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ON THE BAHADUR REPRESENTATION OF SAMPLE QUANTILES
FOR DEPENDENT SEQUENCES

BY WEI BIAO WU

University of Chicago

We establish the Bahadur representation of sample quantiles for linear
and some widely used nonlinear processes. Local fluctuations of empirical
processes are discussed. Applications to the trimmed and Winsorized means
are given. Our results extend previous ones by establishing sharper bounds
under milder conditions and thus provide new insight into the theory of
empirical processes for dependent random variables.

1. Introduction. Let (εk)k∈Z be independent and identically distributed
(i.i.d.) random variables and letG be a measurable function such that

Xn = G( . . . , εn−1, εn)(1)

is a well-defined random variable. ClearlyXn represents a huge class of stationary
processes. LetF(x) = P(Xn ≤ x) be the marginal distribution function ofXn and
let f be its density. For 0< p < 1, denote byξp = inf{x :F(x) ≥ p} the pth
quantile ofF . Given a sampleX1, . . . ,Xn, let ξn,p be thepth (0< p < 1) sample
quantile and define the empirical distribution function

Fn(x) = 1

n

n∑
i=1

1Xi≤x.

For simplicity we also refer toξn,p as thepth quantile ofFn. In this paper we are
interested in finding asymptotic representations ofξn,p. Assuming that(Xi)k∈Z

are i.i.d. andf (ξp) > 0, Bahadur [1] first established the almost sure result

ξn,p = ξp + p − Fn(ξp)

f (ξp)
+ Oa.s.[n−3/4(logn)1/2(log logn)1/4],(2)

where a sequence of random variablesZn is said to beOa.s.(rn) if Zn/rn is almost
surely bounded. Refinements of Bahadur’s result in the i.i.d. setting were provided
by Kiefer in a sequence of papers; see [19–21]. In particular, Kiefer [19] showed
that if f ′ is bounded in a neighborhood ofξp andf (ξp) > 0, then

lim sup
n→∞

±ξn,p − ξp − [p − Fn(ξp)]/f (ξp)

n−3/4(log logn)3/4 = 25/43−3/4p1/2(1− p)1/2

f (ξp)
(3)

Received October 2003; revised June 2004.
AMS 2000 subject classifications. Primary 62G30, 60F05; secondary 60F17.
Key words and phrases. Long- and short-range dependence, Bahadur representation, nonlinear

time series, almost sure convergence, linear process, martingale inequalities, empirical processes,
law of the iterated logarithm.

1934



BAHADUR REPRESENTATION 1935

almost surely for either choice of sign. Recent contributions can be found
in [4, 10].

Extensions of the above results to dependent random variables have been
pursued in [26] form-dependent processes, in [27] for strongly mixing processes,
in [16] for short-range dependent (SRD) linear processes and in [17] for long-
range dependent (LRD) linear processes. The main objective of this paper is to
generalize and refine these results for linear and some nonlinear processes.

Sample quantiles are closely related to empirical processes, and the asymptotic
theory of empirical processes is then a natural vehicle for studying their
limiting behavior. There is a well-developed theory of empirical processes for
i.i.d. observations; see, for example, the excellent treatment by Shorack and
Wellner [29]. The celebrated Hungarian construction can be used to obtain
asymptotic representations of sample quantiles (cf. Chapter 15 in [29]).

Recently there have been many attempts toward a convergence theory of
empirical processes for dependent random variables. Such a theory is needed for
the related statistical inference. Ho and Hsing [17] and Wu [31] considered the
empirical process theory for LRD sequences and obtained asymptotic expansions,
while Doukhan and Surgailis [9] considered SRD processes. Instantaneous
transforms of Gaussian processes are treated in [7]. Further references on this topic
can be found in the recent survey edited by Dehling, Mikosch and Sørensen [6].

For dependent random variables, powerful tools like the Hungarian construction
do not exist in general. To obtain comparable results as in the i.i.d. setting, we
propose to employ a martingale-based method. The main idea is to approximate
sums of stationary processes by martingales. Such approximation schemes act as a
bridge which connects stationary processes and martingales. One can then leverage
several results from martingale theory, such as martingale central limit theorems,
martingale inequalities, the martingale law of the iterated logarithm, and so on, to
obtain the desired results. Gordin [13] first applied the martingale approximation
method and established a central limit theory for stationary processes; see
also [14]. Wu and Woodroofe [37] present some recent developments. Several of
its applications on various problems are given in [15, 18, 31, 32, 34].

Historically many limit theorems for dependent random variables have been
established under strong mixing conditions. On the other hand, although the
martingale approximation-based approach imposes mild and easily verifiable
conditions, it nevertheless may allow one to obtain optimal results, in the sense
that they may be as sharp as the corresponding ones in the i.i.d. setting.

In this paper, for some SRD linear processes we obtain the following asymptotic
representation of sample quantiles:

ξn,p = ξp + p − Fn(ξp)

f (ξp)
+ Oa.s.[n−3/4(log logn)3/4]

(cf. Theorem 1), which gives an optimal boundn−3/4(log logn)3/4 in view
of Kiefer’s result (3) for i.i.d. random variables. Sample quantiles for LRD



1936 W. B. WU

processes and some widely used nonlinear processes are also discussed and similar
representations are derived. In establishing such asymptotic representations, we
also consider the local and global behavior of empirical processes of dependent
random variables.

We next introduce the necessary notation. A random variableξ is said
to be in Lq , q ≥ 1, if ‖ξ‖q := [E(|ξ |q)]1/q < ∞. Write ‖ · ‖ = ‖ · ‖2. De-
note the shift processFk = ( . . . , εk−1, εk) and the projection operatorPkξ =
E(ξ |Fk) − E(ξ |Fk−1), k ∈ Z. For a sequence of random variablesZn, we say
that Zn = oa.s.(rn) if Zn/rn converges to 0 almost surely. Writean ∼ bn if
limn→∞ an/bn = 1.

The rest of the paper is structured as follows. Pointwise and uniform Bahadur
representations for SRD linear processes are presented in Section 2 and proofs
are given in Section 6. LRD processes and nonlinear time series are discussed in
Sections 3 and 4, respectively. Applications to the trimmed and Winsorized means
are given in Section 5. Section 7 contains proofs and some discussion of results
presented in Section 3.

2. SRD processes. A causal (one-sided) linear process is defined byXk =∑∞
i=0 aiεk−i , whereεk are i.i.d. random variables andak are real coefficients such

that Xk exists almost surely. The almost sure existence ofXn can be checked
by the well-known Kolmogorov three-series theorem (cf. [3]). Letfε andFε be
the density and distribution functions ofε, respectively. Recall thatF andFn are
the distribution and the empirical distribution functions ofXn andξp is thepth
quantile ofF . Without loss of generality leta0 = 1. Define the truncated process by
Xn,k = ∑∞

j=n−k aj εn−j , k ≤ n, and theconditional empirical distribution function
by

F ∗
n (x) = 1

n

n∑
i=1

E
(
1Xi≤x |Fi−1

) = 1

n

n∑
i=1

Fε(x − Xi,i−1).

Throughout this section we assume that

sup
x

[fε(x) + |f ′
ε(x)|] < ∞.(4)

It is easily seen that (4) implies supx[f (x) + |f ′(x)|] < ∞ in view of the relation
F(x) = E[Fε(x − ∑∞

i=1 aiεk−i)] and the Lebesgue dominated convergence
theorem. Define the function�q(n) = (log logn)1/2 if q > 2 and �q(n) =
(logn)3/2(log logn) if q = 2.

THEOREM 1. Let Xk = ∑∞
i=0 aiεk−i and assume (4), f (ξp) > 0 and

E(|εk|α) < ∞ for some α > 0.

(a) If
∞∑

i=n

|ai |min(α/q,1) = O(log−1/q n)(5)



BAHADUR REPRESENTATION 1937

for some q > 2, then (i) there exists C > 0 such that δn,q = C�q(n)/[f (ξp)
√

n ]
satisfies

Fn(ξp + δn,q) ≥ p ≥ Fn(ξp − δn,q) almost surely(6)

and |ξn,p − ξp| ≤ δn,q almost surely, and (ii) the Bahadur representation holds:

ξn,p = ξp + p − Fn(ξp)

f (ξp)
+ Oa.s.[n−3/4(log logn)1/2�1/2

q (n)].(7)

(b) If
∞∑
i=1

|ai |min(α/2,1) < ∞,(8)

then (i) and (ii) in (a) hold for q = 2.

REMARK 1. If α = 2, then the process(Xk)k∈Z has finite variance, and (8)
implies that(Xk)k∈Z is short-range dependent since its covariances are summable.

REMARK 2. If α > 2 and there is aq > 2 such that (5) holds, then
∑∞

i=n |ai | =
O(log−1/α n). The implication is clear ifq < α. If q > α, then

∑∞
i=n |ai |α/q ≥

(
∑∞

i=n |ai |)α/q and we also have
∑∞

i=n |ai | = O(log−1/α n). Therefore, in the case
α > 2 it suffices to check (5) for the special caseq = α instead of verifying it for
a whole range ofq > 2. The condition

∑∞
i=n |ai | = O(log−1/α n) is fairly mild

for a linear process being short-range dependent. For example, it is satisfied if
an = O(n−1 log−1−1/α n).

