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SQUARE ROOT PENALTY: ADAPTATION TO THE MARGIN IN
CLASSIFICATION AND IN EDGE ESTIMATION

By A. B. TSYBAKOV AND S. A. VAN DE GEER
Université Paris VI and University of Leiden

We consider the problem of adaptation to the margin in binary classi-
fication. We suggest a penalized empirical risk minimization classifier that
adaptively attains, up to a logarithmic factor, fast optimal rates of conver-
gence for the excess risk, that is, rates that can be fastenthR, where
n is the sample size. We show that our method also gives adaptive estimators
for the problem of edge estimation.

1. Introduction. Consider observation€Xy, Y1), ..., (X,, Y,), whereY; is
a bounded response random variable &ade X is the corresponding instance.
We regard{(X;, Y;)}/_, as i.i.d. copies of a population versioX, Y). The goal
is to predict the responsg given the value of the instancE. We consider
two statistical problems: binary classification and boundary estimation in binary
images (edge estimation). In the classification séfug {0, 1} is a label (e.g.,
{ill, healthy}, {white, black}, etc.), while in edge estimatioli; can be either a
label or a general bounded random variable. Most of the paper will be concerned
with the model of binary classification. The results for edge estimation are quite
analogous and they will be stated as corollaries in Section 6.

Any subsetG of the instance spac& may be identified with its indicator
function1g, that is, with aclassification ruleor classifierG which predictsy =1
iff X € G. The prediction erroR(G) of the classifierG is the probability that it
predicts the wrong label, that is,

(1.1) R(G) =E([Y —16(X)1?).

Let n(X) = P(Y = 1]X) be the regression of on X. The Bayes rule is the
classifier

(1.2) G '={xeX:nkx)>1/2}.

This rule is optimal in the sense that it minimizes the prediction error over
all G C X [see, e.qg., Devroye, Gyorfi and Lugosi (1996)]. The regressiis
generally unknown. We consider the construction of an estinGor X of the
Bayes ruleG* without directly estimating;.
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The performance of a classifieG, is measured by its excess risk
E(R(Gn)) — R(G™). It is well known that for various classifiers the excess risk
converges to 0 a8 — oo at the raten=1/2 or slower [see Devroye, Gyérfi and
Lugosi (1996) and Vapnik (1998), where one can find further references]. More-
over, under conditions on the identifiability of the minimum of the k) called
margin conditionssome classifiers can attdmst ratesthat is, rates that are faster
thann—1/2. The existence of such fast rates in classification problems has been
established by Mammen and Tsybakov (1999). They showed that optimal rates
of convergence of the excess risk to O depend on two parameters: complexity of
the class of candidate sefs (parameterp) and themargin parameterc which
characterizes the extent of identifiability. Their construction was nonadaptive sup-
posing thato and« were known. Tsybakov (2004) suggested an adaptive clas-
sifier that attains the fast optimal rates, up to a logarithmic factor, without prior
knowledge of the parametepsandx, thus solving the so-calleadaptation to the
margin problem. The classification rule suggested by Tsybakov (2004) is based
on multiple pre-testing aggregation of empirical risk minimizers over a collection
of classes of candidate sefs This procedure differs significantly from penalized
empirical risk classifiers that are widely used in modern practice of classification
[cf. Schélkopf and Smola (2002)]. Subsequently there has been a discussion in
the literature of whether penalized classifiers can adaptively attain fast optimal
rates. In particular, Koltchinskii and Panchenko (2002) and Audibert (2004) pro-
posed convex combinations of classifiers, and Koltchinskii (2001) and Lugosi and
Wegkamp (2004) suggested data-dependent penalties. The resulting adaptive clas-
sifiers converge with rates that can be faster thiak? but that are different from
the optimal rates in a minimax sense considered in Tsybakov (2004).

This paper answers affirmatively to the above question: penalized classifiers can
adaptively attain fast optimal rates. Moreover, the penalty allowing one to achieve
this effect is not data-dependent or randomized. It is very simple and essentially
arises from a sparsity argument similar to the one used in the wavelet thresholding
context. Interestingly, the penalty is not of thetype as for soft thresholding and
not of theo-type as for hard thresholding, but rather of an intermediate, block-
wisely,, or “square root” type. Inspection of the proof shows that the effect is very
pointed, that is, the proof heavily relies on our particular choice of the penalty.

The classifielG,, that we study is constructed as follows. Let

1 n
(1.3) R, (G) = ;Z(Yi —16(X)°
i=1
be the empirical risk of a classifi&r C X. Note thatR,(G) is the proportion
of observations misclassified Wy and that its expectatioR(G) = E(R,,(G)) is
the prediction error. Assume that = (S, T) € X = [0, 1], with S € [0, 1]¢
(d <logn), andT € [0, 1]. A boundary fragment is a subsgtof X of the form

(1.4) G={(s,1) e X:f(s)>1t}
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where f is a function from[0, 1]¢ to [0, 1] called theedge functionWe letG, be
a minimizer of the penalized empirical risk

(1.5) R.(G) + Pen(G)

over a large set of boundary fragmerds Here PeG) is a penalty on the
roughness of the boundary. The purpose of the penalty is to avoid overfitting.
We will show that a weightedquare root penaltysee (2.2) and (2.3)] results

in a classifier with the adaptive properties as discussed above.

