∈� : |τ−θ |>x/

√
I ε(f )

[L(τ) − L(θ)] ≥ 0
}

≤ P
{

max
τ∈� : |τ−θ |>x/

√
I ε(f )

[
E[L(τ)] − E[L(θ)]

+ 2ε‖f ′‖(η1(τ ) − η1(θ)
)

+ ε2(η2(τ ) − η2(θ)
)] ≥ 0

}

≤ P
{

max
τ∈� : |τ−θ |>x/

√
I ε(f )

[
E[L(τ)] − E[L(θ)]
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+ |τ − θ |
(

2ε‖f ′‖max
t∈�

|η′
1(t)|

+ ε2 max
t∈�

|η′
2(t)|

)]
≥ 0

}

≤ P
{

max
t∈�

|η′
1(t)| + ε max

t∈�
|η′

2(t)| ≥ Cx

}

≤ P
{

max
t∈�

|η′
1(t)| ≥ Cx

}
+ P

{
ε max

t∈�
|η′

2(t)| ≥ Cx

}
.

The first probability on the last line is controlled by Lemma 1, whereas the second
probability can be bounded, in view of Lemma 3, by 4 exp(−Cx2), since according
to Assumption B2 one has ε

∑∞
k=1 hk(2πk) ≤ C′, ε‖h′‖ ≤ C′, where C′ depends

only on C1, and thus Cx > 4ε
∑∞

k=1 hk(2πk) + cεx‖h′‖ for any x ≥ x0 if x0 is
large enough and c > 0 is small enough. �

7.2. Proof of Theorem 1. Let us introduce the event A1 = {|θ̂AD − θ | ≤
c6ε

√
log(ε−2) } where c6 > 0 is a sufficiently large constant that can depend only

on τ0, ρ,C0 and C1. The risk of θ̂AD can be decomposed into two terms,

Eθ,f

[
(θ̂AD − θ)2] = Eθ,f

[
(θ̂AD − θ)21A1

] + Eθ,f

[
(θ̂AD − θ)21Ac

1

]
.(39)

Using (24) and Lemma 5 we find that, for c6 large enough,

Eθ,f

[
(θ̂AD − θ)2I ε(f )1Ac

1

] ≤ Cε−2Pθ,f {Ac
1} = O(ε2) as ε → 0.(40)

Indeed, for x = ε
√

I ε(f ) log(ε−2) ≥ C
√

log(ε−2), due to Assumption B1 and (24),
one has

x maxk hk(2πk)

‖h′‖ ≤
√

C0 log−3/2(ε−2)

ρ1
−→ 0 as ε → 0.

Thus we can apply Lemma 5, which yields (40) when c6 is large enough. It remains
to find the asymptotics of the first term on the right-hand side of (39). The estimator
θ̂AD satisfies

L′(θ̂AD) = 0.(41)

Using Taylor approximation of the left-hand side of (41) in a neighborhood of θ

we may write, for some ω ∈ �,

L0(θ) + (θ − θ̂AD)L1(θ) + 1
2 (θ − θ̂AD)2L2(ω) = 0,(42)

where

L0(θ) = ε

∞∑
k=1

hk(2πk)fkξ
∗
k (θ) + ε2

∞∑
k=1

hk(2πk)ξ∗
k (θ)ξk(θ),
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L1(θ) =
∞∑

k=1

hk(2πk)2(f 2
k + εfkξk(θ) + ε2[ξ2

k (θ) − ξ∗2
k (θ)]),

L2(ω) = −8
∞∑

k=1

hk(2πk)3
(∫ 1/2

−1/2
cos[2πk(t − ω)]xε(t) dt

)

×
(∫ 1/2

−1/2
sin[2πk(t − ω)]xε(t) dt

)
.

LEMMA 6. Let Assumptions A1–A3 and B be satisfied. Then

sup
θ∈�,f ∈F

Eθ,f

[(
L1(θ) − Eθ,f [L1(θ)])2] = O(ε2) as ε → 0,

and

sup
θ∈�,f ∈F

Eθ,f

[
sup
ω∈�

|L2(ω)|2
]
≤ C.