Assuming thatE(|εk|α) < ∞ for someα > 0 and that|an| = O(n−κ) with
κ > 1+ 2/α, Hesse [16] obtained the representation

ξn,p = ξp + p − Fn(ξp)

f (ξp)
+ Oa.s.(n

−3/4+γ ),(9)

whereγ > [α2(8κ − 5) + 2α(10κ − 9) − 13]/(4ακ − 2α − 2)2. In comparison
to Hesse’s result, our condition (5) only requiresκ > max(1,2/α). If q > 2, then
the error term (7) isOa.s.[n−3/4(log logn)1/2�

1/2
q (n)] = Oa.s.[n−3/4(log logn)3/4],

which gives an optimal bound; see Kiefer’s relationship (3). The bound is much
better than the one in (9). For example, ifα = 1 and κ = 3.01, then Hesse’s
result (9) gives the error boundOa.s.(n

−0.0031...). On the other hand, in Hesse’s
resultεi does not need to have a density.

REMARK 3. It is unclear whether Kiefer’s law of the iterated logarithm (3)
can be extended to SRD processes. Our result only provides an upper bound.
Kiefer’s [19] proof involves extremely meticulous analysis and it depends heavily
on the i.i.d. assumption. It seems that Kiefer’s arguments cannot be directly applied
here.
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EXAMPLE 1. Suppose thatεi is symmetric and its distribution function
Fε(x) = 1 − L(x)/xα , x > 0, where 0< α ≤ 2 and L is slowly varying
at ∞. Here a functionL(x) is said to be slowly varying at∞ if, for any
λ > 0, limx→∞ L(λx)/L(x) = 1. Notice thatεi is in the domain of attraction of
symmetricα-stable distributions.

Assume that|an| = O(n−r ) for somer > 2/α. Then forq ∈ (2, rα), (5) holds.
In this case,E(|ε|α) = 2α

∫ ∞
0 x−1L(x)dx may be infinite. However, there

exists a pair (α′, q ′) such that E(|ε|α′
) < ∞ and (5) holds for this pair.

Actually, one can simply chooseα′ < α such that 2< rα′ and let q ′ =
(2 + rα′)/2. Then

∑∞
i=n |ai |min(α′/q ′,1) = O(n1−rα′/q ′

) with rα′/q ′ > 1 and
E(|ε|α′

) ≤ 1 + ∫ ∞
1 P(|ε|α′

> u)du = 1 + 2α′ ∫ ∞
1 xα′−α−1L(x)dx < ∞. By

Theorem 1 we have the Bahadur representation (7) with the optimal error bound
Oa.s.[n−3/4(log logn)3/4].

Theorem 1 establishes Bahadur’s representation for a singlep ∈ (0,1). The
uniform behavior ofξn,p − ξp over p ∈ [p0,p1], 0 < p0 < p1 < 1, is addressed
in Theorem 2. Such results have applications in the study of the trimmed and
Winsorized means; see Section 5. Letιq(n) = (logn)1/q(log logn)2/q if q > 2 and
ι2(n) = (logn)3/2(log logn).

THEOREM 2. Let Xk = ∑∞
i=0 aiεk−i . Assume (4), infp0≤p≤p1 f (ξp) > 0 for

some 0< p0 < p1 < 1 and

sup
x

|f ′′
ε (x)| < ∞.(10)

In addition, assume that there exist α > 0 and q ≥ 2 such that E(|εk|α) < ∞ and

∞∑
i=1

|ai |min(α/q,1) < ∞.(11)

Then (i) supp0≤p≤p1
|ξn,p − ξp| = oa.s.[ιq(n)/

√
n ] and (ii) the uniform Bahadur

representation holds:

sup
p0≤p≤p1

∣∣∣∣ξn,p − ξp − p − Fn(ξp)

f (ξp)

∣∣∣∣ = Oa.s.
[
n−3/4(ιq(n) logn

)1/2]
.(12)

REMARK 4. Generally speaking, (12) cannot be extended top0 = 0 and/or
p1 = 1. The quantityξn,p − ξp exhibits an erratic behavior asp → 0 or 1. The
extremal theory is beyond the scope of the current paper.

REMARK 5. If ε0 has finite moments of any order, then under the condition∑∞
i=1 |ai | < ∞, (12) gives the boundn−3/4(logn)1/2+η for anyη > 0.
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REMARK 6. The Kiefer–Bahadur theorem asserts that for i.i.d. random vari-
ables the left-hand side of (12) has the optimal ordern−3/4(logn)1/2(log logn)1/4;
see Chapter 15 in [29]. Our boundn−3/4(ιq(n) logn)1/2 is not sharp. The reason is
that we are unable to obtain a law of the iterated logarithm for supa≤x≤b |Fn(x) −
F(x)|; see (54) in the proof of Theorem 2 in Section 6.5, where the weaker re-
sult supa≤x≤b |Fn(x) − F(x)| = oa.s.[ιq(n)/

√
n ] is proved. On the other hand, in

proving Theorem 1, we are able to establish a law of the iterated logarithm for
Fn(x) − F(x) at a single point x [cf. Proposition 1 and (i) of Lemma 10], by
which the optimal rateOa.s.[n−3/4(log logn)3/4] in (7) can be derived.

3. LRD processes. Let the coefficientsa0 = 1, an = n−βL(n), n ≥ 1, where
1/2 < β < 1 andL is a function slowly varying at infinity; letXk = ∑∞

i=0 aiεk−i ,
where εk are i.i.d. random variables with mean zero and finite variance. By
Karamata’s theorem (see, e.g., Theorem 0.6 in [25]), the covariancesγ (n) =
E(X0Xn) ∼ Cβn1−2βL2(n), where Cβ = E(ε2

k)
∫ ∞
0 x−β(1 + x)−β dx, are not

summable and the process is said to be long-range dependent. The asymptotic
behavior of LRD processes is quite different from that of SRD ones. We shall
apply the empirical process theory developed in [31] and establish Bahadur’s
representation for long-range dependent processes.

Let �n = √
n

∑n
k=1 k1/2−2βL2(k) and

σ 2
n,1 = ‖nX̄n‖2 ∼ Cβ

(1− β)(3− 2β)
n3−2βL2(n).(13)

By Karamata’s theorem,�n ∼ n2−2βL2(n)/(3/2 − 2β) if β < 3/4, �n ∼√
nL∗(n) if β = 3/4, where L∗(n) = ∑n

k=1 L2(k)/k is also a slowly vary-
ing function, and �n ∼ √

n
∑∞

k=1 k1/2−2βL2(k) if β > 3/4. Let An(β) =
�2

n(logn)(log logn)2 if β < 3/4 andAn(β) = �2
n(logn)3(log logn)2 if β ≥ 3/4.

THEOREM 3. Assume infp0≤p≤p1 f (ξp) > 0 for some 0 < p0 < p1 < 1,
E(ε4

i ) < ∞ and

2∑
i=0

sup
x

∣∣f (i)
ε (x)

∣∣ + ∫
R

|f ′
ε(u)|2 du < ∞.(14)

Let bn = σn,1(logn)1/2(log logn)/n. Then

sup
p0≤p≤p1

∣∣∣∣ξn,p − ξp − p − Fn(ξp)

f (ξp)
− X̄2

n

2

f ′(ξp)

f (ξp)

∣∣∣∣
(15)

= Oa.s.

[
b3
n +

√
bn logn√

n
+ bn

√
An(β)

n

]
.
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The three terms in theOa.s. bound of (15) have different orders of magni-
tude for differentβ, and correspondingly the term that dominates the bound
is different. If β > 7/10, since 3/2 − 3β < −β/2 − 1/4 and −β < −β/2 −
1/4, it is easily seen thatb3

n + bn

√
An(β)/n = o[√(bn logn)/n ] in view of

�n = O[√nL∗(n) + n2−2βL2(n)] and
√

An(β) ≤ �n(logn)3/2(log logn). Hence
the dominant one in the bound of (15) isOa.s.[√(bn logn)/n]. On the other
hand, if β < 7/10, then

√
(bn logn)/n = o[bn

√
An(β)/n], bn

√
An(β)/n ∼

C1n
3(1/2−β)L3(n)(logn)(log logn)2 and b3

n ∼ C2n
3(1/2−β)L3(n)(logn)3/2 ×

(log logn)3 for some 0< C1,C2 < ∞. Sobn

√
An(β)/n = o(b3

n). For the bound-
ary caseβ = 7/10, the situation is more subtle since the growth rate of the slowly
varying functionL is involved. In summary, noting that�n = O[√nL∗(n) +
n2−2βL2(n)], the error bound of (15) is

O
{[

n3(1/2−β) + n(1/2−β)/2/n1/2 + n1/2−β(n1/2 + n2−2β)/n
]
L1(n)

}
(16) = O

[
nmax(−β/2−1/4, 3/2−3β)L1(n)

]
for some slowly varying functionL1. This bound is less accurate than the one for
the SRD or the i.i.d. counterparts since max(−β/2 − 1/4, 3/2 − 3β) > −3/4 if
β < 1. If 3/4 < β < 1, then the bound isOa.s.[n−β/2−1/4L1(n)]. See Section 7.1
for more discussion on the sharpness of (15) and (16).

In comparison with Bahadur’s representations (2) for i.i.d. observations or (7)
for short-range dependent processes, (15) has an interesting and different flavor
in that it involves the correction term1

2X̄2
nf

′(ξp)/f (ξp). More interestingly,
this correction term is not needed ifβ > 5/6, which includes some LRD
processes. Actually, by Lemma 16 in Section 7,|X̄n|2 = oa.s.(b

2
n). Note that

b2
n = o(

√
bn logn/

√
n ) if β > 5/6. Then the correction term12X̄2

nf
′(ξp)/f (ξp)

can be absorbed into the bound
√

bn logn/
√

n.
If the dependence of the process is strong enough, then we do need the cor-

rection 1
2X̄2

nf
′(ξp)/f (ξp) for a more accurate representation. Specifically, ifβ ∈

(1/2,5/6), then
√

bn logn/
√

n = o(σ 2
n,1/n2), b3

n + bn

√
An(β)/n = o(σ 2

n,1/n2),
and as the central limit theoremnX̄n/σn,1 ⇒ N(0,1) holds, the correction term
has a nonnegligible contribution.