A refinement as compared to Tsybakov (2004) is that we do not only consider
adaptation in a minimax sense but also adaptation to the oracle. We obtain
asymptotically exact oracle inequalities and then get minimax adaptation as a
consequence. We work under somewhat different assumptions than in Tsybakov
(2004). They are slightly more restrictive as concerns the model. For example, we
consider only boundary fragments as candidatesGioiThe class of boundary
fragments is possibly a genuine restriction, although some generalizations to
other classes of sets are clearly feasible. On the other hand, our assumptions
allow us to adapt to more general smoothness (complexity) properties B6r
example, Vapnik—Chervonenkis classes of sgtécorresponding approximately
to p = 0, see Section 5) or the classes of sets with very nonsmooth boundaries
(corresponding t@ > 1) are covered by our approach.

As a corollary of the results, we obtain an adaptive estimator in the problem
of edge estimation considered by Korostelev and Tsybakov (1993). The statistical
model in that problem is similar to the one described above. However, it treats
the situation characteristic for image analysis where ¥& are uniformly
distributed onX;, and the error criterion is not the excess risk but rather the risk
E(/J,d+1(énAG*)), whereA is the symbol of symmetric difference between sets
andug41 denotes the Lebesgue measurd@ri]?+1.

The paper is organized as follows. In Section 2 we define our adaptive classifier.
In Section 3 we introduce some notation and assumptions. Section 4 presents
the main oracle inequality. In Section 5 we apply this inequality to get minimax
adaptation results. Section 6 discusses the consequences for edge estimation.
Proofs are given in Section 7.

2. Definition of the adaptive classifier. Let {y:k=1,...,n} be an ortho-
normal system inL»([0, 114, uq) Whereuy is the Lebesgue measure fh 1]¢.
Fora € R" define

(2.1) fa() = ory(s),  s€[0, 1]

k=1
Introduce a double indexing for the systéi#y.}, namely

{wkik=1,...,n}={lﬂjvlijEI[,Z=1,...,L}
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wherel;, 1 =1, ..., L, are disjoint subsets d4f, ..., n} such that
L

> lhl=n.

=1

Here |A| denotes the cardinality of the sdat One may think of{y;;} as of a
wavelet-type system with the indéxorresponding to a resolution level. A vector
a € R™ can be written with this double indexing as= («; ;).

For a linear classification rule defined by the 6gt= {(s, 1) € X: f,(s) > t},
consider the penalty

(2.2) PenGy) = AnvI(a),
wherel (-) is a nonsparsity measure of the form

L
(2.3) I() = (Zwll/z > IOéj,ll)
=1 JEI

for certain weightgw;). In what follows we take the weights as
(2.4) wy = 2412 I=1,...,L,

2

and we prove our results for wavelet-type bases (cf. Assumption B below).
An extension to other basdg;} is possible where the block sizég| should

be chosen in an appropriate way [e.g., as in Cavalier and Tsybakov (2001)]. The
weightsw; should moreover be defined as a functionlgf. We do not pursue this

issue here because it requires different techniques. Thus, in this paper we consider
penalties based on

L 2
I(@) = (Zz‘”/“ Zla_,-,zl) :
=1

JEL

One may think of{e; ;} as the coefficients of the expansion of a function in the
Besov spacé, , , ([0, 119), with p = 1,4 = 1/2 and smoothness = (d + 1)d /2
[so that the effective smoothnesssis= o/d = (d + 1)/2]; see, for example,
DeVore and Lorentz (1993).

We propose the estimat6r, = G4, where

(2.5) &, = arg mFLT{R”(G"‘) + AV (@)}

Here A,, > 0 is a regularization parameter that will be specified in Theorem 1.
We refer toi, /1 (a) as a (block-wise}1,> or square root penalty

One may compare (2.5) to a wavelet thresholding estimator for regression.
The difference here is that because our problem is nonlinear, we cannot express
the solutiona,, in a levelwise form, and we need to treat all the coefficients
globally.
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3. Notation and assumptions. Let GAG’ be the symmetric difference
between two set& and G/, and letQ denote the distribution oX. For a Borel
function £ :[0, 1]¢ — [0, 1], we let