PROOF. We omit the proof of the first relation since it follows from simple
algebra. To prove the second one, using trigonometric formulae and the Cauchy–
Schwarz inequality, we write

√
2
∣∣∣∣
∫

cos[2πk(t − ω)]xε(t) dt

∣∣∣∣
= |fk cos[2πk(θ − ω)] + εξk(0) cos[2πkω] + εξ∗

k (0) sin[2πkω]|
≤ |fk| + ε

√
ξk(0)2 + ξ∗

k (0)2.

Similarly,
√

2|∫ sin[2πk(t − ω)]xε(t) dt | ≤ |fk| + ε
√

ξk(0)2 + ξ∗
k (0)2. Therefore

|L2(ω)| ≤ C

∞∑
k=1

hk(2πk)3f 2
k + Cε2

∞∑
k=1

hk(2πk)3[ξ2
k (0) + ξ∗2

k (0)].

The second inequality of the lemma follows easily from this and Assumptions
A3 and B2. �

To analyze the behavior of θ̂AD we compare it to the root τ̂ of the linear equation

L0(θ) + (θ − τ̂ )Eθ,f [L1(θ)] = 0(43)

representing an approximation of (42).

LEMMA 7. Let Assumptions A1–A3, B and C be satisfied. Then

Eθ,f [(τ̂ − θ)2I ε(f )] = 1 + (
1 + o(1)

)Rε[f,h]
‖f ′‖2 ,

where o(1) → 0 uniformly in f ∈ F and in θ ∈ �, as ε → 0.
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PROOF. Using the inequality (1 − h2
k)f

2
k (2πk)2 ≤ 2(1 − hk)f

2
k (2πk)2, As-

sumption C and (24), we get from (43),

Eθ,f [(τ̂ − θ)2I ε(f )]

= 1 + ‖f ′‖−2 ∑∞
k=1[(h2

k − 1)f 2
k + ε2h2

k](2πk)2

[1 + ‖f ′‖−2 ∑∞
k=1(hk − 1)f 2

k (2πk)2]2

=
[

1 + ‖f ′‖−2
∞∑

k=1

[(h2
k − 1)f 2

k + ε2h2
k](2πk)2

]

×
[

1 − 2‖f ′‖−2
∞∑

k=1

(hk − 1)f 2
k (2πk)2 + o(Rε[f,h])

]

= 1 + (
1 + o(1)

)‖f ′‖−2Rε[f,h]. �

LEMMA 8. Let Assumptions A1–A3 and B be satisfied. Then Eθ,f [(θ̂AD −
τ̂ )21A1] ≤ Cε4 log2(ε−2).

PROOF. Since no confusion is possible, we omit the subscripts θ , f of the
expectation. Subtracting (43) from (42) we obtain

(θ̂AD − τ̂ )E[L1(θ)] − (θ − θ̂AD)
(
L1(θ) − E[L1(θ)]) − 1

2(θ − θ̂AD)2L2(ω) = 0.

Note that E[L1(θ)] = ∑
k hk(2πk)2f 2

k ≥ (2π)2ρ and that (θ̂AD − θ)2 ≤
c2

6ε
2 log(ε−2) on A1. Using these facts and Lemma 6 we get

E
[
(θ̂AD − τ̂ )21A1

]
≤ (E[L1(θ)])−2

{
2E

[
(θ − θ̂AD)2(L1(θ) − E[L1(θ)])21A1

]

+ Eθ,f

[
(θ − θ̂AD)4 sup

ω∈�

|L2(ω)|21A1

]}

≤ Cε4 log2(ε−2). �

Now Assumption B1 and the fact that h1 = 1 yield, for ε small enough,

Rε[f,h] ≥ ε2
∞∑

k=1

(2πk)2h2
k ≥ ρ1ε

2
(

max
k

hk(2πk)

)2

log4(ε−2)

≥ ρ1(2π)2ε2 log4(ε−2),

which implies that Eθ,f [(θ̂AD − τ̂ )2I ε(f )1A1] = o(Rε[f,h]) uniformly in f ∈ F

and in θ ∈ �, as ε → 0. This result together with (39), (40) and Lemma 7 com-
pletes the proof of Theorem 1.
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8. Proof of Theorem 2. Before proceeding to the proof of Theorem 2 we give
some preliminary results.

