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LOCAL CENTRAL LIMIT THEOREMS, THE HIGH-ORDER
CORRELATIONS OF REJECTIVE SAMPLING AND LOGISTIC
LIKELIHOOD ASYMPTOTICS

BY RICHARD ARRATIA, LARRY GOLDSTEIN! AND BRYAN LANGHOLZ?!
University of Southern California

LetI4,..., I, be independent but not necessarily identically distributed
Bernoulli random variables, and la&t, = Z;f:l I;. Forv in a bounded re-
gion, a local central limit theorem expansion BfX, = EX, + v) is de-
veloped to any given degree. By conditioning, this expansion provides infor-
mation on the high-order correlation structure of dependent, weighted sam-
pling schemes of a populatiaf (a special case of which is simple random
sampling), where a set ¢ E is sampled with probability proportional to
[Tacd x4, Wherex 4 are positive weights associated with individualg E.
These results are used to determine the asymptotic information, and demon-
strate the consistency and asymptotic normality of the conditional and un-
conditional logistic likelihood estimator for unmatched case-control study
designs in which sets of controls of the same size are sampled with equal
probability.

1. Introduction. The unmatched case-control study is one of the most widely
used designs in chronic disease epidemiologic research. Typically, a large number
of individuals, the cohort ostudy base, will be observed for occurrence of a
binary disease outcome. Because the number of subjects is large and only a
small proportion will becases that contract the disease of interest, nondiseased
controlsare sampled to serve as a comparison group. Exposure and other covariate
information is then obtained for the case-control study subjects for use in statistical
analyses. As an example, in a study to assess the association of a variety of
hypertensive drugs and the risk of myocardio-infarction (Ml), 623 MI cases who
used antihypertensive drugs were identified within an HMO in Washington State.
The cases were grouped by sex, 10-year age, and calendar year of Ml [Psaty et al.
(1995)]. For each group, a number of controls from the antihypertensive drug users
were sampled in a fixed proportion to the number of cases. For each case-control
study member, the types of antihypertensive drugs used were ascertained through
computerized records, chart review and interview. The primary method of analysis
was unconditional logistic regression. It was found that risk of MI was 60%
higher among calcium channel blocker users compared to either diuretics alone
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or compared tg3-blockers, a finding that has resulted in a change in treatment
strategy.

The structure of these data @@ospective in that disease occurrence is
conditional on the covariate information, and controls are randomly sampled from
the pool of nondiseased. This is the structure of a nested case-control study
from the study base [Mantel (1973)], which we call thested case-control
data model. Another way to view case-control dataeisospectively in which
the case and control covariate values are taken to be independent realizations
from their respective distributions [e.g., Breslow and Powers (1978), Prentice
and Pyke (1979), Weinberg and Wacholder (1993) and Carroll, Wang and Wang
(1995)]. Although the nested case-control model is used in modern texts on
case-control studies in epidemiologic research [e.g., Breslow and Day (1980),
Kelsey, Whittemore, Evans and Thompson (1996) and Rothman and Greenland
(1998)], it has been the retrospective model that is invoked when developing
estimators and analyzing their properties. However, the assumption that the case
and control covariates are independent random replicates may not hold in practice.
For instance, if the distribution of drug types changed during the antihypertensive
drug-MI study, differences in treatment within the case and control populations
would make the modeling of the covariates by a common distribution within each
group untenable, so the conditions required by the retrospective model analysis
would not be met. But, it seems evident that valid results can still be drawn from
such a study since the assignment of drug type to subjects should not influence the
association between the drug type and disease.

In this paper we develop the theory necessary to determine the asymptotic
behavior of estimators of the odds ratio in the nested case-control model under
general conditions on the covariates and sampling methods. We then apply
this theory to the maximum conditional and unconditional logistic likelihood
estimators. Although the conditional logistic likelihood gives rise to valid
estimators in a wider range of case-control study settings than the unconditional
(e.g., individually matched case-control designs), its asymptotic properties for
“large strata” have not been studied. The path of our analysis leads us through some
unexpectedly broad territory, including a high-order local central limit theorem for
the Poisson—Binomial distribution and expansions for the inclusion probabilities
and correlation structure of rejective sampling.

After formally introducing the problem of analysis of case-control data in
Section 1.1, in Section 2 we prove Theorem 2.1, a high-order local central limit
theorem for the sunX,, of independent but not necessarily identically distributed
Bernoulli random variables having success probabipty j = 1,2,.... This
result gives an expansion to any desired order for the probability that thecsum
deviates from its meaR X, by the valuev, uniformly for v in any bounded region.

