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Estimation of the density of regression errors is a fundamental issue in re-
gression analysis and it is typically explored via a parametric approach. This
article uses a nonparametric approach with the mean integrated squared error
(MISE) criterion. It solves a long-standing problem, formulated two decades
ago by Mark Pinsker, about estimation of a nonparametric error density in a
nonparametric regression setting with the accuracy of an oracle that knows
the underlying regression errors. The solution implies that, under a mild as-
sumption on the differentiability of the design density and regression func-
tion, the MISE of a data-driven error density estimator attains minimax rates
and sharp constants known for the case of directly observed regression errors.
The result holds for error densities with finite and infinite supports. Some ex-
tensions of this result for more general heteroscedastic models with possibly
dependent errors and predictors are also obtained; in the latter case the mar-
ginal error density is estimated. In all considered cases a blockwise-shrinking
Efromovich–Pinsker density estimate, based on plugged-in residuals, is used.
The obtained results imply a theoretical justification of a customary practice
in applied regression analysis to consider residuals as proxies for underlying
regression errors. Numerical and real examples are presented and discussed,
and the S-PLUS software is available.

1. Introduction. A residual analysis is a standard part of any regression
analysis, and it involves estimation and/or testing of a regression error distrib-
ution. This article is devoted to the error density estimation. Let us present the
problem, its motivation and possible applications via a classical homoscedastic
model, and then more complicated models will be introduced. Following Fan and
Gijbels [22], Hart [28] and Eubank [21], suppose that the statistician observes n

independent and identically distributed (i.i.d.) realizations (X1, Y1), . . . , (Xn,Yn)

of the pair (X,Y ) of random variables. Then the regression problem is to find an
underlying regression function m(x) := E(Y |X = x) under the assumption that

Yl = m(Xl) + ξl, l = 1, . . . , n,(1.1)
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X1, . . . ,Xn are i.i.d. predictors that are uniformly distributed on [0,1], and
ξ1, . . . , ξn are i.i.d. regression errors that are also independent of the correspond-
ing predictors X1, . . . ,Xn. The model (1.1) is called a homoscedastic regression
model with regression errors which are i.i.d. and independent of the predictors.
If m̃(x) is a regression estimate, then Rl := Yl − m̃(Xl), l = 1, . . . , n, are called
residuals. Patterns in the residuals are used to validate or reject an assumed model.
If the model (1.1) is validated, then the next classical step is to look at the distrib-
ution of the regression error ξ . Because realizations ξ1, . . . , ξn of regression errors
are unavailable to the statistician, residuals are traditionally utilized as their prox-
ies. They may be used either for testing a hypothesis about the underlying error
distributions or for estimation/visualization of the error density; see a discussion
in the classical text by Neter, Kutner, Nachtsheim and Wasserman [32].

Surprisingly, despite the widespread use of residuals as proxies for unobserved
errors, to the best of the author’s knowledge, no result about optimal (in any sense)
estimation of a nonparametric error density is known. For parametric settings, there
exists a recently created Bayesian theory of estimation, and for nonparametric set-
tings, a theory of consistent estimation is developed; the interested reader can find
a discussion and further references in [8] and [27]. At the same time, there exists
a vast literature devoted to density estimation based on direct observations and to
estimation of functionals of the error density; see [2, 14, 34, 37] and [31] where
further references can be found.

It is not difficult to understand why the literature on nonparametric error density
estimation is practically next to none: the problem is extremely complicated due to
its indirect nature. In a nonparametric setting, the difference between any regres-
sion estimate and an underlying regression function contains a random term and
a bias. The bad news is that additive measurement errors may dramatically slow
down optimal rates of density estimation; see [13, 14]. The good news is that, of
course, additive errors in residuals become smaller as the sample size increases,
and, thus, optimal rates may be preserved. This article shows that, fortunately for
applied statistics, the good news prevails under the customary assumption that the
regression function is differentiable and the error density is twice differentiable.

It is well known in the nonparametric density estimation literature that rates
alone are of little interest for practically important cases of small datasets, and that
rates should be studied together with constants; see the discussion in [30] and [14,
15]. Also, superefficiency and mimicking of oracles are important issues; see the
discussion in [4, 5] and [14], Chapter 7. To explore all these issues simultaneously,
it is convenient to employ an oracle approach suggested by Mark Pinsker more than
two decades ago. Namely, suppose that an oracle (which will be referred to as a
Pinsker oracle and a particular one is defined in Appendix B) knows the underlying
regression errors {ξl, l = 1, . . . , n} and the oracle possesses a bouquet of desired
statistical properties like sharp minimaxity, superefficiency, matching more power-
ful oracles that know an estimated error density, and so on. Then, if the statistician
can suggest a data-driven error density estimate that matches the Pinsker oracle,
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this estimator simultaneously solves all the above-formulated problems. Moreover,
Pinsker conjectured that a plug-in Pinsker oracle, based on residuals, may be the
wished data-driven estimator. This article proves this long-standing Pinsker con-
jecture and, as a particular corollary, establishes minimax rates and constants of
the error density estimation.

There are many practical applications of the error density estimation. Let us
mention a few that will guide us in this article. (i) Well-known classical applica-
tions are data interpretation, inference, decision making, hypothesis testing, the
diagnostics of residuals, model validation and, if necessary, model adjustment in
terms of the error distribution. (ii) Another classical application, which is actually
the main aim of any regression analysis, is the prediction of a new observation
where the error density plays the pivotal role; see [32], Section 2.5. (iii) Goodness-
of-fit tests are another natural application; see [2] and [28]. (iv) The error density
is used in a sharp minimax regression estimation; see [12]. (v) The error density
can be used in statistical quality control and classification; see [16], as well as a
discussion in Section 2.

The model (1.1) with a uniformly distributed predictor is definitely the most
frequently studied in the regression literature, but a regression analysis may reveal
patterns that contradict this simple model. For instance, predictors may not be
uniform and/or the errors may have different variances. In this case either some
remedial measures like a data transformation and/or weighting are applied (these
remedies are not discussed here and the interested reader is referred to the books
by Carroll and Ruppert [6] or Neter, Kutner, Nachtsheim and Wasserman [32]), or
model (1.1) with an unknown design density p(x) is considered, or a more general
heteroscedastic regression model is considered:

Yl = m(Xl) + σ(Xl)ξl, l = 1, . . . , n,(1.2)

where σ(x) is a (positive) scale function, the errors {ξ1, . . . , ξn} are i.i.d. with
zero mean, unit variance and independent of the corresponding predictors, and the
predictors are i.i.d. according to an unknown design density p(x) supported on
[0,1]. Following Pinsker’s paradigm, a data-driven error density estimator should
be compared with an oracle that knows the underlying errors ξ1, . . . , ξn. Here it is
natural to use rescaled residuals as proxies for unobserved errors, and an imple-
mentation of this path implies estimation of both regression and scale functions
and then dealing with additive and multiplicative measurement errors. It will be
shown that, under the assumption of the differentiability of each nuisance function
and a known finite support of an estimated error density, the plug-in Pinsker oracle
still matches the Pinsker oracle; the case of errors with infinite support is an open
problem.

Now we are in position to consider another assumption about models (1.1)–(1.2)
that needs to be addressed: independence between regression errors and predictors.
There are many known examples where this assumption does not hold; see partic-
ular ones in Section 2. Another customary situation is where an underlying model
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is heteroscedastic, but the statistician assumes/believes that it is homoscedastic; an
interesting particular example is presented in [28], pages 257–258. If we simply
ignore a possible dependence between X and ξ , then what does our plug-in esti-
mate exhibit or, in other words, what do residuals proxy? To the best knowledge
of the author, there is no nonparametric literature devoted to this issue. This arti-
cle shows that in this case the marginal error density is estimated and then all the
above-discussed statistical results hold. In particular, this establishes that a plug-in
estimation is robust toward a possible dependency between predictor and regres-
sion error, and this is an important conclusion for an applied residual analysis.

Finally, let us note that the developed theory of plug-in estimation signifi-
cantly simplifies the problem of creating software because known statistical pro-
grams can be used directly. This article uses the S-PLUS software package of
Efromovich [14] which is available on request from the author.

The structure of this article is as follows. Section 2 presents several numerical
simulations and real practical examples that should help the reader to understand
the problem, its solution and possible applications. Section 3 contains mathemat-
ical results, and discussion is presented in Section 4. Appendix A describes the
main steps of proofs; complete proofs can be found in [16, 17, 19]. Appendix B is
devoted to the Pinsker oracle, and it presents new results for the case of densities
with infinite support.

2. Several examples. Let us explain the above-described problem of error
density estimation via several particular examples.