(3.1) ||f||1=/|f(s)|d,ud(5)

be its L1-norm. (Recall thaj,; denotes the Lebesgue measuregl@rl]?.) Note
that

(32) lLd+1(GaAGa/) = ||fa - fa/”l = ||f(xfa/”1-

ASSUMPTIONA. For some (unknown} > 1 andog > 0 and for alle € R”
we have

(3.3) R(Go) — R(GM) = GiQ"(GaAG*)-
0

Assumption A is a condition on sharpness of identifiability for the minimum
of the risk. We will call it themargin condition We refer to Tsybakov (2004)
for a discussion of this condition. In particular, it is related to the behavior of the
probability O (|n(X) —1/2| < t) for smallz. The cas& = 1 corresponds to a jump
of n at the boundary oG*, and this is the most favorable case for estimation,
while ¥k — oo corresponds to a “plateau” around the boundary, and this is the least
favorable case. For more discussion of the margin condition in relation to convex
aggregation of classifiers, such as boosting, see Bartlett, Jordan and McAuliffe
(2003) and Blanchard, Lugosi and Vayatis (2003).

We will also require the following condition on the basis.

ASSUMPTION B. The system of functiongvy;;,j € I,/ =1,...,L} is
orthonormal inL>([0, 1]¢, s) and satisfies, for some constapt> 1,

(3.4) Iylli<cy2~®2 1=1..,L,
. sup i1 <c , =1,...,L,
(3.5) Y i) < ey 22 I=1
se[O,l]djell
(3.6) 2 Jey < 11| < ¢y 2!
and
lo
(37) L<c,2o"

Assumption B makes it possible to relat¢,||1 to I(«) in a suitable way
(cf. Lemmas 1 and 2). Note that Assumption B is quite standard. It is satisfied,
for instance, for usual bases of compactly supported wavelets [cf. Hardle,
Kerkyacharian, Picard and Tsybakov (1998), Chapter 7].
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Note also that (3.7) follows from (3.6) with a different constant. To simplify
the exposition and calculations, we take the same consjaintall the conditions
(3.4)—(3.7) and suppose that this constant is not smaller than 1.

REMARK 1. It will be clear from the proofs of Lemmas 1 and 2 that
Assumption B can be relaxed. Namely, the orthonormalitjxof;} and (3.4) can
be replaced by the conditions

S o al272 < eyl full, I=1....L
JEI

L
I fallz/cy SZZlOlj,llz_dl/z Ya e R".
I=1jel

Finally we introduce an assumption which will allow us to interchange
Lebesgue measure aigdl

AssUMPTIONC. The distributionQ of X admits a density (-) with respect
to Lebesgue measure [0, 119*1, and for some constant 4 go < o0 one has
1/g0 < q(x) < qgo for all x € [0, 1]9*+L.

4. Anoracleinequality. Fora € R" let

(4.2) m(a) =min{m:o;; =0forall j € [; with [ > m}
and
(42) N(a) = Nm(Ol)a
with
m
(4.3) N =Y _11, m=1,2...,L.
=1

Assume that there exist®2%ec R such that

R(G goracd) — R(G*) + Viy (N (@°2°19))

(4.4)
= MiN{R(Gy) — R(G*) + V4 (N (o))},
aeR”
where
(45) V. (N) =4c, (4Cd61005,001/'()»5N)"/(2"_1)

and wherec, = (2« — 1)/(2¢)k ~Y@=D ande¢, = 2(2¢ — 1)/(24/2 — 1)2. Note
thatV,, (N («)) depends on the regularization parametgrwhich we shall take of
ordervlog*n/n [see (4.6) in Theorem 1 below]. Ther?@%€ can be interpreted
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as an oracle attaining nearly ideal performance. In fact, the R&,) — R(G*)

in (4.4) may be viewed as an approximation error, Whil€N («)) is related to

the stochastic error, as will be clear from the proofs. In other words, nearly ideal
performance is attained by the valu@@c€ that trades off generalized bias and
variance.

THEOREM 1. Suppose that AssumptioAs-C are met Then there exists a
universal constan€ such that for

[ 2 1
ocs log™n
(4.6) dp=C u
nd
and for anys € (0, 1] andn > 8q0ci we have

P(R(én) — R(G*) > (14 6)2 inf {R(Ga) — R(G*)

4
(4.7) +8—1/(2K_1)Vn(N(a))} Lo, [log n)
n

log*
<C exp[—%]

Theorem 1 shows that, up to a constant factor and a small remainder term
anvlog4n/n, the estimatol;,, mimics the behavior of the oracle. dfis chosen
small enough or converging to 0, for exampier 1/logn, the factor preceding
the infimum in the oracle inequality (4.7) approaches 1.

The regularization parametér, < vn~tlog*n appearing in Theorem 1 is
larger than the choic&n~tlogn used for wavelet thresholding in regression or
density estimation. The value af, is imposed by an inequality for the empirical
process that controls the stochastic error. Lemma 4 presents such an inequality,
and the additional log factors are due to the result given there.