This result is of independent interest, as it provides a means to approximate, with
rates, the Poisson—Binomial distribution, for which no simple expression exists.
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In Section 3 we extend Theorem 2.1 by showing that this local central limit
theorem expansion holds for the sumg of independent Bernoulli variables with
success probability

_ AXA
o 1+XXA’

DA A€E,

uniformly for all A in an interval bounded away from zero and infinity, under
asymptotic stability conditions on the weighisy, A € E. For any » > 0,
conditioning the Bernoulli variables on the evetit = n gives Hajek’s rejective
sampling scheméEg , on E, where a sed C E of size n is sampled with
probability proportional toxq, the product of the weights, over A € d.
Choosinga so that the expected number of succeds&sg equalsn allows for

the application of local central limit Theorem 2.1, yielding Theorem 3.1, which
gives an expansion for the inclusion probabilities under the rejective sampling
schemeEg ,,. This expansion is applied in Section 4 to derive Theorem 4.1,
yielding the high-order correlation structure of rejective sampling.

In Section 5 we apply the rejective sampling results to the asymptotics of
estimators under the nested case-control model. Theorems 5.1 and 5.2 give the
asymptotic information and demonstrate the consistency and asymptotic normality
of the conditional and unconditional logistic maximum likelihood estimators,
respectively.

Finally, in Section 6, we compare our approach to others, and, in particular, to
the derivation of asymptotics by Prentice and Pyke (1979) under the retrospective
model. Lastly, we discuss efficiency issues, extensions and directions for further
research.

1.1. The tatistical model and likelihood. The prospective logistic model for
disease occurrence is as follows: with covariate verwiR?, the probability of
disease is

Ax(z; B)
1+xx(z B)’

wherex(z, 0) = x (0, B) = 1, for allz€ R” and in the parameter spacg C R”
[e.g., Breslow and Day (1980) and Cox and Snell (1989)]. The pararheted
is therefore the baseline odds an@, B) is the odds ratio associated wighThe
odds ratio paramete is typically of primary interest.

We consider a “study baseR = {1, ..., N} of N individuals with covariates;,
J € R, and independent failure indicatofs having marginal distribution given
by (1) for some(io, Bg), that is,P;, g, (I; = 1) = ps,(Z;j; Bo)- Definex;(B) =
x(2j; B)s pja(B) =1~ q;i(B) = pi(zj; B); we may further suppresy and
write, for exampleyx; = x;(Bo) andp; , = p; ;. (Bo). Denoting the set of indices

(1) iz B) =
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of diseased subjects by, for d C R, the probability of observind® =d is
therefore

I, 1-1; d
PAO,ﬁO(D =d)= 1_[ Pj{)ho C]j’)noj = )\l) | Xdq R,
JER
where for anyF C R,
2) qr =qr(o. Bo) = [[ (L +20x))™" and xq=[]x;.
JEF jed

When covariate values for all study base subjects are available, estimation of
the unknowng (andig) can be achieved by maximizing the likelihoBgl g (D).
But when the study base is large or the collection of the full set of covariate values
is expensive or impractical, it is natural to sample subjects to form a sampled study
baseE C R and use the collected covariates in the sample for the estimation of
parameters. Generally, a sampling design is specified (sjd), the probability
of choosings as the sampled risk sét whend is the observed set of diseased
subjects.

For the calculation of a likelihood, additional information tltat § for some
4 may be included. Conditioning afi and$ leads to the probability

*g %0 (Bo)7 (E|D)

Sucs 2o xu(Bo)m (Elu)
A likelihood is formed by allowing the parameters in (3) to vary to obtain the
likelihood functionL g s(A, B) =P, g(D|E, §).