Figure 1 presents a simulation conducted according to model (1.2) with func-
tions described in the caption. The left-top diagram exhibits a scattergram, and the
problem is to estimate an underlying error density. Asymptotic theory, presented
in Section 3, indicates that the S-PLUS software package of Efromovich [14] can
be used for calculating rescaled residuals and then error density estimation. Recall
that the package supports Efromovich–Pinsker (EP) adaptive series estimates; see
the discussion of regression, scale and density estimates in [14], Sections 4.2, 4.3
and 3.1. Let us explain how this software performs for the simulated dataset. The
scattergram is overlaid by the EP regression estimate (the dotted line) and it can be
compared with the underlying regression m(x) (the solid line). This particular es-
timate is not perfect and we can expect relatively large additive measurable errors
in the residuals. The left-middle diagram exhibits the EP scale estimate (the dotted
line), and it can be compared with the underlying scale function σ(x) (the solid
line). This estimate is also not perfect, so we can expect multiplicative measure-
ment errors in the rescaled residuals shown in the left-bottom diagram. The right
column of diagrams exhibits the process of the error density estimation by the
Pinsker oracle and the corresponding plug-in estimation. The Pinsker oracle is
based on unobserved errors shown in the right-top diagram, and the plug-in esti-
mate is based on rescaled residuals shown in the right-middle diagram. The oracle,
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FIG. 1. Simulated example of heteroscedastic regression (1.2) with the regression function being
the Normal, the scale function being the Monotone, the design density being the Uniform and the er-
ror density being the Bimodal; these underlying functions are defined in [14], page 18. The simulated
scattergram is shown by triangles, the sample size n = 50 is shown in the subtitle of the right-bottom
diagram. The dotted lines show data-driven estimates, the solid lines show underlying functions, and
the dashed line in the right-bottom diagram shows the oracle estimate based on underlying errors
exhibited in the right-top diagram.

the plug-in estimate and the underlying error density are shown in the right-bottom
diagram by dashed, dotted and solid lines, respectively.

As we see, due to the presence of measurement errors, the data-driven esti-
mate performs worse than the oracle. The estimate is overspread, and this out-
come is typical for data contaminated by measurement errors; see the discussion
in [13] and [14], Section 3.5. Nonetheless, the estimate correctly indicates the
bimodal nature of the error. Keeping in mind that any nonparametric analysis is
considered as a first glance at the data, the estimate readily indicates that the error
density is not normal. This conclusion implies that classical methods of regression
analysis, based on normal distribution of errors, should be modified. For instance,
a prediction error may be described by using the error density estimate.
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Let us complement this single simulation with an intensive Monte Carlo study
where 500 identical simulations are conducted for each sample size from the set
{25,50,75,100,150,200}. For each simulation, we calculate the ratio of ISEs of
the Pinsker oracle and the estimate, and then for 500 simulations, calculate the
sample mean, sample median and sample standard deviation of the ratios. The
corresponding results are as follows: {(1.05/0.93/0.74); (1.01/0.83/0.72); (0.96/

0.81/0.64); (0.97/0.85/0.63); (0.94/0.88/0.53); (0.96/0.87/0.56)}, where an el-
ement (A/B/C) presents the sample mean, median and standard deviation for a
corresponding sample size. Note that a mean ratio or median ratio smaller than 1
favors the Pinsker oracle. As we see, for the explored sample sizes, traditionally
considered as small even for the case of direct observations, plug-in estimation
performs respectively well. This tells us that Pinsker’s proposal of comparing a
data-driven estimator with an oracle is feasible even for the smallest samples. The
interested reader can find more simulations and numerical studies in [16].

Our next simulation, exhibited in Figure 2, addresses an important issue of
rescaling of residuals. It is fair to say that an applied regression analysis is primar-
ily devoted to a homoscedastic regression, and a possible issue of heteroscedastic-
ity is addressed by a data transformation and/or weighting rather than rescaling;
see the discussions in [6] and [32]. We shall comment on this shortly, but now
let us consider an example of a homoscedastic regression (1.1) which is treated
by the suggested software that always attempts to rescale residuals. A simu-
lated scattergram is shown in the left-top diagram of Figure 2. Absolute values
of residuals are shown by squares in the left-middle diagram, and they read-
ily exhibit heteroscedasticity. We know that this heteroscedasticity is stochastic
in nature (look at the underlying horizontal scale function shown by the solid
line), but the software does not know this. Thus, it is of interest to understand
how the software will perform with respect to a new oracle that knows that the
model is homoscedastic. In other words, let us compare performances of the same
density estimator where scaled residuals and residuals are plugged in. The left-
bottom and right-middle diagrams exhibit by dots and squares rescaled residu-
als and residuals, respectively. The corresponding density estimates are shown
by the dotted and long-dashed lines in the right-bottom diagram; the solid and
dashed lines in this diagram exhibit the underlying normal error density and
the Pinsker oracle (based on unobserved regression errors), respectively. As we
see, in this particular case the rescaling had a positive effect on the estimation.
In general, this cannot be the case, so let us conduct a numerical study iden-
tical to the above-described one with the only difference being that now we
are comparing the use of rescaled residuals (the estimate) and residuals (a new
oracle). The results are the following: {(0.99/0.91/0.78); (0.97/0.78/0.57);
(1.02/0.78/0.65); (0.93/0.87/0.61); (0.98/0.88/0.57); (0.97/0.87/0.54)}. The
study indicates that rescaling can be considered a robust procedure for ho-
moscedastic regression, and Section 3 presents asymptotic justification of this
empirical observation.
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FIG. 2. The use of rescaled residuals and residuals in a homoscedastic regression. The structure
of the diagrams is similar to Figure 1 with the following modification. Rectangles in the left-middle
diagram show absolute values of residuals. Rectangles and dots in the left-bottom diagram and the
right-middle diagram exhibit residuals and rescaled residuals, respectively. The long-dashed line in
the right-bottom diagram exhibits the estimate based on residuals.

The main purpose of the next simulation is to allow us to discuss the case of
error depending on the predictor, and it also allows us to explore possible applica-
tions for statistical quality control. Assume that a process is inspected at ordered
times Xl and corresponding observations are Yl , l = 1, . . . , n. Recall that it is cus-
tomary to say that a process is in control if its mean (centerline, regression func-
tion) and standard deviation (scale function, volatility) are constant. Keeping in
mind that a traditionally assumed distribution of controlled variables is Gaussian,
the latter implies a stationary distribution of the process; see the discussion in [10],
Chapter 23. The two top diagrams in Figure 3 present a simulated process to-
gether with its two main characteristics. Because mean and standard deviation of
the process are constant, the process is declared to be in control. However, even
if the process is in control, it may not be strictly stationary. Thus, let us continue
our analysis of the process. The third diagram shows us the estimated marginal
density of residuals (the dotted line), which exhibits a non-Gaussian shape (note
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FIG. 3. Simulated example with the error distribution depending on the predictor. Here
Y = 2 + ε(X) where the error is a linear mixture of the Bimodal density, shown in Figure 1 and
having weight X, and the Normal density, shown in Figure 2 and having weight 1 −X. The structure
of the two top diagrams is similar to the left ones in Figure 2. The third diagram exhibits the estimated
and underlying marginal densities. The two bottom diagrams show the marginal error density esti-
mates for initial (onset) and final (sunset) 50 observations. The estimates and underlying densities
are shown by dotted and solid lines, respectively.

that the underlying marginal density is shown by the solid line). If it is known that
the process must be Gaussian, this error density raises a red flag. If no action is
required, as in the familiar “normal tool wear” example, then modified acceptance
charts and hypotheses tests, based on the estimated density, should be suggested;
see [10], Chapters 23 and 25. To check the drawn conclusion about the changed
distribution, the two bottom diagrams exhibit an onset error density for the first
50 observations and an sunset error density for the last 50 observations. They sup-
port our preliminary conclusion that the error distribution is changing. This exam-
ple shows that nonparametric error density analysis can be a valuable addition to
classical quality control methods.

Now we are in a position to explore several real practical examples. The re-
search division of BIFAR, a company with businesses in equipment and chemicals
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FIG. 4. Centrifuging a food processing plant’s waste. The sample size is n = 47. The scattergram
is shown by triangles and it is overlaid by the EP regression estimate.

for wastewater treatment plants, has studied performance of a centrifuge for me-
chanical dewatering of a sludge produced by a food processing plant. The aim
of the study has been to understand how a sludge, containing a fat waste, can be
centrifuged. The top-left diagram in Figure 4 presents results of a particular exper-
iment. Index of fat is the predictor and index of centrifuging is the response. It has
been established in [16] that the distribution of regression errors crucially depends
on the predictor. Thus, we know a priori that we will visualize the marginal error
density.

Before discussion of the example, let us make the following remark about
the software. It allows the statistician to estimate error densities with a known
manually chosen finite support or infinite/unknown support. Intensive simulations
in [16] show that, for smaller sample sizes, the former approach benefits the esti-
mation, while, for larger samples, both methods perform similarly. In the simulated
examples support has been unknown and, thus, the shown estimates are completely
data-driven. A manual choice of support is not a difficult step in many applied set-
tings because it is defined by specifications. In particular, for the BIFAR example,
this approach implied the manual choice [−2.75,2.75] for the support. Due to the
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small sample size n = 47, this help is valuable and should be utilized whenever
possible. (The interested reader can find discussion of several manual and data-
driven choices of support in [14], Chapter 3.)

Now let us explore the BIFAR dataset. The left-top diagram in Figure 4 exhibits
the data and the estimated regression function. It is readily seen from this dia-
gram that the regression is heteroscedastic. The bottom-left diagram contains the
scale estimate, and it supports our visual conclusion about the heteroscedasticity.
Let us note that neither the regression nor the scale estimate has been a surprise
for BIFAR. The right-top diagram shows rescaled residuals; the diagram indicates
that regression and scale estimates performed well and no heteroscedasticity can
be observed. Also, after a closer look at the rescaled residuals, it is possible to
note clusters in the residuals. This observation is supported by the estimated mar-
ginal density of errors shown in the right-bottom diagram. The density estimate
reveals that it is a mixture of two distributions with the larger “left” cluster having
a negative bias which “drags” the index of centrifuging down. This was a fantastic
insight into the centrifuging process for BIFAR that, just for free, gave the com-
pany a new tool for the process analysis. As a result, while classical regression
analysis traditionally describes a relationship between two variables by univari-
ate regression and scale functions, it is proposed to complement the analysis by
an extra univariate function—error density. Let us stress that it would be great to
complement this analysis with a conditional density, but the sample is too small
for bivariate function estimation.