4. Nonlinear time series. In the case thatG may not have a linear form, we
assume thatG satisfies thegeometric-moment contraction (GMC) condition. On a
possibly richer probability space, define i.i.d. random variablesε′

j , εi,k, i, j, k ∈ Z,
which are identically distributed asε0 and are independent of(εj )j∈Z. The process
Xn defined in (1) is said to be geometric-moment contracting if there existα > 0,
C = C(α) > 0 and 0< r = r(α) < 1 such that for alln ≥ 0,

E[|G( . . . , ε−1, ε0, ε1, . . . , εn) − G( . . . , ε′−1, ε
′
0, ε1, . . . , εn)|α] ≤ Crn.(17)

The processX′
n := G( . . . , ε′−1, ε

′
0, ε1, . . . , εn) can be viewed as a coupled version

of Xn with the “past” F0 = ( . . . , ε−1, ε0) replaced by the i.i.d. copyF ′
0 =
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( . . . , ε′−1, ε
′
0). Here we shall use (17) as our basic assumption for studying the

asymptotic behavior of nonlinear time series. Since (17) only imposes the decay
rate of the moment of the distance|Xn − X′

n|, it is often easily verifiable. In
comparison, the classical strong mixing assumptions are typically difficult to
check. Recently Hsing and Wu [18] adopted (17) as the underlying assumption
and studied the asymptotic behavior of weightedU -statistics for nonlinear time
series.

Condition (17) is actually very mild as well. Consider the important special
class ofiterated random functions [11], which is recursively defined by

Xn = G(Xn−1, εn),(18)

whereG(·, ·) is a bivariate measurable function with the Lipschitz constant

Lε = sup
x′ �=x

|G(x, ε) − G(x′, ε)|
|x − x′| ≤ ∞(19)

satisfying

E(logLε) < 0 and E[Lα
ε + |x0 − G(x0, ε)|α] < ∞(20)

for someα > 0 andx0. Diaconis and Freedman [8] showed that under (20) the
Markov chain (18) admits a unique stationary distribution. Wu and Woodroofe [36]
further argued that (20) also implies the geometric-moment contraction (17);
see Lemma 3. Some recent improvements are presented in [35]. Under suitable
conditions on model parameters, many popular nonlinear time series models such
as TAR, RCA and ARCH satisfy (20). Our main result is given next.

THEOREM 4. Assume (17), supx[f (x) + |f ′(x)|] < ∞ and
infp0≤p≤p1 f (ξp) > 0 for some 0 < p0 < p1 < 1. Then

sup
p0≤p≤p1

∣∣∣∣ξn,p − ξp − p − Fn(ξp)

f (ξp)

∣∣∣∣ = Oa.s.(n
−3/4 log3/2 n).(21)

PROOF. For a fixedτ > 2 let m = ω logn�, where ω = ωτ is given in
Lemma 1 andt� denotes the integer part oft ; let

X̃k = G( . . . , εk−m−2,k, εk−m−1,k, εk−m,k, εk−m+1, εk−m+2, . . . , εk−1, εk).(22)

Our strategy is to replace the “past”Fk−m = ( . . . , εk−m−1, εk−m) in Xk by the
i.i.d. copies( . . . , εk−m−2,k, εk−m−1,k, εk−m,k) so that(X̃k)k∈Z is anm-dependent
process. WhenXn is a linear process, Hesse [16] adopted a truncation ar-
gument which forgets the pastFk−m and approximatesXk by Gn(εk−m+1,

. . . , εk−1, εk) for some measurable functionGn. Clearly the distribution function
of Gn(εk−m+1, . . . , εk−1, εk) may be different fromF . Our coupling argument
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has the advantage that the marginal distribution function ofX̃k is still F . For
j = 1,2, . . . ,m, let

F̃n,j (x) = 1

1+ An(j)

An(j)∑
i=0

1
X̃j+im≤x

and F̃n(x) = 1

n

n∑
i=1

1
X̃i≤x

,(23)

whereAn(j) = n/m� for 1 ≤ j ≤ n − mn/m� and An(j) = n/m� − 1 for
1+ n − mn/m� ≤ j ≤ m. Let A = An = n/m andbn = c

√
logA/

√
A, where the

constantc will be determined later. Let̃Mn,j (x) = F̃n,j (x) − F(x) andM̃n(x) =
F̃n(x) − F(x). Since |M̃n(x) − M̃n(y)| ≤ max1≤j≤m |M̃n,j (x) − M̃n,j (y)|, by
Lemma 2 there is aδτ > 0 such that

P

[
sup

|x−y|≤bn

|M̃n(x) − M̃n(y)| > δτ (bn logA)1/2

A1/2

]
(24)

≤
m∑

j=1

P

[
sup

|u|≤bn

|M̃n,j (x) − M̃n,j (y)| > δτ (bn logA)1/2

A1/2

]
= mO(A−τ ),

and similarly P[supx |M̃n(x)| > δτ

√
logA/

√
A ] = mO(A−τ ). Since τ > 2,

mA−τ = O[n−τ (logn)τ+1] is summable overn. By Lemma 1 and the Borel–
Cantelli lemma, we have

sup
|x−y|≤bn

|[Fn(x) − F(x)] − [Fn(y) − F(y)]|

≤ sup
|x−y|≤bn

|M̃n(x) − M̃n(y)| + 2Cτ logn

n
(25)

= δτ (bn logA)1/2

A1/2 + 2Cτ logn

n

and supx |Fn(x) − F(x)| ≤ δτ

√
logA/

√
A + Cτ (n

−1 logn) almost surely. Now in
bn = c

√
logA/

√
A we choosec = (2+ δτ )/[infp0≤p≤p1 f (ξp)]. Then we have

inf
p0≤p≤p1

[Fn(ξp + bn) − p]
≥ inf

p0≤p≤p1
[F(ξp + bn) − p] − sup

p0≤p≤p1

|Fn(ξp) − p|

− sup
|x−y|≤bn

|[Fn(x) − F(x)] − [Fn(y) − F(y)]|

≥ bn inf
p0≤p≤p1

f (ξp) + O(b2
n) − [

δτ

√
logA/

√
A + Cτ (n

−1 logn)
]

− [
δτ

√
bn logA/

√
A + 2Cτ (n

−1 logn)
]

>
√

logA/
√

A
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almost surely. Similarly supp0≤p≤p1
[Fn(ξp − bn) − p] < 0 almost surely. Hence

for �n,p = ξn,p − ξp, supp0≤p≤p1
|�n,p| ≤ bn almost surely sinceFn is nonde-

creasing. Since|Fn(ξn,p) − p| ≤ 1/n, by (25)

sup
p0≤p≤p1

|[Fn(ξn,p) − F(ξn,p)] − [Fn(ξp) − F(ξp)]|

= sup
p0≤p≤p1

|[p − F(ξn,p)] − [Fn(ξp) − F(ξp)]| + O(1/n)

= Oa.s.

[
δτ (bn logA)1/2

A1/2 + 2Cτ logn

n

]
+ O(1/n)

= Oa.s.(n
−3/4 log3/2 n),

which entails (21) in view of infp0≤p≤p1 f (ξp) > 0 and, by Taylor’s expansion,
F(ξn,p) − F(ξp) = �n,pf (ξp) + O(�2

n,p) since supx |f ′(x)| < ∞. �

LEMMA 1. Assume (17) and supx f (x) < ∞. Then for any τ > 1, there exist
ωτ ,Cτ > 0 such that for m = ωτ logn� we have

P

[
sup
x

|F̃n(x) − Fn(x)| ≥ Cτn
−1 logn

]
= O(n−τ ).(26)

PROOF. Let ρ = r1/(2α), ωτ = −(1 + α−1)(τ + 2)/ logρ andCτ = 1 − (1 +
α−1)(τ + 1)/ logρ; let Rn be the set

⋂n
i=1{|Xi − X̃i | ≤ ρm} and letR′

n be its
complement. Then

P(R′
n) ≤ nP(|Xi − X̃i | ≥ ρm) ≤ nρ−αm

E(|Xi − X̃i |α)

≤ nρ−αmCrm = nCραm = o(n−τ ).

Let K = Cτ −1. By the triangle inequality, to establish (26) it suffices to show that

P

[
sup
x

|F̃n(x) − Fn(x)|1Rn > Kn−1 logn

]
= O(n−τ ).(27)

Notice that supx |F̃n(x) − Fn(x)|1Rn ≤ supx[Fn(x + ρm) − Fn(x − ρm)]. Clearly,
the event{supx[Fn(x + ρm) − Fn(x − ρm)] > Kn−1 logn} implies that there exist
two indicesi andj with j − i ≥ K logn� such that bothXi andXj are in the
interval[x − ρm,x + ρm] for somex ∈ R. Therefore

P

[
sup
x

[Fn(x + ρm) − Fn(x − ρm)] > Kn−1 logn

]

≤ P

[n−K logn�⋃
i=1

n⋃
j=i+K logn�

{|Xi − Xj | ≤ 2ρm}
]



1944 W. B. WU

≤
n−K logn�∑

i=1

n∑
j=i+K logn�

P(|Xi − Xj | ≤ 2ρm)

≤ n

n∑
j=K logn�

P(|X0 − Xj | ≤ 2ρm).