As a consequence of (4.7) and of the fact that (G) < 1 for all G, we get
the following inequality on the excess risk:

E(R(Gn) = RG*) = (1+)* inf {R(Ga) = RG*) +8 7DV, (N (@)}

+ 2X,

Iplog n}
Cc%d |

This inequality bounds the excess risk by the oracle risk of a linear classification
rule G, for anyform of Bayes ruleG*. We emphasize tha¥* is not necessarily
a boundary fragment, amki(G,) — R(G*) is not necessarily small. The results of
this section are thus of the learning theory type [cf. Devroye, Gyorfi and Lugosi
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(1996) and Vapnik (1998)]. In the next section we will show thaGif is a
boundary fragment satisfying some regularity conditions, the excess risk converges
to zero at a fast rate.

5. Minimax adaptation. Here we will consider a minimax problem and we
will show how the oracle inequality of Section 4 can be used to prove that our
classifier adaptively attains fast optimal rates under smoothness assumptions on
the edge function.

Since in a minimax setup results should hold uniformly in the underlying
distribution, we first introduce some notation to express the dependence of the
margin behavior on the distribution ¢X, Y). Let us keepl/ and alsoQ fixed. Then
the joint distribution of(X, Y) is determined by the conditional probabiliiyx)
of the eventy = 1 given thatX = x. Let # be the class of all Borel functiong
on X satisfying 0< n < 1. For a giverm € #, letd P,(x, y) be the probability
measure

dPy(x,y) = (yn(x) + 1 -y (1-nx)))dQOx), (x,y) € X x{0,1}.

Let G;’; be Bayes rule whenX, Y) has distributionp,. Finally, let E, denote
expectation w.r.t. the distribution ¢tX;, ¥;)}?_; underP,. Now fix the numbers
op > 0 andx > 1 and define the collection of functions

H, = {neJ(’:G’,‘;:{(s,t) eX:fr(s) >t}
(5.1) iQK(GOIAG}‘;) < R(Gq) — R(G))
00

<ooqpll fo — f,;“||’§>o forall o R"},

where|| - ||« denotes thd..,-norm on[0, 1] endowed with Lebesgue measure,
and R(-) depends om but in the notation we omit this dependence for brevity.
Note that we assume a lower as well as an upper bound for the excess risk
in definition (5.1), and in view of Assumption C and (3.2} (G« AGy) <
qp | fo — [y lIs- This means that our assumption is less restrictive than requiring
that the lower bound be tight.

Let moreoverp > 0 be a parameter characterizing the complexity of the
underlying set of boundary fragments anddgebe some constant. Denote By a
class of functionsf : [0, 1] — [0, 1] satisfying the following condition: for every
f € ¥, and every integem < L one has
(5.2) min_ | fu = flloo < coN, 7.

o m(a)<m

This is true for various smoothness classes (Sobolev, Holder and certain Besov
classes) with 1o = y/d, wherey is the regularity of the boundary (e.g., the
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number of bounded derivatives ¢f), and various baseg/;} [cf., e.g., Hardle,
Kerkyacharian, Picard and Tsybakov (1998), Corollary 8.2 and Theorem 9.6].

Denote by§, a class of boundary fragments= {(s,¢) € X: f(s) >t} such
that f € £,.

THEOREM2. Suppose that AssumptioBsand C are met Then
|Og4n)’(/(2/(+/0—l)>

63 sup [E,(RGy) - RG)I=0((
neFHy : G;egp

asn — o0.

REMARK 2. For Holder classe$), the result of Theorem 2 is optimal up to
a logarithmic factor [cf. Mammen and Tsybakov (1999) and Tsybakov (2004)].
Note that we cover here all valugs> 0, thus extending the adaptive result of
Tsybakov (2004) tp > 1 (i.e., to very irregular classes of boundaries). The case
o = 0 can be also introduced: it corresponds to the assumption that (5.2) holds
with 0 in the right-hand side. The class of functiofighus defined is a Vapnik—
Chervonenkis class, and it is easy to see that the rate in Theorem 2 in this case
becomesn1log*n)*/ (-1,

6. Edge estimation. In this section we consider the problem of estimation
of the edge functionf; such thatG; = {(s,1) € X: f;’(s) > t}, using the

sample{(X;, Y;)}!_;. The risk for this problem is defined tﬁ(udH(CA;nAG;)) =
Eyll fu — Sl where f, = f; is the estimator off,* obtained by our method.
Using the definition of#, we immediately get the following corollary of
Theorem 2.

COROLLARY 1. Suppose that AssumptioBsand C are met Then

Iog4n ) 1/(2K+P—1)>

(6.1) sup E,llfy — fl1a=0( (

neFHc:G€Gyp

asn — Q.

Note that the setup of Corollary 1 is somewhat different from the standard
problem of edge estimation as defined by Korostelev and Tsybakov (1993). In fact,
it is in a sense more general because her&tfeeare not supposed to be uniformly
distributed or{0, 1]¢ and the joint distribution ofX, ¥) is not supposed to follow
a specified regression scheme. Also, the margin behavior is accounted for by
the parametek. On the other hand, Corollary 1 deals only with binary images,

Y; € {0, 1}, while Korostelev and Tsybakov (1993) alldky € R, for instance, the
model

(6.2) Yi=lgo(X) +&  i=L....n,
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where§; is a zero-mean random variable independenXgf and consider the
problem of estimation of the edge functigif assuming thatG? is a boundary
fragment,G% = {(s, 1) € X : fO(s) > 1}.