8.1. An auxiliary Bayesian problem. We consider a model with two observa-
tions that will be used as a building block for the subsequent proofs. Set

x = f0 cos(2πkθ) + εξ, x∗ = f0 sin(2πkθ) + εξ∗,

where ξ, ξ∗ are independent N (0,1) random variables and f0 is an N (f̄ , σ 2)

random variable that does not depend on (ξ, ξ∗), with f̄ ∈ R, σ 2 > 0. Here θ is
a parameter to be estimated based on the observations x, x∗ and k is an integer.
Define the Fisher information

Jε
k(θ) = E

[(
d

dθ
logpθ(x, x∗)

)2]
,

where pθ(x, x∗) is the probability density of the observations.

LEMMA 9. We have Jε
k(θ) = ε−2(f̄ 2 + σ 4

ε2+σ 2 )(2πk)2, for any k ∈ Z.

PROOF. Denoting by C multiplicative constants that do not depend on θ , we
have

pθ(x, x∗) = C

∫
exp

{
− u2

2σ 2 − 1

2ε2 [x − f̄ cos(2πkθ) − u cos(2πkθ)]2

− 1

2ε2 [x∗ − f̄ sin(2πkθ) − u sin(2πkθ)]2
}

du

= C exp
{
λ

2
[x cos(2πkθ) + x∗ sin(2πkθ)]2

+ (1 − λ)f̄ [x cos(2πkθ) + x∗ sin(2πkθ)]
}

= C exp
{

λ

2ε2

[
x cos(2πkθ) + x∗ sin(2πkθ) + 1 − λ

λ
f̄

]2}
,

where λ = σ 2/(ε2 + σ 2). Hence writing f0 = f̄ + ησ where η ∼ N (0,1) and η is
independent of (ξ, ξ∗), one obtains

Jε
k(θ) = E

[(
λ

2ε2

d

dθ

[
x cos(2πkθ) + x∗ sin(2πkθ) + 1 − λ

λ
f̄

]2)2]

= (2πk)2ε−4λ2E
[(

f̄ + ησ + εξ cos(2πkθ) + εξ∗ sin(2πkθ) + 1 − λ

λ
f̄

)2

× (−εξ sin(2πkθ) + εξ∗ cos(2πkθ)
)2
]
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= (2πk)2ε−2λ2E
[(

(λ−1f̄ + ησ)
(−ξ sin(2πkθ) + ξ∗ cos(2πkθ)

)

+ ε

2
(ξ∗2 − ξ2) sin(4πkθ) + εξξ∗ cos(4πkθ)

)2]

= (2πk)2ε−2λ2[λ−2f̄ 2 + σ 2 + ε2]. �

8.2. Lower bounds for Bayes risks. In this subsection we consider the se-
quence model (17) where we suppose that the fk’s are no longer fixed values but
independent random variables distributed as N (f̄k, σ

2
k ) with some σk ≥ 0. By con-

vention, σk = 0 means that the corresponding fk is equal to f̄k almost surely. We
assume in what follows that σk > 0 only for a finite (and possibly depending on ε)
number of indices k. We also assume that the random sequence (fk, k = 1,2, . . . )

does not depend on the noises (ξk, ξ
∗
k , k = 1,2, . . . ). We will refer to this model

as the Bayes model with fixed θ . Let �σ (df ) denote the probability distribution of
f = {fk} ∈ �2 in this model.

Along with this, we will consider the full Bayes model defined in the same
way, except that in this new model θ is supposed to be a random variable having
a density π(x), x ∈ �, that vanishes at the endpoints of the interval � and has
finite Fisher information Iπ = ∫

(π ′(x))2π−1(x) dx. It will be assumed that θ is
independent of (fk, ξk, ξ

∗
k , k = 1,2, . . . ).