Recall (17) forX′
j = G( . . . , ε′−1, ε

′
0, ε1, . . . , εj ). Then

P(|X0 − Xj | ≤ 2ρm)

≤ P(|X0 − Xj | ≤ 2ρm, |Xj − X′
j | ≤ ρj ) + P(|Xj − X′

j | > ρj)

≤ P(|X0 − X′
j | ≤ 2ρm + ρj ) + ρ−αjCrj .

Observe thatX0 and X′
j are i.i.d. andP(|X0 − X′

j | ≤ δ) = E[P(|X0 − X′
j | ≤

δ|X′
j )] ≤ 2cδ, wherec = supx f (x) < ∞. Thus

P

[
sup
x

|F̃n(x) − F(x)|1Rn > Kn−1 logn

]
≤ n

n∑
j=K logn�

[2c(2ρm + ρj ) + ραjC]

= nO(nρm + ρK logn) + nO(ραK logn),

which ensures (27) by the choice ofK andωτ . �

LEMMA 2. Let (Zk)k∈Z be i.i.d. random variables with distribution and den-
sity functions FZ and fZ for which supz fZ(z) < ∞; let Fn,Z(z) = 1

n

∑n
i=1 1Zi≤z.

Then for all τ > 1 there exists Cτ > 0 such that

P

[
sup
x

|Fn,Z(x) − FZ(x)| > Cτ(logn)1/2

n1/2

]
= O(n−τ )(28)

and

P

[
sup

|x−y|≤bn

|Fn,Z(x) − FZ(x) − {Fn,Z(y) − FZ(y)}| > Cτ (bn logn)1/2

n1/2

]
(29) = O(n−τ ),

where (bn)n≥1 is a positive, bounded sequence of real numbers such that logn =
o(nbn).

Lemma 2 easily follows from classical results for i.i.d. uniform random
variables under quantile transformations; see the Dvoretzky–Kiefer–Wolfowitz
inequality and Inequality 14.0.9 in [29]. The lemma is needed in the proof of
Theorem 4 and it is a special case of Lemma 7 in Section 6.2. We purposefully
state Lemma 2 here also for the sake of comparison: the martingale-based method
may yield results comparable to those obtained under the i.i.d. assumption.
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5. Trimmed and Winsorized means. Let ξn,1/n ≤ ξn,2/n ≤ · · · ≤ ξn,1 be
the order statistics ofX1, . . . ,Xn. Then the trimmed and Winsorized means
are of the forms

∑β(n)
i=α(n)+1 ξn,i/n/[β(n) − α(n)] and n−1[α(n)ξn,α(n)/n + (n −

β(n))ξn,β(n)/n+1/n + ∑β(n)
i=α(n)+1 ξn,i/n], respectively, whereα(n) = np0� and

β(n) = np1�.
Stigler [30] studied the asymptotic behavior of trimmed means for i.i.d. random

variables. Here we shall apply Theorems 2 and 4 to obtain a central limit theorem
for some dependent random variables. SRD linear processes and causal processes
satisfying (17) are considered in (i) and (ii) of Theorem 5, respectively. Denote by
N(µ,σ 2) a normal distribution with meanµ and varianceσ 2.

THEOREM 5. (i) Let q = 2 and assume that the conditions of Theorem 2 are
satisfied. Then there is a σ < ∞ such that

√
n

[∑β(n)
i=α(n)+1 ξn,i/n

β(n) − α(n)
− 1

p1 − p0

∫ p1

p0

ξu du

]
⇒ N(0, σ 2).(30)

(ii) Assume that the conditions of Theorem 4 are satisfied. Then the central limit
theorem (30) holds.

PROOF. (i) Since ξn,u is nondecreasing inu, n
∫ i/n
(i−1)/n ξn,u du ≤ ξn,i/n ≤

n
∫ (i+1)/n
i/n ξn,u du holds for 1< i < n − 1. Hence

n

∫ β(n)/n

α(n)/n
ξn,u du ≤

β(n)∑
i=α(n)+1

ξn,i/n ≤ n

∫ [1+β(n)]/n

[1+α(n)]/n
ξn,u du.

It is easily seen that, under the conditions of Theorem 2, (12) also holds over the
expanded interval[p0 − τ,p1 + τ ] for some sufficiently smallτ > 0. Therefore,
we have supα(n)/n≤u≤[1+β(n)]/n |ξn,u| = Oa.s.(1) and consequently

β(n)∑
i=α(n)+1

ξn,i/n − n

∫ p1

p0

ξn,u du = Oa.s.(1).(31)

By (12) of Theorem 2,∫ p1

p0

ξn,u du −
∫ p1

p0

ξu du −
∫ p1

p0

u − Fn(ξu)

f (ξu)
du

(32) = Oa.s.[n−3/4(ι2(n) logn)1/2].
Lemma 11 in Section 6.4 asserts that{√n[Fn(x) − F(x)], ξp0 ≤ x ≤ ξp1} ⇒
{W(x), ξp0 ≤ x ≤ ξp1} for some centered Gaussian processW in the Skorohod
spaceD[ξp0, ξp1] [2]. By the continuous mapping theorem, (30) follows from
(31) and (32).
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(ii) By Theorem 4 in [35], under the conditions (17) and supx f (x) < ∞, we
also have the functional central limit theorem{√n[Fn(x) − F(x)], ξp0 ≤ x ≤
ξp1} ⇒ {W(x), ξp0 ≤ x ≤ ξp1} for some Gaussian processW . So (30) holds in
view of the argument in (i). �

REMARK 7. Using the same argument, it is easily seen that for the Win-
sorized meann−1[α(n)ξn,α(n)/n + (n − β(n))ξn,β(n)/n+1/n + ∑β(n)

i=α(n)+1 ξn,i/n],
we also have the central limit theorem (30) with the asymptotic mean(p1 −
p0)

−1 ∫ p1
p0

ξu du replaced byp0ξp0 +(1−p1)ξp1 +∫ p1
p0

ξu du. Other forms of linear
functions of order statistics can be similarly handled.

6. Proofs of Theorems 1 and 2. We first introduce our method. Recall
Fk = ( . . . , εk−1, εk) andF ∗

n (x) = ∑n
i=1 Fε(x −Xi,i−1)/n. WriteFn(x)−F(x) =

Mn(x) + Nn(x), whereMn(x) = Fn(x) − F ∗
n (x) andNn(x) = F ∗

n (x) − F(x).
Notice that under (4) the conditional empirical distribution functionF ∗

n is
differentiable with the uniformly bounded derivativef ∗

n (x) = n−1 ∑n
i=1 fε(x −

Xi,i−1) and hencedNn(x)/dx = f ∗
n (x) − f (x) is also uniformly bounded. The

differentiability property greatly facilitates the related analysis. In comparison,
Fn is a step function and hence discontinuous. On the other hand,nMn(x)

forms a martingale with bounded, stationary and ergodic increments1Xi≤x −
E(1Xi≤x |Fi−1). Therefore, results from martingale theory are applicable.

The martingale partMn and the differentiable partNn are treated in Sections
6.2 and 6.3, respectively. Section 6.4 discusses the oscillatory behavior and some
asymptotic properties of empirical processes, which are needed for the derivation
of Bahadur’s representations. Proofs of Theorems 1 and 2 are given in Section 6.5.

6.1. Some useful results. The following Proposition 1 is needed in proving
Theorems 1 and 2. See [33] for a proof.

PROPOSITION1. Let Sn(g) = ∑n
i=1 g(Fi ), where g is a measurable function

such that g(F0) ∈ Lq for some q ≥ 2, E[g(F0)] = 0 and

�0,q :=
∞∑
i=0

‖P0g(Fi )‖q < ∞.(33)

Let Bq = 18q3/2(q − 1)1/2 if q > 2 and Bq = 1 if q = 2. Then

‖Sn(g)‖q ≤ Bq

√
n�0,q .(34)

Furthermore, if �m,q := ∑∞
i=m ‖P0g(Fi )‖q = O[(logm)−1/q ] for some q > 2,

then

lim sup
n→∞

± Sn(g)√
2n log logn

= σ(35)

almost surely for either choice of sign, where σ = ‖∑∞
i=0 P0g(Fi )‖ < ∞.
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In order to apply Proposition 1 toSn(g) = n[Fn(x)−F(x)] or n[f ∗
n (x)−f (x)],

one needs to estimate‖P01Xi≤x‖ or ‖P0fε(x −Xi,i−1)‖. The following Lemma 3
provides a simple upper bound if the random variableε0 satisfies certain moment
conditions. In particular,ε0 is allowed to have infinite variance.

LEMMA 3. Let Xk = ∑∞
i=0 aiεk−i , where εk are i.i.d. with E(|εk|α) < ∞ for

some α > 0. Then under (4), ‖P0g(Fn)‖q = O[|an|min(α/q,1)] holds for g(Fn) =
1Xn≤x and g(Fn) = fε(x −Xn,n−1). If additionally (10) is satisfied, then the same
bound also holds for g(Fn) = f ′

ε(x − Xn,n−1).