An important example covered by Corollary 1 is the model

(63) Yi=(1+(2]lGo(Xi)—1)€i)/2, i=1,...,n,

where§; is a random variable independent &f and taking values-1 and 1
with probabilities 1— p and p, respectively, 12 < p < 1. In this model the
observationg’; take values in0, 1} and they differ from the original (nonnoisy)
image valued/ = 150(X;) because some valués are switched from 0 to 1 and
vice versa with probabilities & p andp. This occurs, for example, if the image is
transmitted through a binary channel. The aim is to estimate the edge furfétion
of the setG® assuming tha6? is a boundary fragment.

It is easy to see that the regression functiprior the model (6.3) equals
nx) = plgo(x) + (1— p)(1—1Lso(x)), which implies that the seiV is identical
to G, and thusf® = f, - Also, itis not hard to check that if the distribution &f's
is uniform on[0, 1]¢** we have that) € #1, and Corollary 1 applies witkh = 1.

Inspection of the proofs below shows that an analog of Corollary 1 also holds for
the model (6.2) if one assumes that the random variahlase uniformly bounded.
In this case only the constants in Lemma 4 and in the definitiok), afhould be
changed and the sét* should be indexed by the corresponding edge funcfion
rather than by the regressignother elements of the construction remaining intact.
This extension is quite obvious, and we do not pursue it here in more detail.

For k = 1, Corollary 1 gives the rate~1/*D up to a logarithmic factor.
As shown by Korostelev and Tsybakov (1993), this rate is optimal in a minimax
sense wher¥, is a Holder class of functions and the model is (6.2) or (6.3).
Barron, Birgé and Massart (1999) constructed adaptive estimators of the edge
function in the model (6.2) withl =1, x = 1, p > pp > 0 using a penalization
with a penalty that depends on the lower boydon p. They proved that for
this particular case the optimal ratet/(+D s attained by their procedure.
Corollary 1 extends these results, showing that our method allows adaptation to
any complexityp > 0 in any dimension/ > 1 and also adaptation to the margin
« > 1 which is necessary when we are not sure that the boundary is sharp, that is,
when the regression functiondoes not necessarily have a jump at the boundary.
Assumption A or (5.1) gives a convenient characterization of nonsharpness of the
boundary, and our penalized procedure allows us to adapt to the degree of non-
sharpness.

7. Proofs. Before going into the technical details, let us first briefly explain
our choice of class of sets as boundary fragments, and the choice of the penalty.
When using boundary fragments, it is clear from (3.2) that the approximation
of sets boils down to approximation of functions iry. We then use linear
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expansions, and need to relate the coefficients in these expansions to the penalty.
This is done in Lemmas 1 and 2. Lemma 1 bounds thenorm by I(.).
Lemma 2 boundd (-) by the Li-norm when the number of levels is limited

by m. The (block-wise) 1> penalty ensures some important cancellations in the
proof of Theorem 1. Its specific structure is less important in Lemmas 3 and 4,
with Lemma 4 being a rather standard application of empirical process theory.
Lemma 3 provides an upper bound for teatropy with bracketing'see the
definition preceding Lemma 3) of the class of s&l$AG,+ with « varying,

a* fixed, andl (¢« — a*) < M, M > 0. Lemma 4 is the consequence of the entropy
result of Lemma 3 for the empirical process.

LEMMA 1. Under AssumptioB we havefor all « € R",

(7.1) I fall1 =< cy I(@).

PrROOF Using (3.4) we obtain

Il fallL=

Zaj,lllfj,l
il

1

—dl/2
<Y el <cy Y lejl27

Jsl jil
L
=y 2223 g |,
=1 j

But clearly, for alll,
2
2123yl = (24’/4 /Z|a,-,z|) <I(@).
J J

L
Ifallt <cy Y 271 (@) <cyl(@). -
=1

Hence,

LEMMA 2. Let @ € R" and let N(x) be defined in(4.2). Then under
AssumptiorB

(7.2) (&) < cacq, N(@)]| fall2-

PrROOF.  The coefficienty;; is the inner product

o =/fa1ﬁj,ldltd,
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so by (3.5),

Z|ajz|</|fa|2|w]z|dud

JEL JEl
< ey 22| full1.
This implies that forn = m(«), with m(«) given in (4.1),

V(o) = }:?W'Z]a”

JEI
m
<322 Jey |l fulla
=1

2(m+1)d/2
= m\/cl//”fdlll-
Next, by (3.6) and the definition (4.2) (N(a)
2(m+1)d

1y Is
Combining these mequahtles we get the resufil

DEFINITION 1. Let Z C L,(8,v) be a collection of functions on some
measurable spadé, v), 1 < p < oco. For eachs > 0, thes-covering number with
bracketingNp ,(5, Z,v) of Z is the smallest value oV such that there exists

a collection of pairs of functlon{s[z ,zU]N 1} that satisfies:

° z <zY and ||z —zj l, <é forall je{l,...,N} [with ||-|, being the
L,(8,v)- norm]
o for eachz € Z thereis aj € {1,..., N} such tha’rsz. <z gzy.