Based on this outcome, BIFAR decided to conduct a series of experiments
where special chemicals were added to the sludge. Figure 5 presents (in the same
format) results of a particular experiment. Note that the regression and scale func-
tions are about the same due to robust performance of the centrifuge. On the other
hand, the marginal error density indicates that the chemical is able to merge to-
gether the above-discussed clusters, and it also decreases the relative effect of the
“left” cluster. This may explain, at least partially, the overall increase in the index
of centrifuging caused by the chemical. Note that all these observations have been
based on the analysis of univariate functions. Of course, it would be nice to eval-
uate an underlying conditional density, but the dataset is too small for this and we
are restricted to the univariate nonparametric analysis.

Let us make a comment that connects these two practical examples with the
simulated example in Figure 3. It is possible to imagine a situation where BIFAR
observations are a time series where, due to some circumstances, index of fat in-
creases. For instance, this may occur if a food processing plant illegally dumps
its waste into a municipal sewage system. Then the error density will be the first
indicator of such violation. Also, these two figures indicate the possibility of using
the error density for classification purposes: the chemical is present or not, fat is
present or not. In other words, an error density is an additional univariate char-
acteristic (in addition to mean and scale functions) that may be useful in many
settings of industrial statistics.
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FIG. 5. Centrifuging a food processing plant’s waste with added chemical. Sample size n = 63.

We may conclude that, on the top of such classical applications in regression
analysis as prediction, model validation, hypothesis testing and optimal estimation
of regression functions, error-density estimation is a valuable and feasible data-
analysis tool on its own in time series, quality control and industrial statistics.

3. Optimal estimation of the error density. The aim of this section is
twofold. First, we would like to establish minimax rates and constants of mean
integrated squared error (MISE) convergence of error density estimates in ho-
moscedastic models (1.1) and, if possible, in heteroscedastic models (1.2) with
errors depending on predictors. Recall that, even for a homoscedastic model, min-
imax rates are unknown; see [8]. Second, we would like to suggest a data-driven
(adaptive) estimator that attains the minimax convergence. Ideally, to support the
classical methodology of applied regression analysis and to employ available sta-
tistical software, such an estimator should be a known (for direct observations)
density estimator based on appropriately calculated residuals, that is, it should be
a plug-in density estimator.

Two classical models of errors will be studied: models of errors with a known
finite support [a, a + b] and errors with infinite support (−∞,∞). Recall that we
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discussed particular examples in Section 2. We need to make a comment about
the finite interval case. It will be convenient to evaluate the density over a fixed
interval, and a customary interval is [0,1]. In models (1.1) and (1.2) the error
support cannot be [0,1] because Eξ = 0. Thus, we employ a familiar location-
scale transformation, introduce a new random variable ε := (ξ − a)/b and then
study the equivalent problem of estimation of the density f ε(u) of the transformed
error ε instead of the density b−1f ε([u − a]/b) of ξ . The approach of estimation
of a rescaled random variable is discussed in detail in [14], Chapter 3. From now
on we omit the superscript ε in the density, denote by f the density of ε, and refer
to it as the error density (of interest).

In what follows, with some obvious abuse of notation, we shall always present
results for finite and infinite supports simultaneously.

3.1. Model and assumption for the case of finite support. The studied re-
gression model is (1.2), where the error ξ may depend on the predictor X.
Neither the regression function m nor the scale function σ is supposed to be
known. The observed predictors (X1, . . . ,Xn) are i.i.d. according to an un-
known design density p(x) supported on [0,1]; the regression errors ξ1, . . . , ξn

do not take on values beyond a known finite interval [a, a + b] and may de-
pend on the corresponding predictors according to an unknown conditional density
b−1ψ([ν − a]/b|x), ν ∈ [a, a + b]; the pairs (X1, ξ1), . . . , (Xn, ξn) are supposed
to be independent and identically distributed. The marginal density of the rescaled
errors εl = [ξl − a]/b is the object of interest; that is, the issue is to estimate the
density f (u) = ∫ 1

0 ψ(u|x)p(x) dx, u ∈ [0,1], based on n pairs of observations
{(X1, Y1), . . . , (Xn,Yn)}.

ASSUMPTION A. The regression function m(x), the design density p(x) and
the scale function σ(x) are differentiable and their derivatives are bounded and
integrable on [0,1]. Also, minx∈[0,1] min(σ (x), p(x)) > 0 and

∫ 1
0 p(x)dx = 1.

ASSUMPTION B (Finite support). Model (1.2) is considered where the errors
may depend on the predictors. Pairs of observations (X1, Y1), . . . , (Xn,Yn) are
i.i.d. The conditional density ψ(u|x) is such that ∂

∂x
∂2

∂u2 ψ(u|x) exists, is bounded

and integrable on [0,1]2, and ψ(u|x) = 0 for u /∈ (0,1), x ∈ [0,1].

ASSUMPTION C. For i.i.d. observations (errors) Z1, . . . ,Zr from a den-
sity f (u) with unit support [0,1] or infinite support (−∞,∞), Appendix B de-
fines a data-driven density estimate f̂P (u,Zr

1), Zr
1 := (Z1, . . . ,Zr). This estimate,

based on underlying errors, is employed as the Pinsker oracle. It is assumed that
the statistician knows all parameters of this estimate.
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3.2. Model and assumption for the case of infinite support. Due to the com-
plexity of the case, the studied model is homoscedastic regression (1.1) where the
error ξ is independent of the predictor X. Neither the regression function m nor
the design density p of the predictors is known. The problem is to estimate the
density f (u) of ξ based on n i.i.d. pairs of observations (X1, Y1), . . . , (Xn,Yn).
In what follows a reference to the above-formulated Assumption A means that
σ(x) = 1, x ∈ [0,1].

ASSUMPTION B (Infinite support). Model (1.1) is considered with the error
being independent of the predictor and pairs of observations (X1, Y1), . . . , (Xn,Yn)

being i.i.d. The error density f (u) is supposed to be square integrable, that is,∫ ∞
−∞ f 2(u) du < ∞, and its characteristic function h(v) := ∫ ∞

−∞ f (u)eiuv du sat-
isfies

∫ ∞
−∞ v4|h(v)|2 dv < ∞.

3.3. Notational convention. Several sequences in n are used: bn := 4 +
ln ln(n + 20); n2 := n − 3n1; n1 is the smallest integer larger than n/bn; S := Sn

is the smallest integer larger than n1/3. In what follows we always consider suf-
ficiently large n such that min(n1, n2) > 4. C’s denote generic positive constants,
o(1) → 0 as n → ∞, and integrals are taken over [0,1] or (−∞,∞), depending
on the support considered. Also, (x)+ := max(0, x).

3.4. Plugged-in residuals. The aim of this section is to explain a procedure for
the calculation of plugged-in residuals. Four different subsamples are used to es-
timate the design density, the regression function, the scale function and the error
density, respectively (the author conjectures that all n observations may be used
for estimation of each function and the result will still hold). The first n1 obser-
vations are used to estimate the design density p(x), the next n1 observations are
used to estimate the regression function m(x), the next n1 observations are used to
estimate the scale function σ(x), and the last n2 observations are used to estimate
the error density of interest f (u). Note that n2 ≥ [1 − 3(b−1

n + n−1)]n and, thus,
using either n2 or n observations implies the same MISE convergence. The design
density estimate p̂(x) is a truncated cosine series estimate,

p̂(x) = max

(
b−1
n , n−1

1

S∑
s=0

n1∑
l=1

ϕs(Xl)ϕs(x)

)
.

The regression estimate m̂(x) is also a truncated cosine series estimate,

m̂(x) =
S∑

s=0

κ̂sϕs(x),(3.1)

where

κ̂s = n−1
1

2n1∑
l=n1+1

Ylp̂
−1(Xl)ϕs(Xl).(3.2)
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Under model (1.2), the scale estimate σ̂ (x) is also a truncated cosine series esti-
mate,

σ̂ (x) = min
(
max

(
σ̃ (x), b−1

n

)
, bn

)
,(3.3)

where σ̃ (x) =
√

(σ̃ 2(x))+ and σ̃ 2(x) is a regression estimate defined identically to
(3.1)–(3.2), where pairs {(Xl, Yl), l = n1 + 1, . . . ,2n1} are replaced by {(Xl, [Yl −
m̂(Xl)]2), l = 2n1 + 1, . . . ,3n1}.

Then, for finite support (recall that in this case a heteroscedastic model is con-
sidered) we define rescaled residuals

ε̂l := Yl − m̂(Xl)

bσ̂ (Xl)
− a

b
, l = n − n2 + 1, . . . , n.(3.4)

For infinite support (in this case a homoscedastic model is considered) we define
residuals

ξ̂l := Yl − m̂(Xl), l = n − 2n1 + 1, . . . , n.(3.5)

Now we can use a unified notation for the residuals and underlying errors. De-
note by Ẑ a vector (ε̂n−n2+1, . . . , ε̂n) or a vector (ξ̂n−2n1+1, . . . , ξ̂n) for finite and
infinite support cases, respectively. Similarly, Z denotes a vector of transformed
errors (ε1, . . . , εn) or a vector of errors (ξ1, . . . , ξn) for finite and infinite support
cases, respectively. Note that Z is known to the Pinsker oracle but not to the statis-
tician.