PROOF. Let (ε′
i )i∈Z be an i.i.d. copy of(εi)i∈Z andX∗

n = Xn − anε0 + anε
′
0;

let Gn be the distribution function ofXn − Xn,0 = ∑n−1
j=0 aj εn−j . Since c =

supx fε(x) < ∞, it is easily seen that the densitygn(x) = G′
n(x) is also bounded

by c. Observe thatP(X∗
n ≤ x|F0) = P(Xn ≤ x|F−1). By Jensen’s inequality,

‖P0g(Fn)‖q ≤ ‖P(Xn ≤ x|F0) − P(X∗
n ≤ x|F0)‖q

= ‖E[Gn(x − Xn,0) − Gn(x − Xn,0 + anε0 − anε
′
0)|F0]‖q

≤ ‖Gn(x − Xn,0) − Gn(x − Xn,0 + anε0 − anε
′
0)‖q

≤ ‖min(c|anε0 − anε
′
0|, 1)‖q

≤ [
E(c|anε0 − anε

′
0|)min(α,q)]1/q

= O
[|an|min(α/q,1)].

Here the elementary inequality[min(|b|,1)]q ≤ |b|min(α,q) is applied. The other
casesg(Fn) = fε(x − Xn,n−1) and g(Fn) = f ′

ε(x − Xn,n−1) can be similarly
proved. �

To establish a uniform Bahadur representation forξn,p − ξp overp ∈ [p0,p1],
0 < p0 < p1 < 1, we need the following version of maximal inequality, which
will be used to obtain an almost sure upper bound of supξp0≤x≤ξp1

|Fn(x)−F(x)|.
Similar versions appeared in [2, 22, 24, 28]. For a proof of Lemma 4 see [33].

LEMMA 4. Let (Yk,θ , k ∈ Z)θ∈� be a class of centered stationary processes
in Lq , q > 1. Namely, for each θ ∈ �, (Yk,θ )k∈Z is a stationary process in Lq and
E(Yk,θ ) = 0. Let Sn,θ = Y1,θ + · · · + Yn,θ and let d = d(n) be an integer such that
2d−1 < n ≤ 2d . Then

{
E

∗
[
max
k≤n

sup
θ∈�

|Sk,θ |q
]}1/q

≤
d∑

j=0

2(d−j)/q

{
E

∗
[
sup
θ∈�

|S2j ,θ |q
]}1/q

,(36)

where E
∗ is the outer expectation E

∗Z = inf{EX :X ≥ Z, X is a random variable}.
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6.2. The martingale part Mn.

LEMMA 5. Let (bn)n≥1 be a positive, bounded sequence of real numbers such
that log3 n = o(nbn). Assume supx fε(x) < ∞. Then for any τ > 1 there exists a
constant Cτ > 0 such that

P

{
sup

|u|≤b2k

max
2k−1<n≤2k

n|Mn(x + u) − Mn(x)| > Cτ

√
2kb2k logk

}
(37) = O(k−τ ).

PROOF. Let c = supx fε(x) < ∞. For a givenu > 0, sinceP(x < Xi ≤
x + u|Fi−1) ≤ cu, we have

n∑
i=1

[
E

(
1x<Xi≤x+u|Fi−1

) − E
2(1x<Xi≤x+u|Fi−1

)] ≤ ncu.

Here without loss of generality we restrictu to be nonnegative. Lettk =√
2kb2k logk. Since1x<Xi≤x+u − E(1x<Xi≤x+u|Fi−1), 1 ≤ i ≤ n, form bounded

martingale differences, by Freedman’s inequality (cf. Theorem 1.6 in [12]) we get
that

P

{
max

2k−1<n≤2k
n|Mn(x + u) − Mn(x)| > Ctk

}
(38) ≤ 2exp[−C2t2

k /(2Ctk + 2× 2kcu)]
for all C > 0. Letαk = b2k /k, ui = iαk, i = 0,1, . . . , k −1, andvm = mb2k /(k2k),
m = 0,1, . . . ,2k − 1. Sincetk = o(2kb2k /k), we have for sufficiently largek that

P

{
max

0≤i≤k−1
max

2k−1<n≤2k
n|Mn(x + ui) − Mn(x)| > Ctk

}

≤
k−1∑
i=0

P

{
max

2k−1<n≤2k
n|Mn(x + ui) − Mn(x)| > Ctk

}
(39)

≤ 2k exp
[−C2 logk

2c + 1

]

and similarly

P

{
max

0≤m≤2k−1
max

2k−1<n≤2k
n|Mn(x + vm) − Mn(x)| > Ctk

}

≤
2k−1∑
m=0

2exp[−C2t2
k /(2Ctk + 2× 2kcvm)](40)
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≤
2k−1∑
m=0

2exp[−C2t2
k /(2Ctk + 2× 2kcv2k )]

≤ 2k+1 exp
[−C2k logk

2c + 1

]
.

For any v, vm < v ≤ vm+1, observe that 0≤ F ∗
n (x + vm+1) − F ∗

n (x + vm) ≤
cb2k /(k2k),

Mn(x + v) − Mn(x) ≤ Mn(x + vm+1) − Mn(x) + cb2k /(k2k)

and similarly,Mn(x + v) − Mn(x) ≥ Mn(x + vm) − Mn(x) − cb2k /(k2k). So (40)
yields

P

{
sup

0≤v≤αk

max
2k−1<n≤2k

n|Mn(x + v) − Mn(x)| > (C + 1)tk

}
(41)

≤ 2k+1 exp
[−C2k logk

2c + 1

]
.

Since (41) holds for allx ∈ R, by the triangle inequality, (41) together with (39)
implies

P

{
max

0≤u≤b2k

max
2k−1<n≤2k

n|Mn(x + u) − Mn(x)| > (2C + 1)tk

}

≤ P

{
max

0≤i≤k−1
max

2k−1<n≤2k
n|Mn(x + ui) − Mn(x)| > Ctk

}

+
k−1∑
i=0

P

{
sup

0≤v≤αk

max
2k−1<n≤2k

n|Mn(x + v + ui) − Mn(x + ui)|

> (C + 1)tk

}

≤ 2k exp
[−C2 logk

2c + 1

]
+ k × 2k+1 exp

[−C2k logk

2c + 1

]
.

Therefore (37) follows by lettingCτ = 1+ 2(τ + 1)1/2(2c + 1)1/2. �

LEMMA 6. Assume that the conditions of Lemma 5 are satisfied and in
addition assume that there is a ρ ≥ 1 such that for all sufficiently large n we have
that

b2n

ρ
≤ min

n≤j≤2n
bj ≤ max

n≤j≤2n
bj ≤ ρb2n.(42)

Then for each fixed x ∈ R,

sup
|u|≤bn

|Mn(x + u) − Mn(x)| = Oa.s.

[√
bn log logn√

n

]
.(43)
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PROOF. Observe that due to (42), for all sufficiently largen we have

max
2k−1<n≤2k

√
nsup|u|≤bn

|Mn(x + u) − Mn(x)|√
bn log logn

≤ sup
|u|≤ρb2k

max
2k−1<n≤2k

n|Mn(x + u) − Mn(x)|√
nbn log logn

≤ sup
|u|≤ρb2k

max
2k−1<n≤2k

n|Mn(x + u) − Mn(x)|√
2k−1ρ−1b2k log log 2k−1

.

Hence (43) follows from Lemma 5 via the Borel–Cantelli lemma.�

LEMMA 7. Assume (4) and that E(|X1|α) < ∞ for some α > 0. Then for all
τ > 1 there exists Cτ > 0 such that

P

[
sup
x

|Mn(x)| > Cτ (logn)1/2

n1/2

]
= O(n−τ )(44)

and

P

[
sup

|x−y|≤bn

|Mn(y) − Mn(x)| > Cτ

b
1/2
n (logn)1/2

n1/2

]
= O(n−τ ),(45)

where (bn)n≥1 is a positive, bounded sequence of real numbers such that logn =
o(nbn).

PROOF. We only prove (45) since (44) can be similarly proved. Letc =
supx fε(x) < ∞, vn = √

nbn logn, tn = vn/n, J = n(τ+4)/α andYi(x) = 1Xi≤x −
E(1Xi≤x |Fi−1). Then

In:= P

[
sup

|x−y|≤bn,x≤−J

|Mn(y) − Mn(x)| > Ctn

]

≤ nP

[
sup

|x−y|≤bn,x≤−J

|Y1(y) − Y1(x)| > Ctn

]

≤ n(Ctn)
−1

E

[
sup

|x−y|≤bn,x≤−J

|Y1(y) − Y1(x)|
]

= O(nt−1
n )E

[
sup

x≤−J+bn

|Y1(x)|
]

= O(n2v−1
n )(J − bn)

−α
E(|X1|α) = O(n−1−τ ),

where Markov’s inequality is used in the second inequality. Similarly,

IIIn := P

[
sup

|x−y|≤bn,x≥J

|Mn(y) − Mn(x)| > Ctn

]
= O(n−1−τ ).
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Let xi = ibn/n, i = −N − 1, . . . ,N + 1, whereN = Jn/bn�, and

IIn := P

[
sup

|x−y|≤bn,−J<x<J

|Mn(y) − Mn(x)| > Ctn

]
.

Again by Freedman’s inequality, for|x − y| ≤ bn and sufficiently largen,

P[n|Mn(y) − Mn(x)| > Cvn] ≤ 2exp[−C2v2
n/(2Cvn + 2ncbn)] ≤ 2n−C2/(2c+1).

Thus

P

[
max

i,j=−N−1,...,N+1 : |xi−xj |≤bn

n|Mn(xi) − Mn(xj )| > Cvn

]
= O(N2)n−C2/(2c+1).