We denote by E the expectation with respect to the joint distribution of
(xk, x

∗
k , k = 1,2, . . . ) and θ in the full Bayes model and by Eθ the expectation

w.r.t. the distribution of (xk, x
∗
k , k = 1,2, . . . ) in the Bayes model with fixed θ .

Define

λk = σ 2
k

ε2 + σ 2
k

, k = 1,2, . . . .

LEMMA 10. Assume that the density π(x) vanishes at the endpoints of the
interval � and has finite Fisher information Iπ . Then

inf
θ̂ε

E[(θ̂ε − θ)2Ī ε] ≥ 1 + 1

Ī ε

∞∑
k=1

(2πk)2λk + O(ε2),(44)

where

Ī ε =
∫

I ε(f )�σ (df ) = ε−2
∞∑

k=1

(2πk)2(f̄ 2
k + σ 2

k ).

The proofs of this and subsequent lemmas are given in the Appendix.
In the next subsection we will show that one can choose the sequence {σk} so

that the right-hand side of (44) coincides asymptotically with the lower bound
of Theorem 2. However, the left-hand side of (44) is different from that of (32).
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One difference is that in (32) the risk is normalized by the Fisher information
I ε(f ), while in (44) we have its average Ī ε w.r.t. the distribution �σ(df ). The
next lemma shows that I ε(f ) is sufficiently close to Ī ε; in particular, its variance
is small enough.

LEMMA 11. If the σ 2
k ’s are such that

∞∑
k=1

(2πk)4σ 4
k + sup

k

σ 2
k = o

(
ε2

∞∑
k=1

(2πk)2λk

)
,(45)

then ∫ (
I ε(f ) − Ī ε)2

�σ (df ) = o

(
ε−2

∞∑
k=1

(2πk)2λk

)
as ε → 0.

LEMMA 12. Assume that the density π(x) vanishes at the endpoints of the
interval � and has finite Fisher information Iπ = ∫

(π ′(x))2π−1(x) dx. Then, for
any f ∈ F ,

inf
θ̂ε

∫
�

Eθ,f [(θ̂ε − θ)2I ε(f )]π(θ) dθ ≥ I ε(f )

I ε(f ) + Iπ

≥ 1 − Iπ

I ε(f )
.

Proof of this lemma is omitted: this is the standard Van Trees inequality for the
problem of estimation of θ with fixed f in model (1) ([33]; see also [7]).

LEMMA 13. If the sequence {σk} satisfies relation (45) and δ <
√

ρ/2, then∫
Fδ(f̄ )

(
1 − Ī ε

I ε(f )

)
�σ(df ) ≤ o

(
ε2

∞∑
k=1

(2πk)2λk

)
+ CP

(
f /∈ Fδ(f̄ )

)
.

8.3. From Bayes to minimax bounds. The main idea of the proof of Theorem 2
is to bound from below the minimax risk by a suitably chosen Bayes risk. In the
rest of this section we consider the full Bayes model defined in Section 8.2 with a
special choice of the σk’s. Namely, we set

σ 2
k =

{
0, k ≤ γεWε,
(1 − γε)s

2
k , k > γεWε,(46)

where Wε is a solution of (26), s2
k is defined by (28) and γε = 1/ log(ε−2) (here

and later we suppose that ε is small enough, so that γε < 1). To derive the minimax
lower bound of Theorem 2 from the Bayes bounds of Section 8.2 we need first to
show that with a probability close to 1 the Gaussian random sequence {fk} belongs
to the set Fδ(f̄ ). In fact, the following result holds.