Of particular interest for epidemiologic unmatched case-control studies is the
likelihood which results from (3) when conditioning on the number of cases in the
case-control set. In practice, in unmatched case-control studies one typically has
information on all cases and a set of controls obtained using sampling schemes
such as frequency matching, fixed size sampling, Bernoulli trials and case-
base sampling [e.g., Kupper, McMichael and Spirtas (1975), Breslow and Day
(1980), Wacholder, Silverman, McLaughlin and Mandel (1992) and Langholz and
Goldstein (2001)]. For each of these designs, the probabhiligid) is zero unless
s containsd, and is otherwise constant jd|. Then, setting§ = {u C E: |u| = n},
wheren = |D|, Ao and the sampling probabilities(s|d) cancel from (3), and
noting the dependence of the resulting probabilityfbands, only, we define

XD

(3) Pko,ﬂo(D|Ev ’S):

4 Pg (D) =Pg(DIE, ) = ———.
4 En(D) =P (DIE, n) SR

This is the basis for the “standard” conditional logistic likelihopg ,(8) =
Pg(DIE, n) [e.9., Cox (1972) and Cox and Snell (1989)] for the designs mentioned
above, which have log likelihood

eCE,n(ﬂ):ZIngA(ﬁ)_IOg{ > xu(ﬂ)}.

AeD UCE,|u|=n
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The conditional logistic likelihood estimatq§rN is a value maximizingCg , (B).