For anyx, y with |x − y| ≤ bn, |x| ≤ J and |y| ≤ J , choosei and j such that
xi ≤ x < xi+1 andxj ≤ y < xj+1. Then

n[Mn(xj ) − Mn(xi+1)] − 2cbn ≤ n[Mn(y) − Mn(x)]
≤ n[Mn(xj+1) − Mn(xi)] + 2cbn.

Therefore (45) follows by choosingC2
τ = (2c +1)[(8+2τ)/α + τ +5], given that

P

{
sup

|x−y|≤bn

|Mn(y) − Mn(x)| > (Cτ + 1)tn

}
≤ In + IIn + IIIn

by the triangle inequality. �

REMARK 8. In Lemmas 5–7 it is not required thatbn → 0. We shall use this
fact to derive (54), which is a key step in proving Theorem 2.

REMARK 9. It is worth noting that Lemmas 5–7 also apply to LRD processes.
In Section 7 we will use them to prove the Bahadur representation for LRD
processes. For i.i.d. random variables the increments of the empirical and quantile
processes are discussed in great detail in [5].

6.3. The differentiable part Nn.

LEMMA 8. Let bn → 0. Assume (4) and E(|εk|α) < ∞ for some α > 0.
Further assume (5) if q > 2 or (8) if q = 2. Then

sup
|t |≤bn

|Nn(x + t) − Nn(x)| = �q(n)√
n

Oa.s.(bn) + Oa.s.(b
2
n).(46)

PROOF. Let c0 = supx |f ′
ε(x)| and recall f ∗

n (x) = dF ∗
n (x)/dx. Clearly

|f ′(x)| ≤ c0 sincef ′(x) = E[f ′
ε(x − Xi,i−1)]. Using Taylor’s expansion, we get

sup
|t |≤bn

|Nn(x + t) − Nn(x) − t[f ∗
n (x) − f (x)]| ≤ b2

n

2
sup
x

|d[f ∗
n (x) − f (x)]/dx|

≤ b2
nc0.
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Let Sn(x) = n[f ∗
n (x) − f (x)]. If q > 2, by (50) of Lemma 10 there existsC < ∞

such that lim supn→∞ |Sn(x)|/√2n log logn ≤ C < ∞ almost surely. Hence (46)
follows. The case thatq = 2 similarly follows from (ii) of Lemma 10. �

LEMMA 9. Assume (4), (10) and (11). Then for any −∞ < l < u < ∞, we
have

E

[
max

l≤x≤u
(|Nn(x)|q + |N ′

n(x)|q)

]
= O(n−q/2)(47)

and

sup
x∈[l,u]

[|Nn(x)| + |N ′
n(x)|] = oa.s.

[
ιq(n)/

√
n

]
.(48)

PROOF. We only considerq > 2 since the caseq = 2 can be similarly han-
dled. By Lemma 3 and (34) of Proposition 1, (11) entails maxl≤x≤u ‖Nn(x)‖q =
O(1/

√
n ) and maxl≤x≤u ‖N ′

n(x)‖q = O(1/
√

n ). Since Nn(x) = Nn(l) +∫ x
l N ′

n(t) dt ,

E

[
max

l≤x≤u
|Nn(x)|q

]
= O{E[|Nn(l)|q]} + O

{
E

[∫ u

l
|N ′

n(x)|dx

]q}

= O(n−q/2) + O

{
(u − l)E

∫ u

l
|N ′

n(x)|q dx

}

= O(n−q/2).

Similarly,

E

[
max

l≤x≤u
|N ′

n(x)|q
]

= O(n−q/2).

Then (47) follows. LetGn(x) = n[F ∗
n (x) − F(x)]. By Lemma 4, (47) implies that

∞∑
k=4

E[maxn≤2k maxl≤x≤u |Gn(x)|q]
2qk/2ι

q
q(2k)

=
∞∑

k=4

O[∑k
j=0 2(k−j)/q2j/2]q
2qk/2ι

q
q(2k)

=
∞∑

k=4

O{[ιq(2k)]−q}

=
∞∑

k=4

O(1)

k(logk)2 < ∞.

Then by the Borel–Cantelli lemma, maxl≤x≤u |Gn(x)| = oa.s.[ιq(n)
√

n ], which
in conjunction with the similar claim maxl≤x≤u |G′

n(x)| = oa.s.[ιq(n)
√

n ] en-
tails (48). �



BAHADUR REPRESENTATION 1953

6.4. Limit theorems for Fn − F .

LEMMA 10. (i) Assume (4) and (5) for some q > 2. Then for every x there
exist 0≤ σ1, σ2 < ∞ such that

lim sup
n→∞

±
√

n[Fn(x) − F(x)]√
2 log logn

= σ1(49)

and

lim sup
n→∞

±
√

n[f ∗
n (x) − f (x)]√
2 log logn

= σ2(50)

almost surely for either choice of sign.
(ii) Assume (4) and (8). Then for every x

|Fn(x) − F(x)| + |f ∗
n (x) − f (x)| = oa.s.

[
�2(n)/

√
n

]
.(51)

PROOF. (i) It is a direct consequence of (35) of Proposition 1 and Lemma 3.
(ii) Let Rn(x) = n[Fn(x)−F(x)]. By (8) and (34) of Proposition 1,‖Rn(x)‖ =

O(
√

n ). Then by Lemma 4,

∞∑
k=4

E[maxn≤2k |Rn(x)|2]
2k�2

2(2
k)

=
∞∑

k=4

O[∑k
j=0 2(k−j)/22j/2]2
2kk3(logk)2

=
∞∑

k=4

O(k22k)

2kk3(logk)2 < ∞,

which entails |Rn(x)| = oa.s.[�2(n)
√

n ] by the Borel–Cantelli lemma. That
|f ∗

n (x) − f (x)| = oa.s.[�2(n)/
√

n ] similarly follows. �

LEMMA 11. Let q = 2 and assume that the conditions of Theorem 2 are
satisfied. Then {√n[Fn(x) − F(x)], ξp0 ≤ x ≤ ξp1} ⇒ {W(x), ξp0 ≤ x ≤ ξp1} for
some centered Gaussian process W in the Skorohod space D[ξp0, ξp1].

PROOF. It suffices to verify the finite-dimensional convergence and the
tightness [2]. By Lemma 3‖P01Xn≤x‖ = O[|an|min(α/2,1)], which is summable in
view of (11) sinceq = 2. Then by the Cramér–Wold device, the finite-dimensional
convergence easily follows from Lemma 3 in [31].

Write l = ξp0 andu = ξp1. RecallFn(x) − F(x) = Mn(x) + Nn(x). To show
the tightness of{√n[Fn(x) − F(x)], l ≤ x ≤ u}, it suffices to show that both
{√nNn(x), l ≤ x ≤ u} and {√nMn(x), l ≤ x ≤ u} are tight. The former easily
follows from

E

[
sup

|x−y|≤δ,l≤x,y≤u

n|Nn(x) − Nn(y)|2
]

≤ δ2nE

[
sup

l≤θ≤u

|f ∗
n (θ) − f (θ)|2

]
≤ Cδ2
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in view of (47) of Lemma 9 withq = 2. For the latter, letdi = 1x<Xi≤y −
E(1x<Xi≤y |Fi−1), l ≤ x < y ≤ u. Then by (4)E(d2

i |Fi−1) ≤ C(y − x). HereC

denotes a constant which does not depend onn, x andy and it may vary from line
to line. By Burkholder’s inequality [3],

E[n2|Mn(x) − Mn(y)|4] ≤ C

n2

∥∥∥∥∥
n∑

i=1

d2
i

∥∥∥∥∥
2

≤ C

n2

∥∥∥∥∥
n∑

i=1

(
d2
i − E(d2

i |Fi−1)
)∥∥∥∥∥

2

+ C

n2‖E(d2
i |Fi−1)‖2

≤ C

n
‖d2

1 − E(d2
1|F0)‖2 + C(y − x)2

≤ C

n
(y − x) + C(y − x)2.

See inequality (48) in [31] for a similar claim. Therefore, by the argument of
Theorem 22.1 in [2], pages 197–199, the process{√nMn(x), l ≤ x ≤ u} is tight.

�

REMARK 10. Under conditions of the type given in (8), Wu [32] obtained a
central limit theorem forSn(K)/

√
n, whereSn(K) = ∑n

i=1[K(Xi) − EK(Xi)],
K is a measurable function andεi may have infinite variance.

LEMMA 12. Let Xk = ∑∞
i=0 aiεk−i and assume (4) and E(|εk|α) < ∞ for

some α > 0. Further assume (42) and log3 n = o(nbn).

(i) If (5) holds with q > 2, then for every fixed x,

sup
|u|≤bn

|Fn(x + u) − F(x + u) − [Fn(x) − F(x)]|
(52)

= Oa.s.(
√

bn log logn )√
n

+ Oa.s.[bn�q(n)]√
n

+ Oa.s.(b
2
n).

(ii) If (8) holds, then we have (52) with q = 2.

REMARK 11. The second termOa.s.[bn�q(n)]/√n in the bound of (52) is
needed only whenq = 2.

Lemma 12 follows from Lemmas 6 and 8 and it provides a local fluctuation rate
of empirical processes for linear processes. The last two terms of (52) are due to the
presence of dependence, in the sense that they disappear ifXk are i.i.d. Actually,
if Xi are i.i.d., thenF ∗

n ≡ F and henceNn ≡ 0.
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LEMMA 13. Assume (4), (10) and (11). Then under the conditions of
Lemma 7, we have for any −∞ < l < u < ∞ that

sup
|x−y|≤bn, x,y∈[l,u]

|[Fn(x) − F(x)] − [Fn(y) − F(y)]|
(53)

= Oa.s.