LEMMA 14. For any δ2 ≥ ε2Wεγ
2−2β
ε we have P{f /∈ Fδ(f̄ )} ≤ e−Cγ 2

ε Wε .
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8.4. Proof of Theorem 2. Recall that we consider the full Bayes model with
the σ 2

k ’s chosen according to (46) and λk = σ 2
k /(ε2 + σ 2

k ). Note that in this case

ε2
∞∑

k=1

(2πk)2λk = rε(1 + o(1)
)

as ε → 0.(47)

Indeed, (25) and (28) imply that |λk/qk − 1| ≤ γε for k > γεWε , and hence
[cf. (29)]

ε2
∞∑

k=1

(2πk)2λk = (
1 + o(1)

)
ε2

∑
k>γεWε

(2πk)2qk

= (
1 + o(1)

)(
rε − ε2

∑
k≤γεWε

(2πk)2qk

)
.

Here [cf. (30)]

ε2
∑

k≤γεWε

(2πk)2qk = (2π)2ε2W 3
ε

∑
k≤γεWε

(
k

Wε

)2[
1 −

(
k

Wε

)β−1] 1

Wε

≤ Cε2W 3
ε

∫ γε

0
(x2 + xβ+1) dx ≤ Cγ 3

ε ε2W 3
ε = o(rε),

and thus (47) follows.
Next, we check that if the σ 2

k ’s are chosen according to (46), then condition
(45) is satisfied, so that one can apply Lemmas 10–13. In fact, (27) yields Wε �
ε−2/(2β+1) with β > 1, and using (47), (28) and (30) we get, as ε → 0,

ε2
∞∑

k=1

(2πk)2λk � ε2W 3
ε → 0,

∞∑
k=1

(2πk)4σ 4
k ≤ ε4

∞∑
γεWε≤k≤Wε

(2πk)4(Wε/k)2(β−1) ≤ Cε4W 5
ε γ 2−2β

ε

= o

(
ε2

∞∑
k=1

(2πk)2λk

)
,

sup
k

σ 2
k ≤ ε2γ 1−β

ε = o

(
ε2

∞∑
k=1

(2πk)2λk

)
.

Now we start the main body of the proof of Theorem 2. First note that, in a
standard way, conditioning on (xk, x

∗
k , k = 1,2, . . . ) and using Jensen’s inequality,

one can easily show that it is sufficient to prove the lower bound of Theorem 2 for
estimators θ̂ε depending on Xε only via (xk, x

∗
k , k = 1,2, . . . ). Let Tε denote the
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set of all estimators θ̂ε of θ measurable with respect to (xk, x
∗
k , k = 1,2, . . . ) and

satisfying the inequalities

sup
f ∈Fδε (f̄ )

sup
θ∈�

Eθ,f [(θ̂ε − θ)2I ε(f )] ≤ 1 + 2rε

‖f̄ ′‖2
and |θ̂ε| ≤ 1.(48)

It is enough to restrict our attention to the estimators from Tε , since for estimators
that do not satisfy one of the inequalities in (48) the lower bound of Theorem 2 is
evident.

Clearly,

sup
f ∈Fδε (f̄ )

∫
�

Eθ,f [(θ̂ε − θ)2I ε(f )]π(θ) dθ ≤ 1 + 2rε

‖f̄ ′‖2
∀ θ̂ε ∈ Tε.(49)

We have

inf
θ̂∈Tε

sup
θ, f ∈Fδ(f̄ )

Eθ,f [(θ̂ − θ)2I ε(f )]

≥ inf
θ̂∈Tε

E
[
(θ̂ − θ)2I ε(f )1Fδ(f̄ )(f )

]

≥ inf
θ̂∈Tε

E
[
(θ̂ − θ)2Ī ε1Fδ(f̄ )(f )

] − sup
θ̂∈Tε

E
[
(θ̂ − θ)2(Ī ε − I ε(f )

)
1Fδ(f̄ )

]
(50)

≥ inf
θ̂∈Tε

E[(θ̂ − θ)2Ī ε] − o(ε2) − sup
θ̂∈Tε

E
[
(θ̂ − θ)2(Ī ε − I ε(f )

)
1Fδ(f̄ )(f )

]