Differentiation of an arrayFg = {F;, . ;,(B)} € R">* "« with respect
to B will be denoted by “”, resulting in the arrayF, = {Fj/.!l.l ..... i, (B} =
{(8/0B ) Fiy.....i,(B)} € RPXMxa Fory e R e andV € R™1>* ™" the
tensor product ® V e R"1> > taXmixxmy hgs components;,
and we setU| =Y, . ; |Ui...;,|, theL! norm.

~~~~~ la

..........

ConDITION 1.1. The real valued functianis positive, three times differen-
tiable inB and O< infiz <. x (B, 2) < SUPy <, X(Bo, 2) < oo forall ¢ > 0.

Under Condition 1.1, following Barlow and Prentice (1988), define the
“effective covariatesz; by

1 p.
Zj =X;X; e R?;

in the model where;(8) = exp('z;), we havez; = z;. Now for u C E, define
the inclusion probabilities

pu(B) =Pg(UCDIE.n) =) P4(SIE,n),

SOuU
and the inclusion probability for an individualasp 4 (8) = pay(B). With 14 the
failure indicator forA € E and suppressing the dependenc& gfand p4 on 8,
the scoréd L, (B)/9B equals
E, T;),

whereEg is the expectation undétg ,(B). Using that for a functiorFg(D) =
Y aepZ 4 We have

Upn(B) =Y Zala—pa)=)_ Za —E,s(z ZA

A€E AeD AeD

5
() 5 gEs(FaDIE, n) =Eg(Fg®YIE, 1) +Eg(UB) ®FgDIIE, ),

with pa + g4 =1, the information-0Ug ,(B)/dp is given by

(6) LEgB) =Y 2%paga+ Y. ZaZi(pap — pars)
AcE A,BEE,A#B
™ —<Zz;_ sz)
AeD AeE

Note that (6) containgap — paps, the correlation of the joint inclusion of
A andB.
In general, we have

Eg,UEg,n(Bo) =0,
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since the score is the difference between a quantity and its conditional expectation.
For this same reason, when taking expectation in (7), we find that

EgodE,n(Bo) = Varg{UEg,,(Bo)}-

The standard likelihood argument to show the consistengofequires that
the information|E|—11(ﬂ0) converge in probability. Since the information is a
double sum overd and B, the inclusion correlationgsg — p4 pp need to decay
at rate|E|~L. Further, the remainder term in the Taylor expansion of the log
likelihood, which is required to stay bounded in probability, contains a triple sum
of terms multiplied by the third-order correlation,

Egl(1a — pa)Up — pB)Uc — po)E, nl;

hence, to satisfy the boundedness condition, such triple correlations need to decay
as |E|~2. The dependence ii*g , created by having the probability of a set
proportional to the product of its individual weights has been explored only under
very restrictive situations [Harkness (1965) and Farewell (1979); see also Hajek
(1964)]. Theorem 4.1 gives information on the rate of decay on all correlation
orders, and, in particular, provides that the third-order correlation decays at the
required rate. This result allows for the full treatment of the asymptotic theory for
the conditional logistic maximum likelihood estimator for a large class of case-
control sampling designs (Section 5).

More commonly used in practice, and making use of the same case-control
subject data, is the estimator @f, based on maximizing the “unconditional
logistic likelihood” which, withp4 , (8) as in (1) andzg (X, B) as in (2), is given
by

®  Le(.B) =[] rar®qar®*"* =1 lxp(B)ge (. B).

A€E

The unconditional logistic likelihood estimatf?qV is a value maximizind. £ ().

Note that, in generaI,I:E is not a true likelihood when data is collected
using sampling methods such as frequency matching, since the contributions
from individual subjects are not independent. The asymptotic analysis of the
unconditional logistic estimator is carried out in Section 5.

1.2. The probabilistic setup. For any setE and 0< n < |E|, consider the
probability measurér ,,(d) given by (4), supported on the sizesubsets oft'.
With I, = 1(A € D), the indicator that is included inD, ps =Eg ,;(/4), and
H C E, we study high-order correlations of the form

()] Corr(H) = EE,r;( []Ua- PA))-

AeH
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When H = {A, B}, a set of size 2, CofH) = pap — papsn, the covariance
between the Bernoulli variablds and/p.

Whenx, =1 for all A € E [corresponding t@8y = 0 in (1)], Pg , reduces to