3.5. Main assertion. It is possible to show that, under the given assumptions,
the MISE of the plug-in Pinsker oracle f̂P (u, Ẑ), defined in Appendix B, can as-
ymptotically match the MISE of the Pinsker oracle f̂P (u,Z) based on underlying
regression errors.

THEOREM 1. The cases of finite and infinite supports are considered simul-
taneously. Suppose that Assumptions A, B and C hold. Then, for all sufficiently
large samples such that min(n1, n2) > 4, the MISE of the plug-in Pinsker oracle
satisfies the Pinsker oracle inequality

E

∫ (
f̂P (u, Ẑ) − f (u)

)2
du

(3.6)
≤ (

1 + P ∗ ln−1(bn)
)
E

∫ (
f̂P (u,Z) − f (u)

)2
du + P ∗b3

nn
−1,

where P ∗ is a finite constant.

Recall that bn = 4 + ln ln(n + 20) and, thus, P ∗b3
nn

−1 = o(1) ln(n)n−1, that is,
the second term in (3.6) is negligible with respect to minimax MISEs of analytic
and differentiable densities which are at least of order ln(n)n−1. Also note that
Assumptions A and B involve no interplay between smoothness of the error den-
sity and smoothness of the triplet of nuisance functions (design density, regression
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and scale). This allows us to conclude that residuals can be considered as prox-
ies for unobserved regression errors, and this conclusion supports the customary
methodology of applied statistics.

The obtained result also allows us to establish minimax rates and constants of
MISE convergence; they are presented below.

3.6. Optimal rates and constants of MISE convergence. This section answers
several classical questions about optimal estimation of a nonparametric error den-
sity. To the best of the author’s knowledge, so far no results about optimal rates
have been known even for the simplest homoscedastic regression model (1.1) with
uniformly distributed predictors.

Here we are considering a Sobolev (α-fold differentiable) class S(α,Q) of error
densities and an analytic class A(γ,Q) of error densities. These classes are defined
and discussed in Appendix B for finite and infinite supports, and let us note that
the same notation is used in both cases.

COROLLARY 1 (Differentiable error density). Suppose that the assumptions
of Theorem 1 and (B.12) of Appendix B hold and α ≥ 2. Then the plug-in Pinsker
oracle is sharp minimax over Sobolev error densities and all possible oracles,
that is,

sup
f ∈S(α,Q)

E

∫ [
rn(S(α,Q))

(
f̂P (u, Ẑ) − f (u)

)]2
du

= (
1 + o(1)

)
inf
f̌

sup
f ∈S(α,Q)

E

∫ [
rn(S(α,Q))

(
f̌ (u,Z) − f (u)

)]2
du(3.7)

= (
1 + o(1)

)
,

where the infimum is taken over all possible oracles f̌ based on unavailable-to-
the-statistician errors Z and parameters α and Q, the sharp normalizing factor is

rn(S(α,Q)) := [
n2α/(2α+1)/P (α,Q)

]1/2(3.8)

and P(α,Q) is the famous constant of Pinsker [35],

P(α,Q) := (2α + 1)[π(2α + 1)(α + 1)α−1]−2α/(2α+1)Q1/(2α+1).(3.9)

COROLLARY 2 (Analytic error density). Suppose that the assumptions of The-
orem 1 and (B.12) of Appendix B hold. Then the plug-in Pinsker oracle is sharp
minimax over analytic error densities and all possible oracles, that is,

sup
f ∈A(γ,Q)

E

∫ [
rn(A(γ,Q))

(
f̂P (u, Ẑ) − f (u)

)]2
du

= (
1 + o(1)

)
inf
f̌

sup
f ∈A(γ,Q)

E

∫ [
rn(A(γ,Q))

(
f̌ (u,Z) − f (u)

)]2
du(3.10)

= (
1 + o(1)

)
,
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where the infimum is taken over all oracles f̌ based on unavailable-to-the-
statistician errors Z and parameters γ and Q, and the sharp normalizing factor is

rn(A(γ,Q)) := [(2πγ )n/ ln(n)]1/2.(3.11)

The results establish that, whenever Assumptions A and B hold, minimax rates
and constants of MISE convergence for the error density estimation are the same
as for the case of directly observed errors. Moreover, the minimax estimator is a
plug-in one based on appropriately calculated residuals, and it satisfies the oracle
inequality. These results verify the long-standing Pinsker conjecture.

4. Discussion.

4.1. It is an important fact that Assumption A (about properties of the re-
gression function, scale function and design density) and Assumption B (about
properties of an estimated error density) do not interplay. Also, the minimal re-
strictions on smoothness of all these functions are classical in the nonparametric
literature; see [21, 22, 28, 37].

4.2. The assumption
∫ ∞
−∞ v4|h(v)|2 dv < ∞ about the characteristic function

in Assumption B (infinite support) is identical to the assumption that the second
generalized derivative of f (u) is square integrable; see [33], page 35. Thus, the
assumptions for error densities with finite and infinite supports are similar.

4.3. Let us heuristically explore the presented results from the point of view
of the prediction of a new observation Y ∗ at a random level X of the predictor;
see [32], Section 2.5. Whatever prediction topic is considered (hypothesis testing,
confidence intervals, etc.), the error density plays a crucial role. Consider the clas-
sical model (1.1), and recall that a traditional applied approach/paradigm is to as-
sume that Y ∗ = m̂(X)+η, where m̂ is a regression estimate, η is a prediction error
with a density f̃ , and the regression and error density estimates are based on the
previous n observations. The prediction problem resembles the one considered in
the article, so it is natural to explore how the regression and error density estimates
suggested in Section 3 will work together in the prediction problem. We note that,
according to (1.1), the prediction error can be written as η = m(X) − m̂(X) + ξ ;
thus, to verify the paradigm “ξ mimics η,” we need to understand how the dif-
ference m(X) − m̂(X) affects the density of η. Recall that this difference has a
classical decomposition into a zero-mean random component and bias. To sim-
plify the heuristic, let us consider only the effect of bias; denote the bias as b(X).
Under Assumption A, the squared bias can be (at most) of order n−2/3. This im-
plies that the characteristic function hb(v) := E{eivb(X)} of the bias is close to 1
for frequencies |v| < o(1)n1/3, and we can conclude that on these frequencies
the characteristic function of ξ does mimic the characteristic function of η. [Note
that beyond these frequencies the characteristic function hb(v) may be separated
from 1.] Recall that at least twice-differentiable densities, considered in this arti-
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cle, are estimated only on frequencies |v| ≤ O(1)n1/5. As a result, the paradigm
holds (of course, we have considered only the bias effect, but similar arguments are
applied to the random component). On the other hand, let us relax Assumption B
and assume that the error density is only differentiable. Then a rate-optimal error
density estimation requires evaluation of its characteristic function on frequencies
|v| ≤ O(1)n1/3, and then the distributions of η and ξ may be different. Of course,
in this case we can employ a nonoptimal error density estimation, which involves
evaluation of the characteristic function only on frequencies |v| < o(1)n1/3. The
latter preserves the paradigm at the expense of the error density estimation. What
we have observed is the onset of irregularity in the error density estimation, and
this is an interesting and challenging topic on its own.

4.4. There will be a separate paper about the case of infinite support and het-
eroscedastic regression. Due to the presence of multiplicative measurement errors
in residuals, this case requires an additional assumption on the tails of the error
distribution, and it is a technically involved matter to suggest a mild assumption.

4.5. The split-data approach, used for estimation of the nuisance functions
and the error density, can be replaced by using all n observations for estimation of
all functions involved. The corresponding proof becomes much more complicated,
and the interested reader is referred to [16].

4.6. All assertions hold if, in truncated cosine series estimates of the de-
sign density, regression and scale, defined in Section 3.4, the cutoff S is changed
on n1/3 ln(bn). Then, under Assumption A, all these estimates are undersmoothed;
that is, they have a bias which is smaller than an optimal one. This is an interesting
remark for the reader who would like to understand the variance-bias balance in
these estimates. Also, Efromovich [16] shows that rate-optimal adaptive estima-
tion of nuisance functions can be also used. Thus, there is a robust choice among
Fourier series estimates of the nuisance functions. On the other hand, it is an open
problem to explore nonseries estimates like kernel or spline ones. Some numerical
results can be found in [16].