[√
bn logn√

n
+ bnιq(n)√

n

]
.

PROOF. By Lemma 7 it suffices to show that

sup
|x−y|≤bn, x,y∈[l,u]

|[F ∗
n (x) − F(x)] − [F ∗

n (y) − F(y)]| ≤ bn sup
θ∈[l,u]

|f ∗
n (θ) − f (θ)|

= bnoa.s.
[
ιq(n)/

√
n

]
,

which is an easy consequence of Lemma 9.�

6.5. Proofs.

PROOF OFTHEOREM 1. We only considerq > 2 since the caseq = 2 follows
along similar lines.

(i) Let bn = δn,q . Then (42) holds. By Lemma 12 there exists a constantC1 < ∞
such that

|[Fn(ξp + bn) − F(ξp + bn)] − [Fn(ξp) − F(ξp)]| ≤ C1

√
(bn log logn)/n

almost surely. Observe thatF(ξp + bn) = F(ξp) + bnf (ξp) + O(b2
n) in view

of (4) via Taylor’s expansion. By (i) of Lemma 10, there exists a constant
C2 < ∞ such thatn|Fn(ξp) − F(ξp)| ≤ C2

√
n�q(n) almost surely. Choose

C > 0 such thatC − C2 − C1

√
C/f (ξp) ≥ 1, namely,C ≥ [C1/

√
f (ξp) +√

C2
1/f (ξp) + 4(1+ C2)]2/4. Then forbn = C�q(n)/[f (ξp)

√
n], Fn(ξp + bn) >

p holds almost surely. The other statement thatp > Fn(ξp − bn) almost surely
similarly follows. Let�n = ξn,p −ξp. SinceFn is nondecreasing, by (6)|�n| ≤ bn

almost surely.
(ii) The argument for Theorem 4 can be applied here. Applying Lemma 12 with

x = ξp, we have

|Fn(ξn,p) − F(ξp + �n) − [Fn(ξp) − F(ξp)]| = Oa.s.
[√

(bn log logn)/n
]
.

Notice that |Fn(ξn,p) − p| ≤ 1/n and, by Taylor’s expansionF(ξp + �n) =
p + �nf (ξp) + O(�2

n) since supx |f ′(x)| < ∞. Then

�nf (ξp) = p − Fn(ξp) + Oa.s.
[√

(bn log logn)/n
]

and it entails (7). �
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PROOF OFTHEOREM 2. Let l = ξp0 andu = ξp1. By Lemma 6 and (48) of
Lemma 9, we have

sup
x∈[l,u]

|Fn(x) − F(x)| ≤ sup
x∈[l,u]

|Fn(x) − F ∗
n (x)| + sup

x∈[l,u]
|F ∗

n (x) − F(x)|
(54)

= Oa.s.

[√
log logn√

n

]
+ oa.s.

[
ιq(n)√

n

]
= oa.s.

[
ιq(n)√

n

]
.

Let bn = ιq(n)/
√

n. (i) By Lemma 13,

inf
l≤x≤u

[Fn(x + bn) − F(x)]
≥ inf

l≤x≤u
[F(x + bn) − F(x)]

− sup
l≤x≤u

|Fn(x) − F(x)|

− sup
|x−y|≤bn, l≤x,y≤u

|[Fn(x) − F(x)] − [Fn(y) − F(y)]|

≥ bn inf
p0≤pu

f (ξp) + O(b2
n) + oa.s.(bn)

+ Oa.s.
[√

bn(logn)/n + bnιq(n)/
√

n
]
.

Hence inf{Fn(x + bn) − F(x) : l ≤ x ≤ u} > 0 almost surely, which implies (i)
together with a similar claim that sup{Fn(x − bn) − F(x) : l ≤ x ≤ u} < 0 almost
surely. The representation (12) then follows from Lemma 13 by using the same
argument as in the proof of (ii) of Theorem 1.�

7. Proof and the sharpness of Theorem 3. In the study of LRD processes,
the asymptotic expansion of empirical processes plays an important role [17, 31].
Let Un,r = ∑

0≤j1<···<jr

∏r
s=1 ajs εn−js , Un,0 = 1. For a nonnegative integerρ,

similarly to (4) in [31] let

Sn(y;ρ) =
n∑

i=1

[
1(Xi ≤ y) −

ρ∑
r=0

(−1)rF (r)(y)Ui,r

]
;

see also [17]. The quantitySn(y;ρ) can be viewed as the remainder of the
ρth-order expansion ofFn(y). In our derivation of Bahadur’s representation for
LRD processes, we only deal withρ = 1 and do not pursue the higher-order case
ρ ≥ 2 since it involves some really cumbersome manipulations.

As in [31], let θn = |an−1|[|an−1| + (
∑∞

i=n−1 a2
i )

1/2 + (
∑∞

i=n−1 a4
i )

ρ/2], �n =∑n
i=1 θi , �n = n�2

n + ∑∞
i=1(�n+i − �i)

2. Since ρ = 1, θn = O[|an−1| ×
(
∑∞

i=n−1 a2
i )

1/2]. Recall that�n = √
n

∑n
k=1 k1/2−2βL2(k), An(β) = �2

n(logn)×
(log logn)2 if β < 3/4 and An(β) = �2

n(logn)3(log logn)2 if β ≥ 3/4. Let
Hn(y) = n[F ∗

n (y) − F(y) + f (y)X̄n] andhn(y) = dHn(y)/dy.
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LEMMA 14. Assume E(ε4
i ) < ∞ and

sup
x

|fε(x)| + sup
x

|f ′
ε(x)| +

∫
R

|f ′
ε(u)|2 du < ∞.(55)

Then ∥∥∥∥sup
y

|Hn(y)|
∥∥∥∥ +

∥∥∥∥sup
y

|hn(y)|
∥∥∥∥ = O(�n).(56)

PROOF. Let I = ∫
R |f ′

ε(u)|2 du andKθ(x) = [fε(θ − x) − fε(θ)]/√I . Then
kθ (x) = ∂Kθ(x)/∂x = −f ′

ε(θ − x)/
√

I satisfies
∫
R

k2
θ (x) dx = 1. Hence for allθ ,

Kθ ∈ K(0) :=
{
K(x) =

∫ x

0
g(t) dt :

∫
R

g2(t) ≤ 1
}
;

see [31] for the definition of the classK . By Theorem 1 in [31], for

Sn(Kθ ,1) = 1√
I

n∑
i=1

[fε(θ − Xi,i−1) − f (θ) + f ′(θ)Xi,i−1]

we have

E

[
sup
θ∈R

S2
n(Kθ ,1)

]
= O(�n).

Notice that Sn(Kθ ,1)
√

I − hn(θ) = −f ′(θ)
∑n

i=1 εi . Then ‖supy |hn(y)|‖ =
O(�

1/2
n ) since supθ |f ′(θ)| < ∞ and ‖∑n

i=1 Xi,i−1 − nX̄n‖ = O(
√

n ). By
Karamata’s theorem, it is easily seen that�n = O(�2

n) (cf. Lemma 5 in [31]). Sim-

ilarly, ‖supy |Hn(y)|‖ = O(�
1/2
n ) holds under the condition

∫
R

f 2
ε (u) du < ∞.

The last inequality trivially holds since supu fε(u) < ∞. �

LEMMA 15. Assume E(ε4
i ) < ∞ and (55).

(i) Let (δn)n≥1 be a positive, bounded sequence such that logn = o(nδn). Then

sup
|x−y|≤δn

|Sn(y;1) − Sn(x;1)| = Oa.s.
[√

nδn logn + δnA
1/2
n (β)

]
.(57)

(ii) For any −∞ < l < u < ∞, supl≤y≤u |Sn(y;1)| = oa.s.[A1/2
n (β)].

PROOF. (i) By Lemma 7, sinceE(X2
1) < ∞,

√
nsup|x−y|≤δn

|Mn(y) −
Mn(x)| = Oa.s.(

√
δn logn ). To show (57), notice that sup|x−y|≤δn

|Hn(y) −
Hn(x)| ≤ δn supθ |hn(θ)|; it suffices to verify that supθ |hn(θ)| = oa.s.[A1/2

n (β)] in
view of

Sn(y;1) − Sn(x;1) = n[Mn(y) − Mn(x)] + [Hn(y) − Hn(x)].(58)
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By Karamata’s theorem,
∑d

j=0 2(d−j)/2�2j = O(�2d ) if β < 3/4 and∑d
j=0 2(d−j)/2�2j = O(d�2d ) if β ≥ 3/4. So it follows from Lemma 14 that

d∑
j=0

2(d−j)/2
∥∥∥∥sup

y
|h2j (y)|

∥∥∥∥ =
d∑

j=0

2(d−j)/2O(�2j ) = O[A1/2
2d (β)]

d1/2 logd
,

which in conjunction with Lemma 4 implies
∞∑

d=3

1

A2d (β)
E

[
max
j≤2d

sup
y

|hj (y)|2
]

=
∞∑

d=3

O(d−1 log−2 d) < ∞.

Hence supy |hn(y)| = oa.s.[√An(β) ] via the Borel–Cantelli lemma.
(ii) Notice thatSn(y;1) = nMn(y) + Hn(y). By Lemma 7,

√
n sup

l≤y≤u

|Mn(y)| = Oa.s.
(√

logn
)
.