simple random sampling. In this case, when there exist$0, 1/2] such that the
sampling fractiom/|E| € [t,1— 1], then ajE| — oo,

—n(E[—mn)

10 E 14 — Ip — =———=0; E|I"L
(10) Enl(Ia — pa)p — pB)] E2(E — D (IEI™)
and

(11) Eg.y[(Ia — pa)Ip — pp)(Ic — pc)l = O (|E|72).

Hence, simple random sampling has the rates needed for the stability of the
information and the control on the remainder in our likelihood analysis; the exact
meaning ofO, is given in Definition 2.1.

For simple random sampling a straightforward calculation shows that

|H| (IHI)(IEI—.j) |H|—j
_ i\ =i/ (1
Con(H) = Z (BN <|E|> '
Jj=0 n
Since here the weightsy are equal, we may write Ca#k) for the common value

of Corr(H) for all H of sizek, and have verified fok < 10, as|E|, n — oo, with
n/|E| — f € (0, 1), for & a standard normal variate,

k/2

‘Ellim |E|*/2Corrk) = EN*(f(f — 1)) for k even
— 00

and

lim |E|*TY/2Corr(k)

|E|—o00
=1k — DEN(r(f - 1)) *P22f —1)  fork odd.
In particular, for simple random sampling we have
(12) CO(H) = Oy, (|[E|~(HI+IHImod2/2)

with (10) and (11) as special cases. Theorem 4.1 shows that the orders in (12) are
obtained quite generally for the weighted sampling schEme.

1.3. Regjectivesampling. The scheme corresponding to the probability measure
Pg , is known as rejective sampling [Hajek (1964)], and as seen in Section 1.2
includes simple random sampling as a particular case. Though simple random
sampling is the most ubiquitous of all statistical methods, in some cases it is
not possible to take a simple random sample. For example, the inclusion of
the population membeA might be influenced by a certain nhonnegative “size”
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x4 associated with the item, where the larger the size of an item, the easier it is
to locate and the higher the probability of its inclusion.

The term rejective sampling arises sifgg,, may be achieved by sampling
individuals independently with replacement and rejecting those samples in which
the n individuals are not distinct. H4jek (1964) considers the inclusion probabili-
ties, second-order correlations and asymptotic normality of sums obtained by re-
jective sampling.

Schemes where objects are sequentially sampled proportional to their size
have been extensively studied [e.g., Rosén (1972) and Gordon (1983)]. However,
rejective sampling differs from sampling sequentially proportional to size when
n > 2, as can be seen by comparison of the general probability that a sample of
sizen = 2 results in the unitgt and B. However, both schemes reduce to simple
random sampling when the weights are constant.

2. A high-order local central limit theorem. The main result of this section
is Theorem 2.1, a local central limit theorem expansion for the distributicf, of
the sum of independent but not necessarily identically distributed indicator random
variables. The first step, Lemma 2.1, is to obtain an expression for the characteristic
function of the centered sun¥, — EX,. In the following, we writeQ for a
complex number, not necessarily the same at each occurrence, suh| thé.

LEMMA 2.1. Let
Xo=>_1j,
j=1

where I;, j =1,...,n, are independent Bernoulli variables with EI; = p; =
1—qj; let

n n
(13) UE:ijqj and w,,:ijqj(pj—qj).
=1 =1

Then, denoting the characteristic function of X,, — EX,, by ¢, (), for all n =
1,2,...and|t| <1,

22 Pw, 4
14 () =exp| — 4 B0 LT 0.
(14) én(t) W% 2+164&$)
Furthermore, for all ¢t € [—m, 7],
(15) |6 ()] < eXp(—12v7/6).

PrRooE The characteristic function of an indicatbwhich has been centered
by subtraction of its meap is

Eeit([—p) =e—itp(q —{—peit) =qe—itp —|—pe”q.
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We have for alk,
2 3
qe_”p:q<l—1tp—t—p +i t—p —I—ﬁp Q)
2 6 24

and adding the analogous expansionef’?, we obtain

Be—n =1 q+lqu(p q)+9—4
2 24
Using thatpg (p — ¢) < +/3/18 < 1/9, we have foii¢| <1,
12 13 1 4 21 ;P11 * 5 2_

1
—_ —_ —_ —_— _ l‘ —
pPaTigPap =) TR =5t gt S =5

Applying the estimate