≥ inf
θ̂

E[(θ̂ − θ)2Ī ε] − o(ε2) − sup
θ̂∈Tε

E
[
(θ̂ − θ)2(Ī ε − I ε(f )

)
1Fδ(f̄ )(f )

]
,

where we have used the inequality

sup
θ̂∈Tε

E
[
(θ̂ − θ)2Ī ε1Fc

δ (f̄ )(f )
] ≤ Cε−2 exp(−Cγ 2Wε) = o(ε2),

which is a direct consequence of the estimates |θ̂ | ≤ 1, |θ | < 1/4, Ī ε ≤ Cε−2,
relation (27) and Lemma 14. The last term in (50) can be represented as

E[(θ̂ − θ)2(Ī ε − I ε(f )
)
1Fδ(f̄ )(f )]

=
∫
Fδ(f̄ )

(
1 − Ī ε

I ε(f )

)
�σ (df )(51)

+ E
([(θ̂ − θ)2I ε(f ) − 1](1 − Ī ε/I ε(f )

)
1Fδ(f̄ )(f )

)
.

Due to Lemmas 13 and 14, the second term on the right-hand side of (51) is as-
ymptotically negligible with respect to ε2 ∑

k(2πk)2λk = rε(1 + o(1)) [cf. (47)].
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To evaluate the first term, note that

E
([(θ̂ − θ)2I ε(f ) − 1](1 − Ī ε/I ε(f )

)
1Fδ(f̄ )(f )

)
≤ sup

f ∈Fδ(f̄ )

∣∣∣∣
∫
�

Eθ,f [(θ̂ − θ)2I ε(f ) − 1]π(θ) dθ

∣∣∣∣E(|1 − Ī ε/I ε(f )|)(52)

≤ Cε2 sup
f ∈Fδ(f̄ )

∣∣∣∣
∫
�

Eθ,f [(θ̂ − θ)2I ε(f )]π(θ) dθ − 1
∣∣∣∣ [E(

Ī ε − I ε(f )
)2]1/2

.

It follows from (58) and Lemma 11 that ε4
E(Ī ε − I ε(f ))2 is o(1). Now,

Lemma 12, inequality (49) and the fact that supf ∈Fδ(f̄ ) Iπ/I ε(f ) ≤ Cε2 = o(rε)

[cf. (58)] imply that

sup
f ∈Fδ(f̄ )

∣∣∣∣
∫
�

Eθ,f [(θ̂ε − θ)2I ε(f )]π(θ) dθ − 1
∣∣∣∣ ≤ Crε ∀ θ̂ε ∈ Tε.(53)

Plugging (51)–(53) in (50) and using Lemmas 10, 13 and 14, we get

inf
θ̂∈Tε

sup
θ∈�,f ∈Fδ(f̄ )

Eθ,f [(θ̂ − θ)2I ε(f )] ≥ inf
θ̂

E[(θ̂ − θ)2Ī ε] + o(rε)

≥ 1 + 1

Ī ε

∞∑
k=1

(2πk)2λk + o(rε)

= 1 + rε

‖f̄ ′‖2
+ o(rε),

where for the last equality we have used (47) and the fact that, due to (28) and (46),

|ε2Ī ε − ‖f̄ ′‖2| ≤ ∑
k>γεWε

(2πk)2σ 2
k

< ε2
∑

γεWε≤k≤Wε

(2πk)2(Wε/k)β−1

≤ Cε2W 3
ε γ 1−β

ε = o(1),

as ε → 0.

9. Proof of Theorem 3. It is enough to check that Assumptions B and C are
satisfied for hk = λ∗

k and that (34) holds. We first check Assumption C. Recall that

we supposed w.l.o.g. that γε < 1. Then 1 − λ∗
k ≥ γ

β−1
ε for k > γεWε , and we have

∞∑
k=1

(1 − λ∗
k)(2πk)2f 2

k = ∑
k>γεWε

(1 − λ∗
k)(2πk)2f 2

k

≤ γ 1−β
ε

∞∑
k=1

(1 − λ∗
k)