4.7. For density estimation based on direct observations, there is a vast litera-
ture on closely related topics like censored observations, biased data, observations
contaminated by measurement errors, estimation of functionals, ill-posed settings,
estimation under a shape restriction, and so on. The obtained results indicate that
it is reasonable to conjecture that many of the known direct-data results can be
extended to the error density estimation as well. For instance, Van Keilegom and
Veraverbeke [38] considered the problem of consistent error density estimation
in a censored regression; using [4, 15, 18], it is reasonable to conjecture that op-
timal nonparametric results can be obtained for censored and biased regression
models.
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4.8. The reason for considering the case of dependent errors and predic-
tors is threefold. First, this is a rather typical case in applications; the obtained
result shows that in this case the marginal error density is exhibited by residu-
als. Second, we can conclude that the plug-in EP estimation is robust. Finally,
let us stress that small datasets may not allow the statistician to evaluate a con-
ditional density; then the univariate marginal density becomes a valuable tool
for data analysis. Let us finish this remark by answering a question that the au-
thor was frequently asked during presentation of the result. Is it possible that
the marginal error density is normal and the conditional density (of regression
error given predictor) is not? The answer is “yes.” As an example, define a bi-
variate density ψ(u,x) := f (u) + δλ(u)µ(x), where f (u) is the standard normal
density, |λ(u)µ(x)| ≤ 1,

∫ 1
0 µ(x)dx = ∫ ∞

−∞ λ(u)du = 0, and λ(u) = 0 whenever
f (u) < δ. There are plenty of such functions and, under the given assumptions,
ψ(u,x) is a valid bivariate density on (−∞,∞) × [0,1] with the standard normal
marginal density f (u). Obviously, the conditional density ψ(u|x) := ψ(u,x) is
not necessarily normal, and this verifies the assertion. The conclusion is that, even
if the marginal distribution of residuals may be considered normal, unfortunately
this does not imply the normality of the conditional distribution.

4.9. Brown, Low and Zhao [5] introduced the notion of nonparametric super-
efficiency, and they noticed that the Pinsker oracle (EP estimate) was supereffi-
cient; see also [18]. This fact, together with Theorem 1, immediately implies that
the plug-in Pinsker oracle is also superefficient.

4.10. Let us note that plug-in estimation obviously enjoys its renascence in
nonparametric estimation theory; see the discussion in [3] and [23]. A typical non-
parametric plug-in setting is about optimal estimation of a functional. In this arti-
cle a plug-in approach is caused by the indirect nature of observations, and, thus,
it presents a new chapter in the theory of plug-in estimation.

4.11. It is a very interesting and technically involved problem to estimate the
error density for the model with measurement errors in the predictors; see [7].

4.12. The results hold for the case of a fixed-design regression; see [16].

4.13. Let us comment on our main assumption about independence of pairs
of observations (X1, Y1), . . . , (Xn,Yn) with the typical counterexample being the
case of dependent errors. The author conjectures that, based on the result of
Efromovich [14], Section 4.8, even errors with a long memory should not affect
the corresponding optimal rates. On the other hand, the outcome should change
dramatically if a fixed design regression (say a time series) is considered. For this
setting, the result of Hall and Hart [26] may be instrumental.
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4.14. It is an open and practically interesting topic to develop optimal Bayes
and conditional distribution methods and then compare them with the developed
plug-in estimator for the case of small datasets.

4.15. Wavelet regression is a popular tool for solving many practical prob-
lems involving spatially inhomogeneous regressions. It is an open and interesting
problem to explore the possibility of using wavelet-residuals as proxies for under-
lying regression errors.

APPENDIX A: PROOFS

PROOF OF THEOREM 1. Only the main steps of the proof are presented; the
interested reader can find a detailed proof in [17, 19]. We begin with a more
complicated case of finite support. Recall that the Pinsker oracle f̂P is defined
in Appendix B and it is based on pseudo-statistics {µ̄k, θ̄j }; in what follows we
use the diacritics “bar” or “hat” above µk and θj to indicate a pseudo-statistic
(oracle) based on underlying errors or a statistic based on observations, respec-
tively. Set Z∗ := (εn−n2+1, . . . , εn). Then a straightforward calculation, based
on n2 ≥ [1 − 3(b−1

n + n−1)]n, establishes a plain inequality E
∫
(f̂P (u,Z∗) −

f (u))2 du ≤ (1 + Cb−1
n )E

∫
(f̂P (u,Z) − f (u))2 du. As a result, in what follows

we are assuming that pseudo-statistics µ̄k and θ̄j are based on Z∗ in place of Z, that
is, plugged-in residuals correspond to errors used by the Pinsker oracle. Also recall
that the oracle uses EP blockwise-shrinkage with Lk = k2 and tk = ln−2(2 + k).
Keeping this in mind and using the Parseval identity, we write

E

∫ 1

0

(
f̂P (u, Ẑ) − f (u)

)2
du

= E

K∑
k=1

∑
j∈Bk

(µ̂kθ̂j − θj )
2 + ∑

k>K

∑
j∈Bk

θ2
j

= E

K∑
k=1

∑
j∈Bk

[(µ̄kθ̄j − θj ) + µ̄k(θ̂j − θ̄j ) + (µ̂k − µ̄k)θ̂j ]2

+ ∑
k>K

∑
j∈Bk

θ2
j

≤
[(

1 + ln−1(bn)
)
E

K∑
k=1

∑
j∈Bk

(µ̄kθ̄j − θj )
2 + ∑

k>K

∑
j∈Bj

θ2
j

]

+ 2
(
1 + ln(bn)

)

×
[

K∑
k=1

∑
j∈Bk

Eµ̄2
k(θ̂j − θ̄j )

2 +
K∑

k=1

∑
j∈Bk

E(µ̂k − µ̄k)
2θ̂2

j

]
(A.1)
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= (
1 + ln−1(bn)

)
E

∫ 1

0

(
f̂P (u,Z∗) − f (u)

)2
du

+ 2
(
1 + ln(bn)

)

×
[

K∑
k=1

∑
j∈Bk

Eµ̄2
k(θ̂j − θ̄j )

2 +
K∑

k=1

E(µ̂k − µ̄k)
2

∑
j∈Bk

θ̂2
j

]
.

We need to evaluate the second term on the right-hand side of (A.1). Recall that
ξ = bε + a and write

θ̂j − θ̄j

= n−1
2

n∑
l=3n1+1

[
ϕj

([Yl − m̂(Xl)]/bσ̂ (Xl) − a/b
) − ϕj (εl)

]

= n−1
2

n∑
l=3n1+1

[
ϕj

([m(Xl) + σ(Xl)ξl − m̂(Xl)]/bσ̂ (Xl) − a/b
)

(A.2)
− ϕj (εl)

]
= n−1

2

n∑
l=3n1+1

[
ϕj

(
εl + m(Xl) − m̂(Xl)

bσ̂ (Xl)
+ ξl

σ (Xl) − σ̂ (Xl)

bσ̂ (Xl)

)

− ϕj (εl)

]
.

Using the Taylor expansion for the cosine function, we can write

(θ̂j − θ̄j )
2 =

{
n−1

2

n∑
l=3n1+1

[−πjHl2
1/2 sin(πjεl)

− (1/2)(πj)2H 2
l 21/2 cos(πjεl)

+ (1/6)(πj)3H 3
l 21/2 sin(πjεl)

+ (1/24)(πj)4H 4
l 21/2 cos(πjεl)

+ (πj)5H 5
l ν̄l]

}2

≤ C

[
j2n−2

2

{
n∑

l=3n1+1

Hl sin(πjεl)

}2

+ j4n−2
2

{
n∑

l=3n1+1

H 2
l cos(πjεl)

}2

(A.3)
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+ j6n−2
2

{
n∑

l=3n1+1

H 3
l sin(πjεl)

}2

+ j8n−2
2

{
n∑

l=3n1+1

H 4
l cos(πjεl)

}2

+ j10n−2
2

{
n∑

l=3n1+1

|Hl|5
}2]

.

In the first equality we denoted by ν̄l’s generic random variables satisfying |ν̄l| < 1,
and

Hl := m(Xl) − m̂(Xl)

bσ̂ (Xl)
+ ξl

σ (Xl) − σ̂ (Xl)

bσ̂ (Xl)
.(A.4)

As we see, the analysis of (θ̂j − θ̄j )
2 is converted into the analysis of the non-

parametric regression and scale estimates. Evaluations are lengthy and technically
involved (see them in [17]), and they imply

K∑
k=1

∑
j∈Bk

E(θ̂j − θ̄j )
2 ≤ Cbnn

−1.(A.5)

Note that µ̄2
k ≤ 1, so we have evaluated the first sum on the right-hand side of (A.1).

Now let us consider the second sum. Write∑
j∈Bk

(µ̂k − µ̄k)
2θ̂2

j

= Lk

[
�̂k

�̂k + n−1
2

− �̄k

�̄k + n−1
2

]2

× (�̂k + n−1
2 )I (�̂k > tkn

−1
2 )I (�̄k > tkn

−1
2 )

(A.6)

+ �̄2
k

(�̄k + n−1
2 )2

∑
j∈Bk

θ̂2
j I (�̂k ≤ tkn

−1
2 )I (�̄k > tkn

−1
2 )

+ Lk�̂
2
k

�̂k + n−1
2

I (�̂k > tkn
−1
2 )I (�̄k ≤ tkn

−1
2 )

=: D1(k) + D2(k) + D3(k).

Here we have used the notation �̄k := L−1
k

∑
j∈Bk

(θ̄2
j − n−1

2 ) and �̂k :=
L−1

k

∑
j∈Bk

(θ̂2
j − n−1

2 ).
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Let us consider, in turn, these three terms, beginning with D1(k). Skipping the
indicator functions, we are going to evaluate

D∗
1(k) := Lk

[
�̂k

�̂k + n−1
2

− �̄k

�̄k + n−1
2

]2

(�̂k + n−1
2 )

= Lkn
−2
2 (�̂k − �̄k)

2

(�̂k + n−1
2 )(�̄k + n−1

2 )2
.