log(l+x)=x + Qx> Vx| <3,
we obtain that fof7| < 1,

. 12 3 1 5 ,\?
log(Ee'"'~P) = —=pq +i—=pq(p — q) + Qit +Q<—t)

-2 6 24 27
i 3 4
= — — — —Q
2pq+16pq(p q)+1o ,
and now summing,
4
t
Iog¢n<r>———2p,q,+z Zp,q,<p, q)) + o2
j=1

Exponentiating gives (14).
To prove (15), observe that

n n

j=1 j=1

= (]_[ (1-2(1- cos(t))qu_,-)) < exp(—(l —cos1)) Y quj),

j=1 j=1
and then use (13) and thatlcoqr) > t2/6 forall -7 <t<nm. O
DEFINITION 2.1. For a possibly empty set of parametarswe will write

fn = 0,(gy) if there exist a constar@,, and an integen,,, both depending only
on u, such that

(16) | ful < Culgnl fOfa”nZnu;

we write f, = o,,(g,) if for every e > 0, there exists,, such that (16) holds with
C, replaced by. We write f,, = ©,,(g,) if f, = 0,.(gx) andg, = O, (f»).
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In the remainder of this section, recallimﬁ = Z’}:l pjqj, we will assume the
following:

CONDITION 2.1. There exist > 0 andn, such thatv,f > ¢n for all n > n,.
We will again let/ denote a standard normal variable.

LEMMA 2.2. Leta, =+/Clogn/n for C > 0. Then under Condition 2.1,
—(j+D

! 1)) exp( ’2”3> dt =" (BN +o0p j.c(D)
1 _ _ o
(17) 21 Jir1<an 2 Vor S

=0 C(n_(j+l)/2).

PROOF By the change of variable= v,t, the left-hand side of (17) becomes

vn—(j-‘rl)/_ |jeXFX_ZZ/2)d
) —F—az
21 |z|<anv, 21
v—(j-l—l) ) )
= (EIN|) = 2EN! LN > ayvy)),
N er

but
EN/L(N > ayv,) <ENIL(N > v/ Celogn) =oc j.c(D),
asn — oo, by the dominated convergence theorermnl

For a bounded function on-7, 7], define
| flleo = sUP|f(2)].

[t|<m

LEMMA 2.3. Under Condition 2.1, for any K > 0 and f(¢) a bounded
measurable function on [—, 7], setting

a, =,/Clogn/n with € > 671K,

/ L F 000 =1l 0075).

we have

PrOOF Using Lemma 2.1,

/ fex f(f)¢n(t>dt‘ = 1flloe | ()| dt

ap<|t|<m

2
<IIfllso e "8 gy

ay <|t|<m

< 27| fllooe ™%/ < 277|| flloon K. 0
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LEMMA 2.4. Let ¢,(t) be the characteristic function of the sum of n
independent centered Bernoulli variables, and suppose that Condition 2.1 holds.
Definefor j > 0,

dn,j

1 .
(18) Inj= t'g,(t)dt and 12’1.:1”

21t Jyt|<n

©

Then for j even,
(19) 1n,j = ®8,j(n_(j+1)/2) and 12,] — Un—JIEQA/JI + Og’j(l’l_j/z),
and for j odd,
ln,j = 05,]' (n_(/+2)/2),
in particular,

19 ;= 0 j(n~+imed2/2)  forall j > 0.
PROOF Leta, = /Clogn/n with C =61 ((j + 3)/2). Lemma 2.3 yields

/ tjqbn(t) dt =nj0(n—(1'+3)/2)’
ap<|t|<m

so it suffices to consider the regitm < a,,. Taken, ; so that fom > n, ;,a, <1
andna,? < 3. Sincejt] <a, <1, (14) of Lemma 2.1 gives

22 .3

tcv r>w 1
W) =expl ——2 +i—= t4—Q>
bu(0) p( e L

2.2 3
t°v r°w 1

—expl ——2 ) exp| i —2 z“—sz).
p( 2) p(’ 6 " 10

Forn > n, ;, we see thata, /10 < na’/6 < 1/2. Therefore, foit| < ay, |x| <1,
wherex = ir3w, /6 + nt*Q/10. Now using the fact that fax| < 1,

eF =1+x+4 0(x?),
we have
2,2 3 2,2
¢ 3w, t
¢n(t):exp<— ;")(l—i—i Z)—i—exp(— 2””)0(m“+z6w5).

Lemma 2.2 shows that the second term contribudes (n~V+3/2) to 4, ;,
since

2,2
. v . .
"/ |t|j+4eXp<_ Zn) =10, j(n~U*92) = 0, ;(n” U3
[t|<ay

and

2,2

- t°v . i
w,2,/|”< |t|J+6exp<—_2n> = 0, j(n?n~ VD2 = 0, ;(n~UF/?),
=dn
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Now focusing on the contribution from the first term, usinﬁ = ®(n) by
Condition 2.1, symmetry and Lemma 2.2 fpeven, we have

i s . 122 3 i
v = o /Itlfant exp| — > 1+l€wn dt + O j(n™7)

41
vt

' 1oy 1
= t/ expl — dt + 0, i(n~
2 ﬁz|§an p( 2 ) *+ 0sj (177

1 .
= E(Ed\[] +08,j(1))9

yielding (19).
For j odd, again using symmetry,

i12)/2 i+2)2 1 j 1202 Pwy, 1/2
W52y, ;=22 tfexp<— ”><l+i )dz+o€,-(n 2)
’ 21 Jir1a, 2 6 ’

: 2.2
_ i+2/2 W tf+3exp<_ﬁ> di+ 0. (n-12
" 127 Jit1<a, 2  Oc s )

i(wa/n)
T 6V2n
the right-hand side is now seento bg ;(1). O

n\UFH2 1
< ) (EN7H3 4+ 0¢ (1) + O j(n?);

2
Un

ForEX, + v an integer, define
(20) fn,v =P(X, =EX, +v).
The following theorem gives a high-order local central limit for the probabilities
of such deviations from the mediX,,.