Thes-entropy with bracketing o is Hp ,(8, Z,v) =logNp ,(8, Z, v).
DEFINITION 2. Let Z be a collection of bounded functions ch The

§-covering number for the sup-normi (8, Z), is the smallest numbe¥ such
that there are functlon&]}N 1 With for eachz € Z,

min _suplz(s) —z;(s)] <.
J=1.. Nses

The §-entropy for the sup-norm 8. (8, Z) =10g N (8, Z).

Note that wherv is a probability measure [cf. van de Geer (2000), page 17],
(7.3) Hp ,(8,Z,v) < Hx(8/2,Z),5 > 0.

For a class§ of subsets of (X, Q), we write Hp(8,%, Q) = Hp1(S,
{I¢:G €§}, Q).
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LEMMA 3. Let a* € R" be fixed For 0 < M < n defineg¥ = (G =
Gy AGy+:a € R", I(a — a®) < M}. Suppose that AssumptioBsand C are met
Then

" M 8qoc12p logn 8qoc5/n
(7.4) Hp (8, § ,Q)§?<T)Iog( 5 )

forall 0 <é§ < 1.

PrOOF Define¥¥ ={f,:a € R, I(a) < M}. In view of Assumption C,
(7.5) Hp(qos.$", Q) < Hp1(8, F" ua),  86>0.

This and (7.3) show that it is sufficient to bourtl, (-, #¥).

Fix someé > 0. Our aim is now to bound the quantifyoo((cfz,d_llogn)a,
FM)_ To do this, note that one can construc{téd‘llogn)a—net onFM for the
sup-norm in the following way. The elements of the net ﬁ;ewhereoc;.’, takes
discretized values with stef2~—?//2. For everya;; defined’;; as the element
closest tax; ;, of thes2~%/2-net on the interval

[—Mm2-d12 ppo=dl/2),
Note that this interval contains all admissible values pf since|a; ;| < M2-41/2
Vj,1 for all @ such that/(x) < M. With this definition of ’;, we have
lotj — oyl < 82741/ and thus

sup | fa(s) — for (5|

s€[0,1)4

L
<> osup Y e — ol

1=1s5€l0,1)¢ jep,

L
<8Y 272 sup > 1Y) < Leyd < (c5d togn)s,
=1 s€l0,1) jer,

where we have used Assumption B for the last two inequalities. Thus we have
proved that the above construction gives in faajt:%\d‘llogn)a—net onFM for
the sup-norm.

Let us now evaluate the cardinality of this net. This will be based on the
following three observations.

OBSERVATION 1. For everyx such that/ («) < M there exist at most/ /3
indicesk = (j, 1) such thata; ;| > §2-9!/2. To show this, define

Ni(@) = |{j € I :|aj | > §2791/2)], I=1,...,L.
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Then
L L
M = 1@ = ZZMJ Y el = VY VN@).
=1 |a].,,|>527d1/2 =1
Hence
E:VUW(W)<\/__
and so

ZNI(OO <M
1=1
OBSERVATION 2. For each; and [/, we can approximate the interval
{loejs| < M279/2} py a set of cardinality at most
M +1
1)

such that each coefficient; ; is approximated to within the distanég=4//2,

OBSERVATION 3. The number of different ways to chooseM /5 nonzero
coefficients out of: is

(;) <(n+ M/
0<N<min{M/5,n}
[see, e.qg., Devroye, Gyorfi and Lugosi (1996), page 218].

It follows from Observation 3 that there exist at most+ 1)/% possibilities to
choose the sets of nonzero coordinates of the veatfdoglonging to the net. For

each of these possibilities the discretization is performed on each of the nonzero
coordinates, which gives at most

2M M/s
(7“)

new possibilities in view of Observations 1 and 2. Thus, the cardinality of the
considerec{cid‘lIogn)a-net on¥ M is bounded by

M/s
(n + 1)M/5<2TM + 1) ,
which implies

(7.6) Hoo((ci,d_l logn)s, FM) < %(bg(ZTM + 1) + log(n + l)).
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In view of (7.5) this yields

M /2qoc? logn 4goc2 M logn

+ 1) + log(n + 1)]

d dd
M 2q0c$/ logn 4q0cin2
< ?(f) [Iog( 5d + 1) +log(n + 1)}

sinceM logn <nlogn < n2, Continuing with this bound, we arrive at

2 lo 2.2
4qocy, gn>log<4qocwn +1>
d 8d
M (4q0(:12ﬁ |Ogn> <8qocin2>
< M(ZU 9% jog

8 d 5d

M 8qoc$/ logn 8qocin
(e )
) d od

M
Hy(5.9M. 0) < ?(

Now we turn to the empirical process

(7.7) V(@) = /n(Ry(Go) — R(Ga)),  acR.