Using the Cauchy inequality, we can write, for any ck ≥ 1,

(�̂k − �̄k)
2 = L−2

k

[ ∑
j∈Bk

(θ̂2
j − θ̄2

j )

]2

≤ L−2
k

[
2ck

∑
j∈Bk

(θ̂j − θ̄j )
2 + c−1

k

∑
j∈Bk

θ̄2
j

]2

(A.7)

≤ 4L−2
k c2

k

[ ∑
j∈Bk

(θ̂j − θ̄j )
2

]2

+ 2L−2
k c−2

k

[ ∑
j∈Bk

θ̄2
j

]2

.

Note that
∑

j∈Bk
θ̄2
j = Lk(�̄k + n−1

2 ), to get

D∗
1(k) ≤ 4n−2

2

(c2
kL

−1
k )[∑j∈Bk

(θ̂j − θ̄j )
2]2

(�̂k + n−1
2 )(�̄k + n−1

2 )2
+ 2n−2

2
c−2
k Lk

�̂k + n−1
2

=: D∗
11(k) + D∗

12(k).

Set c2
k = Lkk

1+d , 0 < d < 1, and denote D12(k) := D∗
12(k)I (�̂k > tkn

−1
2 ) ×

I (�̄k > tkn
−1
2 ). We get

K∑
k=1

D12(k) ≤ 2n−1
2

∞∑
k=1

k−1−d n−1
2 I (�̂k > tkn

−1
2 )

�̂k + n−1
2

≤ Cn−1.(A.8)

It is a more complicated task to evaluate D∗
11(k). Denote

D11(k) := D∗
11(k)I (�̂k > tkn

−1
2 )I (�̄k > tkn

−1
2 )

and write

ED11(k) ≤ Cn2k
1+dE

[ ∑
j∈Bk

(θ̂j − θ̄j )
2

]2

.(A.9)

The squared difference (θ̂j − θ̄j )
2 was considered in (A.3), and a calculation

yields

E

[ ∑
j∈Bk

(θ̂j − θ̄j )
2

]2

≤ C[n−2n−3/15 ln10(n) + n−2
1 k−6].(A.10)
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Using this inequality in (A.9) implies
∑K

k=1 ED11(k) ≤ Cn−1b2
n. In its turn,

this, together with (A.8), yields

E

K∑
k=1

D1(k) ≤
K∑

k=1

E{D11(k) + D12(k)} ≤ Cn−1b2
n.

Now we consider the second term D2(k) in (A.6). Write

D2(k) = �̄2
k

(�̄k + n−1
2 )2

Lk(�̂k + n−1
2 )I (�̂k ≤ tkn

−1
2 )I (�̄k > tkn

−1
2 )

≤ Cn−1
2 Lk

�̄2
k

(�̄k + n−1
2 )2

[I (tkn
−1
2 < �̄k ≤ 2tkn

−1
2 )

+ I (�̄k > 2tkn
−1
2 )I (�̄k − �̂k > �̄k/2)].

Recall that c2
k = Lkk

1+d , 0 < d < 1. Then using (A.7), we get

(�̂k − �̄k)
2 ≤ CL−2

k c2
k

[ ∑
j∈Bk

(θ̂j − θ̄j )
2

]2

+ Cc−2
k (�̄k + n−1

2 )2.(A.11)

This, together with Chebyshev’s inequality and (A.10), yields

ED2(k) ≤ Cn−1
2 Lkt

2
k E{I (tkn

−1
2 < �̄k ≤ 2tkn

−1
2 )}

+ Cn−1
2 LkE{I (�̄k − �̂k > �̄k/2)I (�̄k > 2tkn

−1
2 )}

≤ Cn−1
2 Lkt

2
k E{I (tkn

−1
2 < �̄k ≤ 2tkn

−1
2 )}(A.12)

+ Ck1+d t−2
k

(
n−1n−3/15 ln10(n) + n−1

1 bnk
−6)

+ Cn−1
2 t−2

k k−1−d .

Let us evaluate the term E{I (tkn
−1
2 < �̄k ≤ 2tkn

−1
2 )}. Denote �k := L−1

k ×∑
j∈Bk

θ2
j and θj := ∫ 1

0 f (u)ϕj (u) du. Then using Lemma 1 in [11], together with
some algebra, implies

E{I (tkn
−1
2 < �̄k ≤ 2tkn

−1
2 )}

≤ I
(
(1/2)tkn

−1
2 < �k ≤ 4tkn

−1
2

)
+ E

{
I
(
�̄k − �k > (1/2)tkn

−1
2

)}
I
(
�k ≤ (1/2)tkn

−1
2

)
+ E

{
I
(
�k − �̄k > (1/2)�k

)}
I (�k > 4tkn

−1
2 )

≤ Ct−1
k

�k

� + n−1
2

I
(
(1/2)tkn

−1
2 < �k ≤ 4tkn

−1
2

) + Ct−4
k L−2

k .

Let us recall a familiar blockwise Wiener oracle, which knows regression er-
rors and an estimated density of errors and employs optimal shrinkage coefficients
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µk = �k/(�k + n−1). The Wiener oracle is the benchmark for the Pinsker oracle,
and its MISE is proportional to n−1

2
∑∞

k=1 Lk�k/(�k + n−1
2 ); see the discussion

in [11, 14] and Appendix B. Then, combining the results, we get

K∑
k=1

ED2(k) ≤ Cn−1
2

K∑
k=1

tkLk

�k

�k + n−1
2

I
(
(1/2)tkn

−1
2 < �k ≤ 4tkn

−1
2

) + Cb2
nn

−1

≤ Cn−1
2 b2

n + C
∑

k>b
2/3
n

tkLk

�k

�k + n−1
2

I
(
(1/2)tkn

−1
2 �k ≤ 4tkn

−1
2

)

+ Cb2
nn

−1

≤ C ln−2(bn)E

∫ 1

0

(
f̂P (u,Z∗) − f (u)

)2
du + Cb2

nn
−1.

Now we consider the third term D3(k) in (A.6). Write

D3(k) ≤ Lk�̂kI (�̂k > 2tkn
−1
2 )I (�̄k ≤ tkn

−1
2 )

+ 2tkLk�̂kI (tkn
−1
2 < �̂k ≤ 2tkn

−1
2 )I (�̄k ≤ tkn

−1
2 )

=: D31(k) + D32(k).

To evaluate D31(k), we note that

D31(k) ≤ 2Lk|�̂k − �̄k|I (�̂k − �̄k > tkn
−1
2 )I (�̄k ≤ tkn

−1
2 ).

This relation, the Chebyshev inequality, (A.10) and (A.11) imply

ED31(k) ≤ CLkn
−2
1

[
L−2

k c2
k

(
n−3/15 ln10(n) + k−6) + c−2

k

]
/(tkn

−1
2 )

≤ Cn−2
1 n2t

−1
k

[
k1+d(

n−3/5 ln10(n) + k−6) + k−1−d]
and, thus,

K∑
k=1

ED31(k) ≤ Cn−2
1 n2 < Cb2

nn
−1.

To evaluate D32(k), we write

D32(k) = 2tkLk�̂kI (tkn
−1
2 < �̂k ≤ 2tkn

−1
2 )I

(
�̄k ≤ (1/2)tkn

−1
2

)
+ 2tkLk�̂kI (tkn

−1
2 < �̂k ≤ 2tkn

−1
2 )I

(
(1/2)tkn

−1
2 < �̄k < tkn

−1
2

)
=: D321(k) + D322(k).

The first term is evaluated in the same way as the term D31 was evaluated,
and we get

∑K
k=1 ED321(k) < Cb2

nn
−1. The second term can be estimated as
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follows. First, we note that �̂kI (tkn
−1
2 < �̂k ≤ 2tkn

−1
2 ) ≤ 2tkn

−1
2 . Then we re-

alize that the term was evaluated earlier; see the first term in (A.12). This implies∑K
k=1 ED322(k) ≤ C ln−2(bn)E

∫ 1
0 (f̂P (u,Z∗)−f (u))2 du+Cb2

nn
−1. Combining

the results, we get

K∑
k=1

ED3(k) ≤ C ln−2(bn)E

∫ 1

0

(
f̂P (u,Z∗) − f (u)

)2
du + Cb2

nn
−1.

Then, by plugging the obtained estimates for D1(k), D2(k) and D3(k) into (A.6),
we obtain

E

K∑
k=1

∑
j∈Bk

(µ̂j − µ̄j )
2θ̂2

j

(A.13)

≤ C ln−2(bn)E

∫ 1

0

(
f̂P (u,Z∗) − f (u)

)2
du + Cb2

nn
−1.