THEOREM 2.1. Let Iy, I, ... be independent Bernoulli variables with p; =
E1; satisfying Condition 2.1. For any nonnegative integer s, define
L (—iv)/

(21) mv(s):Z 1

j=0

dnj.

Then for given « and even s,

Fow =my(s) + Op o s (T2 forall |v| <k withEX, 4+ v eN.

PROOFE Let

s LN s j

(—iv)/ x/

Rn,v:fn,v_ E BT ln,j’ g(x)zex_z :
J: j=0 J

Jj=0
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anda, = /Clogn/n with C = 6¢~1(s 4+ 2)/2. By the inversion formula,

1

fov=— f e (1) dt,
[t|<m

2
SO

2tRu= [ g(=itv)u(ds
[t|<7m

= g(=itv)g,(t)dt + g(—itv), (1) dt.

[t]<an ap<|t|<m

Since|¢, (1)] < 1, [v| <« and|g(x)| < Cs|x|*+1 for |x| < 7, the first integral is
bounded by

f lg(—itv)|dt < 2a, sup |g(—itv)]
|t|§an

[t|<an

lo (s+2)/2
=< 2C‘€afl+2Ks+l = OS,K,S (( gn(n)) )

Since SUP < lg(—=ivt)| < Cs (rk)*+1, Lemma 2.3 shows that the second integral
iS Oy.s(n~6T2/2) € 0, s((logn/n)$+2/2), Consequently, for all, we obtain

542 ;- N (s+4)/2
(—=iv)/ logn
o= 3 0 ((57) )

j=0

Whens is even, we have by Lemma 2.4,
‘z”’H’l = 03,5 (n—(s+3)/2) and Jln,s+2 = ®g,s (n—(s+3)/2);

we now obtain the result by observing
|ogn (s+4)/2 _
Os,x,s(< . ) > C Ocis (n (s+3)/2)‘ 0

3. Finite population sampling and inclusion probabilities. To extend the
results of Section 2, let there be given forale N = {0, 1, ...} a“weight” x4 > 0,
and fori > 0O, let T, be the measure under whidh for A € N are independent
indicator variables with success probability

_ AX A
o 1+)\..xA.

(22) DA

The case considered in Section 2 corresponds=dl andx; = p;/q;.
We will assume that the, weights are “asymptotically stable” in the following
sense.
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ConDITION 3.1. For alls € (0, 1), there exist € (0, 1) andn > 1 such that
for any finite E ¢ N with |E| > n,
1

(23) |E]

Y l(xaeleeh=1-56.
AeE

Now letpa s +qgar=1,

(24) Xp=)_ Ia, VZ =D PAAGAL:
AcE AcE

and withT;, (X g) denoting the expectation &f; with respecttd, andT, (Xg) +v
an integer, set

(25) fEsv=T(Xg=T.(Xg) +v).

In this section we will provide a local central limit theorem expansion for
the probabilities in (25) which holds uniformly fox in an interval bounded
away from zero and infinity. Conditioningj, to have exactly; successes ovet
yields Eg , (Lemma 3.5), and by selecting thewhich yields 7, (Xg) = n, we
obtain a high-order expansion for the probability thats included in a sample
with distributionPg .

With fr_, areal valued function defined on finite subsEts N andv € R, for
a possibly empty collection of parameterswe say

fE,v = OM(gE)
if there existC,, andn,, such that
|fE,v|§Cu|gE| foraII|E|an.

We say £, = ©,(gr) when fg , = 0,(gg) andgeg = O, (fE, ). Note that if
H and G are any fixed finite subsets df, then f¢ , = O, (|E|~“) if and only if
JEv =0, ((E\ H)UG|™).

To see that Condition 3.1 implies Condition 2.1 in Section 2, uniformly.for
an interval bounded away from zero and infinity, we have:

LEMMA 3.1. Let Condition 3.1 hold and y < (0, 1]. Then there exist &, > 0
and n,, such that

vZ,>eyE|  foralaely,1/yland |E| >n,.

PrROOF Lettings € (0, 1), ¢ € (0, 1] andn be any values satisfying (23), and
set

o (1-38)ye
T A+ ye)L+ylel)

and n, =n.
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Then for any|E| > n,, andi € [y, 1/y],

AX 1 X 1

2 A YXA

Vg, = E > E >e,|E]|.

Ex A€E1+}\,XA1+)\,XA A€E1+VXA1+)/_1XA 7 |E] O

Now let ¢, be the characteristic function ok — 7,(Xg) under the
measurel;, and in parallel to (18) and (21), write
* (—iv)/

1 .
d P = t! t)dt and =
Edj = 5o e Q£ (1) mg () ]X:;) i

LEMMA 3.2. Let Condition 3.1 be satisfied and y < (0, 1]. Then for all
A€ ly,1/y], for j even,

(26) Lpaj =0, (IE YY) and 49,  =v i ENT 40, (IEI7/?),
and for j odd,
(27) JEga; =0, ;(|E|"UT2/2);

in particular, for all j,

LE . j L
(28) Jl%’AJ- = ﬁ =0, (|E"Vt m0d2)/2) for j > 0.

Further, for given « and even s, for T, (Xg) +v €N,
(29) fE,A,v =mgv(s)+ ®y,K,s(|E|_(S+3)/2) for all |v| <«.

PROOF Lemma 3.1 in conjunction with Lemma 2.4 gives (26)—(28), and in