2(2πk)2f 2
k ≤ γ 1−β

ε rε.
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This and (30) show that Assumption C is satisfied for hk = λ∗
k . Using (27) we find

that Assumption B also holds. Indeed, Assumption B2 amounts to checking that
ε2W 5

ε ≤ C1, which is clearly the case for β > 1, whereas Assumption B1 follows
from the relation

√
Wε/ log2(ε−2) → +∞, as ε → 0. Now we are ready to check

(34). For any κ ∈ [0,1] one obtains [recall that the qk’s are defined by (28)]

sup
f ∈Fδε (f̄ )

Rε[f,λ∗] ≤ sup
v∈W(β,L)

∞∑
k=1

(1 − λ∗
k)

2(2πk)2(f̄k + vk)
2

+
∞∑

k=1

(2επkλ∗
k)

2

(54)

≤ (1 + κ)rε + 2

κ

∞∑
k=1

(1 − λ∗
k)

2(2πk)2f̄ 2
k

+ ε2
∑

k≤γεWε

(1 − q2
k )(2πk)2,

where for the last inequality we have used (29). From (36) we obtain

∞∑
k=1

(1 − λ∗
k)

2(2πk)2f̄ 2
k ≤ ∑

k>γεWε

(2πk)2f̄ 2
k ≤ C(γεWε)

2−2p = o(rε).

Note also that due to the relations rε ≥ Cε2W 3
ε [cf. (30)] and γε → 0 we get

ε2
∑

k≤γεWε

(q2
k − 1)(2πk)2 ≤ 2ε2

∑
k≤γεWε

(
k

Wε

)β−1

(2πk)2 ≤ Cε2γ β+2
ε W 3

ε = o(rε).

These inequalities and (54) prove (34), since κ can be arbitrarily small.

APPENDIX

PROOF OF LEMMA 10. We start by applying the Van Trees inequality ([33];
see also [7]):

inf
θ̂ε

E[(θ̂ε − θ)2] ≥
(∫

�
Jε(θ)π(θ) dθ + Iπ

)−1

,(55)

where Jε(θ) is the Fisher information on θ contained in the observations (xk, x
∗
k ,

k = 1,2, . . . ) for the Bayes model with fixed θ . Since these observations are in-
dependent, Jε(θ) is the sum over k of the Fisher information of pairs (xk, x

∗
k ). So

using Lemma 9 we get that Jε(θ) does not depend on θ and equals

Jε(θ) = ε−2
∞∑

k=1

(2πk)2(f̄ 2
k + λkσ

2
k ) = Ī ε −

∞∑
k=1

(2πk)2λk.
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Therefore

Ī ε

(∫
�

Jε(θ)π(θ) dθ + Iπ

)−1

≥ 1 + 1

Ī ε

∞∑
k=1

(2πk)2λk − Iπ

Ī ε
.(56)

To complete the proof, it is enough to remark that, in view of (24),

Ī ε ≥ ε−2‖f̄ ′‖2 ≥ ε−2(2π)2ρ.(57) �

PROOF OF LEMMA 11. Using the independence of the fk’s for different val-
ues of k, we get

ε4
∫ (

I ε(f ) − Ī ε)2
�σ (df ) =

∞∑
k=1

(2πk)4
∫

(f 2
k − f̄ 2

k − σ 2
k )2 �σ (df )

=
∞∑

k=1

(2πk)4(4f̄ 2
k σ 2

k + 2σ 4
k )

≤ 4

[
‖f̄ ′′‖2 sup

k

σ 2
k +

∞∑
k=1

(2πk)4σ 4
k

]
.