Using the argument in (i), (56) implies supy |Hn(y)| = oa.s.[√An(β) ]. Hence (ii)
follows in view of

√
n = O(�n) and

√
n logn = o[√An(β) ]. �

LEMMA 16. Assume E(ε4
i ) < ∞ and (55).Let Bn = σn,1(logn)1/2(log logn),

bn = Bn/n and �n,p = ξn,p − ξp. Then (i) X̄n = oa.s.(bn) and (ii) if, in addition,
infp0≤p≤p1 f (ξp) > 0 for some 0< p0 < p1 < 1, we have

sup
p0≤p≤p1

|�n,p| = oa.s.(bn)(59)

and

sup
p0≤p≤p1

|�n,p − X̄n| = oa.s.(b
2
n) + oa.s.[n−1A1/2

n (β)].(60)

PROOF. (i) Let Sn = ∑n
i=1 Xi . Since σn,1 = ‖Sn‖ ∼ Cn3/2−βL(n), by

Lemma 4

B−2
2d

∥∥∥∥max
i≤2d

|Si |
∥∥∥∥

2

≤ B−2
2d

[
d∑

r=0

2(d−r)/2σ2r ,1

]2

= O(d−1 log−2 d).

Again by the Borel–Cantelli lemmāXn = oa.s.(bn).
(ii) Similarly as in the proof of Theorem 1, it suffices to show that, due to the

monotonicity ofFn, infp0≤p≤p1[Fn(ξp + bn) − p] > 0 holds almost surely since
the other inequality supp0≤p≤p1

[Fn(ξp − bn) − p] < 0 can be similarly derived.
By Lemma 15

inf
p0≤p≤p1

[Fn(ξp + bn) − p]

≥ inf
p0≤p≤p1

[F(ξp + bn) − f (ξp + bn)X̄n − p + Sn(ξp;1)/n]
− sup

|x−y|≤bn

|Sn(y;1) − Sn(x;1)|/n =: In + IIn.
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Since supx |f ′
ε(x)| < ∞, by Taylor’s expansion supp |F(ξp +bn)−p−bnf (ξp)| =

O(b2
n) and supp |f (ξp +bn)−f (ξp)| = O(bn). Let l = ξp0 andu = ξp1. By (ii) of

Lemma 15, supl≤x≤u |Sn(x;1)| = oa.s.[A1/2
n (β)]. By (i) X̄n = oa.s.(bn). Therefore

In = inf
p0≤p≤p1

f (ξp)(bn − X̄n) + O(b2
n + bn|X̄n|) + oa.s.[A1/2

n (β)/n]

≥ 1
2 inf

p0≤p≤p1
f (ξp)bn

almost surely. By (57) of Lemma 15,IIn = oa.s.(bn) and hence (59) holds.
Relation (60) follows by lettingy = ξn,p = ξp + �n,p in (ii) of Lemma 15 in
view of

sup
p0≤p≤p1

|F(ξp + �n,p) − p − f (ξp)�n,p|

≤ supx |f ′(x)|
2

sup
p0≤p≤p1

�2
n,p = oa.s.(b

2
n)

and supp0≤p≤p1
|f (ξp + �n,p) − f (ξp)| = oa.s.(bn). �

REMARK 12. Under the stronger condition thatfε is four times differentiable
with bounded, continuous and integrable derivatives, Ho and Hsing [17] obtained

sup
p0≤p≤p1

|�n,p − X̄n| = oa.s.(n
−1−λσn,1)(61)

for all 0 < λ < min(1 − β,β − 1/2); see Theorem 5.1 therein. The result (61) is
very interesting in the sense that�n,p can be approximated bȳXn, which does
not depend onp. Consequently the asymptotic distribution of the trimmed and
Winsorized means easily follows from that ofX̄n. After elementary calculations it
is easily seen that our bound (60) is slightly sharper.

PROOF OF THEOREM 3. By (59) supp0≤p≤p1
|�n,p| = oa.s.(bn). Applying

Lemma 15 withx = ξp andy = ξn,p, p0 ≤ p ≤ p1, we have

n sup
p0≤p≤p1

|p − F(ξp + �n,p) + f (ξn,p)X̄n − [Fn(ξp) − F(ξp) + f (ξp)X̄n]|
(62)

= Oa.s.
[√

nbn logn + bnA
1/2
n (β)

]
.

Since supx[|f ′(x)| + |f ′′(x)|] < ∞, by Taylor’s expansion

sup
p0≤p≤p1

|F(ξp + �n,p) − p − �n,pf (ξp) − �2
n,pf ′(ξp)/2| = oa.s.(b

3
n)

and

sup
p0≤p≤p1

|f (ξp + �n,p) − f (ξp) − �n,pf ′(ξp)| = oa.s.(b
2
n).
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After some elementary calculations, (62) implies

sup
p0≤p≤p1

∣∣∣∣f (ξp)�n,p + f ′(ξp)

2
(�n,p − X̄n)

2 − 1

2
f ′(ξp)X̄2

n − [p − Fn(ξp)]
∣∣∣∣

= oa.s.(b
3
n) + n−1Oa.s.

[√
nbn logn + bnA

1/2
n (β)

]
.

Observe that�n = O[√nL∗(n) + n2−2βL2(n)] and A
1/2
n (β) ≤ �n(logn)3/2 ×

(log logn) = o(nbn). Thus (15) follows from (60) and

sup
p0≤p≤p1

(�n,p − X̄n)
2 = oa.s.[b2

n + A1/2
n (β)/n]2

= oa.s.[b4
n + An(β)/n2]

= oa.s.[b3
n + bnA

1/2
n (β)/n]. �

7.1. The sharpness of Theorem 3. It is challenging to obtain a sharp bound
for the left-hand side of (15) in Theorem 3. We now comment on the sharpness of
Lemma 15, which describes the oscillations ofFn(x) − F(x) + f (x)X̄n. Recall
that in the SRD case the sharp oscillation rate ofFn(x) − F(x) at a fixedx in
Lemma 12 leads to the Bahadur representation with optimal bound by letting
bn = c

√
(log logn)/n for somec > 0. Here we claim that the bound in (57) of

Lemma 15, which is a key ingredient for the derivation of (15), is optimal up to a
multiplicative slowly varying function.

LEMMA 17. Assume E(ε4
i ) < ∞, (14) and

∫
R

|f ′′
ε (u)|2 du < ∞. Let δn =

nγ L2(n) for some slowly varying function L2, −1< γ < 0 and σn,2 = n2−2βL2(n).

(i) If 4β − 3> γ , then [Sn(x + δn;1) − Sn(x;1)]/√nδn ⇒ N[0, f (x)].
(ii) If 4β − 3< γ , then

Sn(x + δn;1) − Sn(x;1)

σn,2δn

(63)
⇒ f ′(x)Cβ

∫
u1<u2<1

∫ 1

0
[(v − u1)+(v − u2)+]−β dv dB(u1) dB(u2)

for some constant Cβ > 0, where B is a standard two-sided Brownian motion
and z+ = max(z,0). In particular, if γ = 1/2 − β, then (i) [resp. (ii)] holds if
7/10< β < 1 [resp. 1/2 < β < 7/10].

REMARK 13. The limiting distribution in (63) is called the Rosenblatt
distribution, a special case of multiple Wiener–Itô integrals [23].
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PROOF OFLEMMA 17. Observe that

Sn(x + δn;1) − Sn(x;1) = n[Mn(x + δn) − Mn(x)] + [Hn(x + δn) − Hn(x)].
Write n[Fn(x + δn) − Fn(x)] = ∑n

i=1 K[(x − Xi)/δn], where the kernelK(u) =
1−1≤u≤0. By Lemma 2 in [34]n[Mn(x +δn)−Mn(x)]/√nδn ⇒ N[0, σ 2(x)] with
σ 2(x) = f (x)

∫
R

K2(u) du = f (x). By Lemma 14

‖Hn(x + δn) − Hn(x)‖ ≤ δn

∥∥∥∥sup
y

|hn(y)|
∥∥∥∥

= O(δn�n) = δnO
[√

nL∗(n) + n2−2βL2(n)
]
.

If 4β − 3 > γ , thenδn�n = o(
√

nδn ) and (i) follows.
On the other hand, if 4β −3< γ , thenβ ∈ (1/2,3/4) andhn(x)/σn,2 converges

to the Rosenblatt distribution in (63); see Lemma 4 in [34] and Corollary 3 in [31].
Under the conditions (14) and

∫
R

|f ′′
ε (u)|2 du < ∞, by the argument of Lemma 14,

we have‖supu |h′
n(u)|‖ = O(�n). Then ‖Hn(x + δn) − Hn(x) − δnhn(x)‖ ≤

1
2δ2

n‖supu |h′
n(u)|‖ = O(δ2

n�n) and (ii) follows in view of
√

nδn + δ2
n�n =

o(δnσn,2).
If γ = 1/2− β, then 4β − 3> γ if and only if 7/10< β. �

Lemma 17 asserts the dichotomous convergence ofSn(x + δn;1) − Sn(x;1)

at a fixed pointx. Notice that X̄n/[n1/2−βL(n)] ⇒ N(0, σ 2) and, by (60),
(ξn,p − ξp)/[n1/2−βL(n)] ⇒ N(0, σ 2) for someσ 2 < ∞. For δn = n1/2−βL2(n),
Lemma 17 shows that, up to a multiplicative slowly varying function, the optimal
bound of [Sn(x + δn;1) − Sn(x;1)]/n is nmax(−β/2−1/4, 3/2−3β). This bound
indicates that (15) or (16) is optimal up to a multiplicative slowly varying function.
It also explains why there is a boundaryβ = 7/10 in (15) or (16); see the discussion
of the three terms in theOa.s. bound of (15) in Section 3.
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