Using (A.5) and (A.13) in (A.1) verifies Theorem 1 for the finite support case.
For the infinite support case, we set Z∗ := (εn−2n1+1, . . . , εn), consider pseudo-
statistics h̄(u) and µ̄k based on Z∗, and then write, similarly to (A.1),

E

∫ ∞
−∞

(
f̂P (u, Ẑ) − f (u)

)2
du

= E

∫ ∞
−∞

[
π−1

K∑
k=1

µ̂k

∫
Bk

Re
(
ĥ(v)e−ivu)

dv

− π−1
K∑

k=1

∫
Bk

Re
(
h(v)e−ivu)

dv

− π−1
∑
k>K

∫
Bk

Re
(
h(v)e−ivu)

dv

]2

du

(A.14)

= π−1E

K∑
k=1

∫
Bk

|µ̂kĥ(v) − h(v)|2 dv + π−1
∑
k>K

∫
Bk

|h(v)|2 dv

≤ (
1 + ln−1(bn)

)
E

∫ ∞
−∞

(
f̂P (u,Z∗) − f (u)

)2
du

+ 2
(
1 + ln(bn)

)[ K∑
k=1

Eµ̄2
k

∫
Bk

|ĥ(v) − h̄(v)|2 dv

+
K∑

k=1

E(µ̂k − µ̄k)
2
∫
Bk

|ĥ(v)|2 dv

]
.
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If we compare the right-hand side of (A.14) with the right-hand side of (A.1) and
recall the steps taken after (A.1), then it is easy to recognize that the difference is in
analyzing ĥ(v) − h̄(v) in place of θ̂j − θ̄j . Another remark is that now the second
term in (A.4) vanishes because the unit scale function is known. These remarks
allow us to follow the above-outlined proof and verify (3.6); details can be found
in [19]. Theorem 1 is verified. �

PROOF OF COROLLARIES 1 AND 2. First, it is checked that the constant P ∗
in (3.6) is uniformly bounded over the considered function classes. Second, it is
easy to check that (3.6) holds with the estimate and the oracle exchanging places.
Then using Theorem 1, Corollaries B1 and B2 of Appendix B, together with some
algebra, verifies these corollaries. Details can be found in the technical reports.

�

APPENDIX B: THE PINSKER ORACLE

The Pinsker oracle is a data-driven density estimator possessing some desired
statistical properties for the case of directly observed regression errors; in other
words, it is a traditional density estimator whose oracle feature is in the knowl-
edge of regression errors that are obviously unavailable to the statistician. For the
case of direct observations and finite support, a good candidate for an estimator is
the Efromovich–Pinsker (EP) data-driven (adaptive) procedure, which possesses
an impressive bouquet of asymptotic properties of being: (a) minimax over a vast
set of function classes which includes parametric, differentiable and analytic ones;
(b) superefficient; (c) an excellent plug-in estimate; (d) applicable to filtering, re-
gression and spectral density settings due to equivalence results. The interested
reader can find discussion in [5, 9, 11, 14, 34, 39]. On the other hand, no results
are available about a similar estimator for the case of a density with infinite sup-
port. The primary aim of this appendix is to develop such an estimator and explore
its properties, and the secondary aim is to remind the reader of known results for
the case of finite support.

We begin with the primary aim. Consider a density f (z), −∞ < z < ∞, such
that

∫ ∞
−∞ f 2(z) dx < ∞. The problem is to estimate f (z) under the MISE criteria

when n i.i.d. realizations Z1, . . . ,Zn from f are given. The underlying idea of EP
estimation, translated from a finite support setting into the infinite one, is as fol-
lows. First, the characteristic function h(v) := ∫ ∞

−∞ eivzf (z) dz is estimated by its

empirical counterpart ĥ(v) := n−1 ∑n
l=1 eivZl . Second, the estimate is “smoothed”

by a statistic (filter) µ̂(v), which is the main “ingredient” of the EP method
defined shortly. Finally, a smoothed empirical characteristic function µ̂(v)ĥ(v)

is inverted to obtain a density estimate f̂ (z) := (2π)−1 ∫ ∞
−∞ µ̂(v)ĥ(v)e−ivz dv.

Now we are in position to explain the underlying idea of choosing the EP
smoothing. Consider a real even function µ(v) : (−∞,∞) → [0,1], set f̃ (z) :=
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(2π)−1 ∫ ∞
−∞ µ(v)ĥ(v)e−ivz dv, and evaluate the MISE of this estimate using the

Plancherel identity,

E

∫ ∞
−∞

|f̃ (z) − f (z)|2 dz

= (2π)−1E

∫ ∞
−∞

|µ(v)ĥ(v) − h(v)|2 dv(B.1)

= (2π)−1E

∫ ∞
−∞

∣∣µ(v)
(
ĥ(v) − h(v)

) − (
1 − µ(v)

)
h(v)

∣∣2 dv.

Recall two familiar properties of the empirical characteristic function:

Eĥ(v) = h(v), E|ĥ(v) − h(v)|2 = n−1(
1 − |h(v)|2)

.(B.2)

This, together with simple algebra, shows that a smoothing function (oracle),

µ∗(v) := |h(v)|2
|h(v)|2 + n−1(1 − |h(v)|2) ,(B.3)

minimizes (B.1). The reader might notice that this smoothing function is the analog
of the famous Wiener filter, and this is the reason why it also can be referred to
as a filter; see [29], Chapter 10. The function µ∗(v) is unknown to the statistician,
but, using (B.2), it can be estimated by the statistic

µ̃(v) := |ĥ(v)|2 − n−1

|ĥ(v)|2 I
(|ĥ(v)|2 > (1 + t)n−1)

, t > 0;(B.4)

here I (·) is the indicator function and t is a threshold level (1 + t is often called a
penalty). Hard thresholding (which is a trademark of the EP smoothing) is used to
make the statistic a bona fide smoothing function. Unfortunately, it is not difficult
to verify that this naive mimicry is not sufficiently accurate. Thus, by recalling that
any characteristic function h(v) is continuous and, thus, µ∗(v) is continuous, it is
natural to approximate µ∗(v) by a piecewise constant function and then estimate
that function. This is the underlying idea of the EP blockwise procedure. Note
that µ∗(v) is an even function, and this allows us to work only with v ∈ [0,∞).
We divide the half-line [0,∞) into a sequence of nonoverlapping blocks (inter-
vals) B1,B2, . . . with corresponding lengths Lk := ∫

Bk
dv > 0, and then consider

a smoothed empirical characteristic function h̃(v) = ∑∞
k=1 µkĥ(v)I (v ∈ Bk). Sim-

ilarly to (B.1)–(B.3), we can establish that the MISE of the corresponding density
estimate is minimized by the oracle

µ∗
k := L−1

k

∫
Bk

|h(v)|2 dv

L−1
k

∫
Bk

|h(v)|2 dv + n−1(1 − L−1
k

∫
Bk

|h(v)|2 dv)
.(B.5)
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Note the striking similarity between (B.3) and (B.5). Similarly to (B.4), the pro-
posed estimate of the optimal µ∗

k is

µ̂k := L−1
k

∫
Bk

|ĥ(v)|2 dv − n−1

L−1
k

∫
Bk

|ĥ(v)|2 dv
I

(
L−1

k

∫
Bk

|ĥ(v)|2 dv > (1 + tk)n
−1

)
,

(B.6)
tk > 0.

Then the EP density estimate is defined as

f̂ ∗(z) := π−1
K∑

k=1

µ̂k

∫
Bk

Re
(
ĥ(v)e−ivz)dv,(B.7)

where the cutoff K is a minimal integer such that
∑K

k=1 Lk ≥ n1/5bn; this cutoff
corresponds to the considered class of at least twice differentiable densities. The
estimator (B.7) will be called the EP estimator for the case of infinite support.
To better appreciate it, let us recall the EP density estimator for the finite sup-
port [0,1]. The main difference is that here a discrete Fourier transform is used:

f̄ ∗(z) := 1 +
K∑

k=1

µ̄k

∑
j∈Bk

θ̄jϕj (z),(B.8)

where {1, ϕj (z) = 21/2 cos(πjz), j = 1,2, . . .} is the classical cosine basis on [0,

1], {θ̄j } are empirical Fourier coefficients [estimates of Fourier coefficients θj :=∫ 1
0 f (z)ϕj (z) dz]

θ̄j := n−1
n∑

l=1

ϕj (Zl),(B.9)

and the smoothing weights (coefficients, filter) are

µ̄k := L−1
k

∑
j∈Bk

θ̄2
j − n−1

L−1
k

∑
j∈Bk

θ̄2
j

I

(
L−1

k

∑
j∈Bk

θ̄2
j > (1 + tk)n

−1

)
.(B.10)

Here the set of positive integers is divided into a sequence of blocks (including
only neighbors) Bk of cardinality Lk . Note that the EP infinite- and finite-support
density estimates do look alike.

Finally, if Z1, . . . ,Zn are unobserved regression errors, then the EP estimate
becomes a Pinsker oracle. In this article, for both finite and infinite supports,
this oracle is denoted as f̂P (z,Zn

1 ). Also, let us introduce the notation �k :=
L−1

k

∫
Bk

|h(v)|2 dv and �k := L−1
k

∑
j∈Bk

θ2
j for the infinite and finite supports,

respectively, and µk := �k/(�k + n−1). Then f̂ ∗
P (z,Zn) will denote a super-
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oracle (Wiener filter) which uses µk in place of µ̂k or µ̄k in the EP estimate;
note that the super-oracle knows an estimated density f and this is the oracle that
is traditionally considered in the case of direct observations; see [14].

In what follows C’s denote generic positive constants and it is understood that
the oracles vanish beyond the unit interval in the finite support case. Let us formu-
late a main property of the EP estimate; the result is new for the case of infinite
support and it is due to Efromovich [11] for finite support.

THEOREM B1. Suppose that Z1, . . . ,Zn are i.i.d. realizations from a square
integrable density f with known support that can be either [0,1] or (−∞,∞).
Consider the case of bounded thresholds tk < C. Then the MISE of the Pinsker
oracle (EP estimate) f̂P (z,Zn

1 ) satisfies the upper bound (oracle inequality)

E

∫ ∞
−∞

(
f̂P (z,Zn

1 ) − f (z)
)2

dz

≤ min

(
E

∫ ∞
−∞

(
f̂ ∗

P (z,Zn
1 ) − f (z)

)2
dz,

c∗
[
n−1

K∑
k=1

Lkµk + ∑
k>K

Lk�k

])
(B.11)

+
[
Cn−1

K∑
k=1

Lkµk(t
1/2
k + L−1

k t
−3/2
k df )

]

+
[
Cd2

f n−1
K∑

k=1

L−1
k t−3

k

]
,

where the constant c∗ is 1 or π−1, and the functional df is 1 + ∑∞
j=1 |θj | or∫ ∞

0 |h(v)|dv, for the finite- and infinite-support cases, respectively.