The assertion of the lemma follows now from (45). �

PROOF OF LEMMA 13. First note that using Assumption A2 one obtains

ε2I ε(f ) ≥ (2π)2f 2
1 ≥ (2π)2(f̄ 2

1 − δ2) > (2π)2ρ/2,(58)

for any f ∈ Fδ(f̄ ) and for any δ <
√

ρ/2. Furthermore, by (24),

ε2I ε(f ) ≤ 2(‖f̄ ′‖2 + L) ≤ 2(C0 + L) ∀f ∈ Fδ(f̄ ).(59)

The elementary identity 1 − y = y−1 − 1 − y(1 − y−1)2 yields∫
Fδ(f̄ )

(
1 − Ī ε

I ε(f )

)
�σ (df ) =

∫
Fδ(f̄ )

(
I ε(f )

Ī ε
− 1

)
�σ (df )

+
∫
Fδ(f̄ )

(
I ε(f )

Ī ε
− 1

)2 Ī ε

I ε(f )
�σ (df ).

To estimate the first integral on the right-hand side we note that Ī ε = ∫
I ε(f ) ×

�σ (df ); therefore using (57) and (59) we get∣∣∣∣
∫
Fδ(f̄ )

(
I ε(f )

Ī ε
− 1

)
�σ (df )

∣∣∣∣ =
∣∣∣∣
∫
Fc

δ (f̄ )

(
I ε(f )

Ī ε
− 1

)
�σ (df )

∣∣∣∣
≤ CP

(
f /∈ Fδ(f̄ )

)
,

where Fc
δ (f̄ ) = �2 \ Fδ(f̄ ). Finally, due to (57) and (58),∫

Fδ(f̄ )

(
I ε(f )

Ī ε
− 1

)2 Ī ε

I ε(f )
�σ (df ) ≤ Cε4

∫ (
I ε(f ) − Ī ε)2

�σ (df ).
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The rest follows from Lemma 11. �

PROOF OF LEMMA 14. Let ηk be i.i.d. N (0,1) random variables. We have

P{f /∈ Fδ(f̄ )} ≤ P

{ ∑
k>γεWε

η2
ks

2
k > δ2

}

(60)

+ P

{ ∑
k>γεWε

(2πk)2βη2
ks

2
k >

L

1 − γε

}
.

We use Lemma 2 in order to evaluate the second probability. Note that∑
k>γεWε

(2πk)4βs4
k ≤ Cε4W 4β+1

ε

and maxk s2
k (2πk)2β ≤ Cε2W

2β
ε . Therefore, by Lemma 2, for any x ≤ C

√
Wε we

have

P

{ ∑
k≥γεWε

(2πk)2β(η2
k − 1)s2

k > xε2W 2β+1/2
ε

}
≤ exp(−Cx2).

Applying this inequality for x = γεL/ε2W
2β+1/2
ε [note that in view of (27) x is

less than C
√

Wε ], and using the fact that
∑

k>γεWε
(2πk)2βs2

k ≤ Cε2W
2β
ε γ

1−β
ε =

o(γε), one obtains

P

{ ∑
k>γεWε

(2πk)2βη2
ks

2
k >

L

(1 − γε)

}
≤ P

{ ∑
k>γεWε

(2πk)2β(η2
k − 1)s2

k >
γεL

2

}

≤ exp

{
− Cγ 2

ε L2

ε4W
4β+1
ε

}
≤ exp(−Cγ 2

ε Wε).

The first probability on the right-hand side of (60) can be estimated similarly.
We have

∑
k>γεWε

s4
k ≤ Cε4Wεγ

−2β+3
ε and maxk>γWε s2

k ≤ Cε2γ
−β+1
ε . Hence,

by Lemma 2, for any x ≤ C
√

γεWε ,

P

{ ∑
k>γεWε

(η2
k − 1)s2

k > xε2
√

Wεγ
−2β+3/2
ε

}
≤ exp(−Cx2).

So with x = C
√

γεWε , noting that
∑

k>γεWε
s2
k ≤ ε2Wεγ

2−β
ε , one obtains

P

{ ∑
k>γεWε

η2
ks

2
k > δ2

}
= P

{ ∑
k>γεWε

(η2
k − 1)s2

k > δ2 − ∑
k≥γWε

s2
k

}

≤ P

{ ∑
k>γεWε

(η2
k − 1)s2

k > Cε2Wεγ
−2β+2
ε

}

≤ exp(−CγεWε). �
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