LEMMA 4. Let Assumption® and C hold. Then there exists a universal
constantC such that fom > 8qoci we havefor all a* € R”,

— (et 2 log*
P(gup vn(@) —wn@™)| . [90c 109 ">
7.8) werr /T — a®) +Vlogtn/n d
| < Cogf -0
N y C?d

PrROOF We will apply Theorem 5.11 in van de Geer (2000) which, translated
to our situation, says the following. Let

he(X,Y) = (Y —16,(X))* = (Y —1g,. (X))°
and
HM = {hy: 1 (a —a*) < M).

Also, let R? < 1 satisfy

sup /thP <R?,
heiM
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whereP is the law of(X, Y). Then Theorem 5.11 in van de Geer (2000) gives that
for some universal constadb, and for alla satisfying bothu < ./nR? and

1
a zC()(/ H;/g(u,%M,P)duvR)
af(Co)

one has

2
(7.9) P( sup [V (@) — v (@®)] > a) <Co exp[—#}.

aeR: [(a—a*)<M
To apply this result, note first that
(7.10)  [(¥ =16, (X))* = (¥ — 1¢,, (X))| = |16, (X) — Lg,, (X)].

We therefore get

sup /hzdP = sup Q(G),
heHM GegM

whereg¥ be defined as in Lemma 3. Hence by Lemma 1, Assumption C and (3.2)
we may take

R?= gocy M A 1.
Moreover, again by (7.10),
Hg2(8, #M, P)=Hp 2. {1c:G € M}, Q) = Hp(6%, ¢™, 0),  §>0.

Using Lemma 3, for any < \/nR?, log*n/n < M < n andn > 8q0c$, we get
the bound

1
a/\n

wherec’ is a universal constant. We therefore can take

Hy5(u, 3¢, Pydu < C’J

qoc;‘;M logn log? n°/2
d a2 )’

qoc?pM log*n

d b
with an appropriate universal constaninsert this value for and the value oR
in (7.9) to find that for lo§n/n < M < n, and trivially also forM > n,

2 4
ocs M log™n
P( sup [va (@) = va(@™)] > ¢y M)
aeR": [(a—a*)<M d

2 lo 4
<Co exp[—M(M v 1)].

(7.11)
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The result now follows from the peeling device as, for example, explained in
Section 5.3 of van de Geer (2000). The argument is then as follows. We have

( [ (@) — vy (™) /qocw log* n)
sup >C
weR" /T( —a®) +Vlogtn/n
_ * [
SP( sup [ (@) — vy (™) C/ qoc3, log n)
Ha—a)<1 /T(o —a*) + Viogtn/n d

|va (@) = vu(@®)] |90c] log* n)
+P sup >C
(I(a—a*)>1 VI (a —a*)+\/|og4n/n d

=P/ +Py.

Furthermore, forjp the integer such that 20 < log*n/n < 2-/0+1, we find

Jo C [qoc22-ilog*n
P152P< SUP (@) — un (o) > oy ZPIJ
j=0 I(a—a*)<2-J

Similarly,
oo C [qoc52) log™n
SZP( sup  [vu(er) — v ()| > 2\/1 ZP” Jjr
j=1 I(a@—a*)<2J

The theorem then follows by choosiagappropriately and applylng (7.11) to each
oftheP; ;, j=0,...,jo,andPy ;, j=12,.... O

LEMMA 5. For any positivev, r and anyx > 1, § > 0 we have
vt/ (20 < (82t +CK5—1/(2K71)U2K/(2K71)

wherec, = (2« — 1)/ (2k) i~/ 2D,

PrROOF By the concavity of the log-function, we have for positweb, x
andy, with 1/x +1/y =1,

log(ab) = Iog(a") + - Iog(b>) < Iog( a* + llﬂ)
or
1 1
ab < —a*+ =b".
X y

The lemma is obtained when we choose

a=v(k8) @) b= (kd1) %) X=—, y=2.
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We now come to the proof of the main theorem. This proof follows the lines of
Loubes and van de Geer (2002) [see also van de Geer (2003)].