There are many important corollaries of Theorem B1. We present only two that
are relevant to the topic of error density estimation: sharp minimax estimation
of differentiable and analytic densities. We begin with the case of differentiable
densities. For infinite support, we introduce a familiar Sobolev class S(α,Q) :=
{f :

∫ ∞
−∞[f 2(z) + (f (α)(z))2]dz ≤ Q} = {h : (2π)−1 ∫ ∞

−∞(1 + |v|2α)|h(v)|2 dv ≤
Q}, where f (α), α ≥ 2, is the αth generalized derivative and 0 < Q < ∞; see [33],
page 144, [24] and [36]. With some obvious abuse of notation, for the case of finite
support we define a similar Sobolev class S(α,Q) := {f :

∑∞
j=1(1 + (πj)2α) ×

θ2
j ≤ Q}; see [14], Chapter 2. Here we are interested only in the case α ≥ 2; more

general Sobolev classes are considered in [20].

COROLLARY B1. Consider the setting of Theorem B1. Suppose that α ≥ 2
and that blocks Bk and thresholds tk used by the Pinsker oracle (EP estimate)
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f̂P (z,Zn
1 ) satisfy

∞∑
k=1

L−1
k t−3

k < ∞, lim
k→∞Lk+1/Lk = 1, lim

k→∞ tk = 0.(B.12)

Then the Pinsker oracle (EP estimate) is sharp minimax over Sobolev densities
and

sup
f ∈S(α,Q)

E

∫ ∞
−∞

[
rn(S(α,Q))

(
f̂P (z,Zn

1 ) − f (z)
)]2

dz

= (
1 + o(1)

)
inf
f̌

sup
f ∈S(α,Q)

E

∫ ∞
−∞

[
rn(S(α,Q))

(
f̌ (z) − f (z)

)]2
dz(B.13)

= (
1 + o(1)

)
,

where the infimum is taken over all possible estimates f̌ based on observations Zn
1

and parameters α and Q, and the sharp normalizing factor is defined in (3.8).

Differentiable densities are traditionally studied in the nonparametric density
estimation literature; see [24] and [37]. In the regression literature, typical error
distributions are analytic, such as normal, mixture of normals and other stable
distributions. For the case of infinite support, let us consider a class of such dis-
tributions studied in [25]. We say that f belongs to an analytic class A(γ,Q),
0 < γ < ∞, 0 < Q < ∞, if f (z),−∞ < z < ∞, has continuation into the strip
{z+ iy : |y| ≤ γ, z ∈ (−∞,∞)}, f (z+ iy) is analytic inside this strip, bounded up
to its boundary and

∫ ∞
−∞(Re{f (z + iγ )})2 dz ≤ Q. Note that this class includes,

among others, normal, Student and Cauchy densities, as well as their mixtures and
analytic one-to-one transformations. The main feature of these densities is a very
fast (exponential) decrease of the corresponding characteristic functions, namely,
according to Achieser ([1], page 251),

∫ ∞
−∞

(eγ v + e−γ v)2|h(v)|2 dv ≤ 8πQ.(B.14)

As a result, we may expect almost parametric rates of MISE convergence. A finite-
support counterpart of this class is well-known in the literature, and it is defined
(with the obvious abuse of notation) as A(γ,Q) := {f :

∑∞
j=1(1+e2πγj )θ2

j ≤ Q};
see [14], Chapter 2.

COROLLARY B2. Consider the setting of Theorem B1, and let (B.12) hold.
Then the Pinsker oracle (EP estimate) f̂P (z,Zn

1 ) is sharp minimax over analytic
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densities and

sup
f ∈A(γ,Q)

E

∫ ∞
−∞

[
rn(A(γ,Q))

(
f̂P (z,Zn

1 ) − f (z)
)]2

dz

= (
1 + o(1)

)
inf
f̌

sup
f ∈A(γ,Q)

E

∫ ∞
−∞

[
rn(A(γ,Q))

(
f̌ (z) − f (z)

)]2
dz(B.15)

= (
1 + o(1)

)
,

where the infimum is taken over all estimates f̌ based on observations Zn
1 and

parameters γ and Q, and the sharp normalizing factor is defined in (3.11).

These results show that the EP-estimate is simultaneously sharp adaptive over
the union of differentiable and analytic densities. This allows us to conclude that
the EP estimate is a feasible choice for a Pinsker oracle. Only to be specific, in
Section 3 a Pinsker oracle with Lk = k2 and tk = ln−2(2 + k) is considered; note
that this choice satisfies (B.12) and tk ≤ 1.

Now let us verify the stated results.

PROOF OF THEOREM B1. The assertion plainly follows from [11] for the
finite-support case. Let us consider the infinite-support case. The plan is to fol-
low along and employ the main parts of the proof presented in [11]; using the
same notation will help us to do this. Set �̂k := L−1

k

∫
Bk

|ĥ(v)|2 dv − n−1 and

note that (B.6) can be rewritten as µ̂k = �̂k(�̂k + n−1)−1I (�̂k > tkn
−1). Then,

using (B.2) and the Plancherel identity, we write∫ ∞
−∞

(
f̂P (z,Zn

1 ) − f (z)
)2

dz

=
∫ ∞
−∞

[
π−1

K∑
k=1

µ̂k

∫
Bk

Re
(
ĥ(v)e−ivz)dv

− π−1
K∑

k=1

∫
Bk

Re
(
h(v)e−ivz)dv − π−1

∑
k>K

∫
Bk

Re
(
h(v)e−ivz)dv

]2

dz

=
∫ ∞
−∞

[
π−1

∫ ∞
0

Re

{(
K∑

k=1

(
µ̂kĥ(v) − h(v)

)
I (v ∈ Bk)

)
e−ivz

}
dv

]2

dz

+
∫ ∞
−∞

[
π−1

∫ ∞
0

Re

{ ∑
k>K

h(v)I (v ∈ Bk)e
−ivz

}
dv

]2

dz

= π−1
K∑

k=1

∫
Bk

|µ̂kĥ(v) − h(v)|2 dv + π−1
∑
k>K

∫
Bk

|h(v)|2 dv.
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This yields

E

∫ ∞
−∞

(
f̂P (z,Zn

1 ) − f (z)
)2

dz

= π−1
K∑

k=1

E

∫
Bk

∣∣(µkĥ(v) − h(v)
) + (µ̂k − µk)ĥ(v)

∣∣2 dv

(B.16)
+ π−1

∑
k>K

Lk�k

=: π−1
K∑

k=1

Ak + π−1
∑
k>K

Lk�k.

Now we evaluate a particular Ak , 1 ≤ k ≤ K . Using the Cauchy inequality, we get

Ak ≤ (1 + t
1/2
k )E

∫
Bk

|µkĥ(v) − h(v)|2 dv

+ (1 + t
−1/2
k )E

{
(µ̂k − µk)

2
∫
Bk

|ĥ(v)|2 dv

}
(B.17)

=: (1 + t
1/2
k )Ak1 + (1 + t

−1/2
k )Ak2.

Note that π−1 ∑K
k=1 Ak1 +π−1 ∑

k>K Lk�k = E
∫ ∞
−∞(f̂ ∗

P (z,Zn
1 )−f (z))2 dz. On

the other hand, using (B.2), we get

Ak1 = E

∫
Bk

∣∣µk

(
ĥ(v) − h(v)

) − (1 − µk)h(v)
∣∣2 dv

= µ2
kE

∫
Bk

|ĥ(v) − h(v)|2 dv + (1 − µk)
2
∫
Bk

|h(v)|2 dv

(B.18)
= n−1µ2

k

∫
Bk

(
1 − |h(v)|2)

dv + (1 − µk)
2Lk�k

≤ Lk

[
�2

kn
−1

(�k + n−1)2 + n−2�k

(�k + n−1)2

]
= n−1Lkµk.

To evaluate Ak2, we note that Ak2 = LkE{(µ̂k − µk)
2(�̂k + n−1)}. Thus, at least

formally, this term is identical to the same term in line (5.9) of [11]. To follow
along the evaluation of Ak2 in [11], we need to verify that

E(�̂k − �k)
4 ≤ C

(∫ ∞
−∞

|h(v)|dv

)2

L−2
k n−2(�k + n−1)2,

(B.19)
1 ≤ k ≤ K.
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This is done by a direct calculation which is similar to the proof of Lemma 3
in [11]; see also [20]. Then, similarly to lines (5.10)–(5.11) in [11], we get

K∑
k=1

(1 + t
−1/2
k )Ak2 ≤ Cn−1

K∑
k=1

[Lkµk(t
1/2
k + df L−1

k t
−3/2
k ) + d2

f L−1
k t−3

k ].

Combining the results in (B.16) verifies Theorem B1. �

PROOF OF COROLLARIES B1 AND B2. The second asymptotic equalities in
these corollaries are established in [36]. The first asymptotic equalities follow from
Theorem B1. �
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