PROOF OFTHEOREM 1. Fix an arbitrarye™ € R". (We stress here that* is

just a notation and need not be related in any sense to the Bay&sTileet E be
the random event

(7.12) E=:|un<an>—vn<a /A1 < AN T @ — ) + ,/'Og ”}

By Lemma 4, fom sufficiently large,

4
- cy log n}

P(E)>1—Cexp — .
=)= p[ C2d

So we only need to consider what happens on theEsefhe definition ofa,
implies

Rn(G&,,) + AnV I(&n) = Rn(Ga*) + Anv I(Ol*),
which may be rewritten in the form
(7.13) R(Gg,) < —[vn(@n) — va(a™)]/+/n — kn[\/l(&n) —VI(@*) ]+ R(Gg»).
Hence onZ we get

4

R(Ga,) < T — o) 1V T G) —VT@)] + RGo) + 1 2"

Letm* =m(a™), and let, for anyy,

JID (@) 22d1/4 /Z 11,
JEL

V1@ () = Z 201 3 latjl.
l=m*+1 jel

Sincel/ @ (a — a*) = 1@ («), we now find

Ga,) < I T D @y — @) + Ay 12 (@) = 2 [ 1D @) — 1O (@) ]

log*n
IO D+ ]
hy 1P @) + R(Gor) + | =
= A T (@, — @) = M [ TD @) = 1D (@) ]

log*n

+ R(Gox) + Ap
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Since foranw, b € R, /|a] — /|b] < «/|a — b|, we arrive at

Ton log*n
(7.14) R(G&n) <2/ IV (@, —a*) + R(Gg+) + Ay .
n

Therefore, using a straightforward modification of Lemma 2 (basically replacing
therel by ID), we obtain

log*n
R(Gay) = 20 Jeac® N*| fay a1+ R(Gar) + =

whereN* = N (a*) = Z;”Z*I |I;]. By Assumption C and (3.2),
| far—ar 1 = 40Q(Gg, AGar).

We therefore get

log*n
R(Gg,) < ZAnchqociN*Q(G&nAGa*) + R(Go*) + Anyf g )
n

SubtractingR(G*) from both sides of this inequality, and denotidgG, G*) =
R(G) — R(G™), we obtain

d(Gg,, G*) < ZAH\/cdqoclsz* 0(Gg, AG o)

. log*n
+d(Gox, G7) + Ay T

But then, by the triangle inequality anda + b < \/a + /b, a, b > 0, we get
d(Gg,. G*) < 20ny/caqoct, N* [V Q(Gg, AG*) + V Q(Gor AGH) ]

log*n
+d(Gar, G) |
< 2hn[caqocd oy N*[dY 2 (Gg, . G*) + dY®) (Gor, G¥)]

log?
+d(Gar, G*) + Ay =,
n

where in the last inequality we invoked Assumption A. Now we apply Lemma 5
with, respectivelyt = d(Gg,, G*) andt = d(Gq+, G*), to get

d(Gg,, G*) < (8/2)[d(Ggs,, G*) +d(Gox, G)]

(7.15)

+2¢, 8 (@&=D (4quoci0'01/’<)u,%N*)K/(2K_l)

[log*
+d(GOl*v G*) +)\'ﬂ g n7
n




1222 A. B. TSYBAKOV AND S. A. VAN DE GEER

which, together with the inequalitiesl + §/2)/(1 — §/2) < (1 + 8§)? and
1/(1—-6/2) < 2, which are valid fors € (0, 1], implies, that on the ever we
have

R(Gg,) — R(G*)

2 o s—1/(2c—1) « log*n
<A+ 8{R(Gy*) — R(G*)+ Va(N (@)} + 24, -

Hence

P(R(G&n) — R(G*) > (1+8)*(R(Ga+) — R(G¥)

| 4
n

Sincea™ was chosen arbitrarily this holds in fact for aft. Because a distribution
function is right continuous, we now have shown that also

P(R(G&n) ~R(G") > (1+8)? inf {R(Ga) — R(G")

log®

+ 8 V@&=Dy (N(@)} + 2r, i ”)
4
cy log™n
S CeXd:—W] |:|
PROOF OFTHEOREM2. Forpy € J#,, G; € 4,, we have
R(Gy) — R(GZ) + Vu(N(@)) < oog5 |l fa — f;llgo + Vu(N(@)),
so that
it {R(Go) = R(G) + Va(N (@)} < 0046 cGN,,*"* + Vi (N)

= 2(Nm),

2(1) = ooglcst ™/ + V, (1),  t>0.
Now minimizingz(¢) over allr > O gives

p NPl
= =1,
(Iog”'n)
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sinceV,(N) =< (Nn~tlog*n)*/%-D Letm be the smallest integer such that
Nji—1 <1 < Nj.
It is not difficult to see, using (3.6) and (3.7), that
Nj —F<c52% G +1).
InsertingN,; in the right-hand side of (7.16) therefore gives

|Og4n)/(/(2k+,0—l)

inf _{R(Ga) — R(G}) + Va(N(e)} < 2(Njp) < (

a:m(a)<m

Note finally that the constants in Theorem 1 depend only o0, oo, go andcy,,
so that the result of Theorem 2 follows easily.]

REMARK. When this paper was finished we learned from Vladimir
Koltchinskii that he found another penalized classifier that adaptively attains fast
optimal rates [Koltchinskii (2003)]. His method is different from ours and uses
randomization and local Rademacher complexities.
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