conjunction with Theorem 2.1 gives (29)

Now forr =1{0,1, ...} let
\I’th,v:fE,v—t,
AOfE,U:fE,Uv AfE,v:fE,v_fE,v—l and AH_l:AAt'

For ¢ a nonnegative integer, the following clasggs of functions fx ., play a
crucial role:

(31) 9?1 _ {fE,v Vi >0, Ath,v — OMJ’VOEl*(t+q+(t+q)mod2)/2)}.

(30)

LEMMA 3.3. Let p < g be nonnegative integers, and supposethat fz., € 44
and gg., € 4. Then

(32) 62 > g4,
(33) afE,Ua fE,v +gE,v€9ﬂ,
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(34) Vi=0  Alfp,egtr,

(35) Vi>0  feo— fEo—r €95
(36) Vi=0 W' fp,e§gl,

(37) fE,v 8E,v € 9’5+q.

PrOOF Without loss of generality take = @. Equation (32) follows since
p+Jj+ (p+j)mod 2 is increasing ip. Equation (33) follows by (32) and the
linearity of A. Equation (34) follows from the definition ¢f4.

For (35), write

t—1

-1
fEV — fEv—t = Z JEv—j— fEv—j—1= Z AfEv—j;

j=0 j=0

by (34), the summands are¢+*, and hence by (33), so is the sum itself, proving
(35). NowV (g, = fEv—1= fEW» — AfEL € §P Dy (34) and (33); the case for
generak in (36) follows by induction.

The verification of equation (37) can be accomplished using the fact that
AW/ = Wi A" for all nonnegativej, ¢+ and the following product rule which can
be easily proved by induction:

A(frvge= 3 ( D) I f A g ).

O<j=<t |

For notational ease, we suppress the variakitethe quantitym%,M defined
below. Lemmas 3.3 and 3.2 have the following consequence.

LEMMA 3.4. LetCondition3.1holdand y € (O, 1]. Thenfor all A € [y, 1/y],

s . i
0 . (_l V)J 0 0
(38) Mg v = Z ! LE5.j €Gy.s:
j=0 ’

Further, defining

(39) n%,x,v = m%,k,v - pAJ\Am%,A,w
we have

(40) n% 0 —1=0ysu(IEI™D)
and

(41) n%,)\,v -1le 9;%-
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PROOF Note thatA’v/ =0 for j < ¢, and hence for & 7 <,

N s I AL ]

0 (=) A
A =2 T
J=t
S (=i)/ Ay

=2

= !

= 0y g (| B+ MO272)

0. (|E|*(j+j mod 2’/2)

Fort > s, A'm%, , , =0. This proves (38).
Now (40) follows from4?, , =1,

m%, =1+ 0, (EI™) and Am%, , =0, .(EI™.

By (38), we havemp ., € 49, and Amg ., € ¢}, and (32) and (33) of
Lemma 3.3 giveng ., € gg,s upon noting thatp, , is constant inv. Since
1€ 49 ., applying (33) again gives (41).]

Let E be a finite subset oN, and recallxq = [[4cqx4 and the probability
distribution Eg ,, given in (4). For convenience, we will write, for instance,
Pg »(A) in place of Pg ,(A € D), or Pg ,(s) for Pg, (s C D). Also recall the
product measur&, with marginals given by (22), such that for dlic E,

1
T o1 —d) — o ldl
(42) LAeE:I,=1=d)=x (AG]"[EHMA)xd

The following lemma provides a key relation betwegnandPg ,; the quantity
Xgisasin (24).

LEMMA 3.5. Forany (E,n)withO<n <|E|,d C E with|d|=nand A > 0,
(43) Pey(d)=T.({A€E:1a=1}=d|Xg =),
andfor Ac Eand F=E\ A,

pa T Xp=n—-1)
ParDXp=n—1) +qga T Xrp=n)

(44) Peqn(A) =

PROOF Summing (42) over subsets Bfof sizen gives

1
(45) Tx(XE=n>=M<1'[ 1+m> >

AcE UCE,|ul=n
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and now, sincéd| = n, division of (42) by (45) yields (43). Next,

I(Ia=1Xg=n)
T,(XE=n)

_ hLaa=1Xr=n-1

CTLUa=lLXr=n-D+T(Ia=0,Xp=0n)’

and (44) now follows using the independence of the variabjed X » underT;,.
O

PpyA) =T(Is=1Xg=n) =

In the following, fort € (0, 1/2], let
& ={(E,n:t<n/lE|<1-1}
LEMMA 3.6. Supposethat Condition 3.1issatisfied. Thenfor all = € (0, 1/2],

there exist y; € (0,1] and n, depending only on t such that for all (E, n) € &;
with |E| > n,, there exists a unique solution A = A(E, n) to the equation

n 1
46 hgp(L) = —, wherehg (L) = —
(46) E(A) ] e(A) |E|A§EPA,A
and
(47) )"(Ev 7)) € [V‘E’ 1/)/‘[]

PROOE Letd = (1/2) min{r, 1 — 2t} and takes andn, = n satisfying (23)
for thisé. Then for all| E| > n, andA > O,
1 AXa re 1

re
48 1-6)—=<— <(A-68§-——+35.
(48) ( )1+)»8_|E| 1+AxA_( )1+)»8_1+

AeE
Hence,hig (1), continuous and strictly increasing @@ oo) as a function of.,
satisfies

limhg() <8 and |limhg(d)>1-34.
r—0 A—> 00
Sinces <t <n/|E| <1—1 < 1-§, there exists a unique valu€E, n) in (0, co)

for which i g (1) takes on the valug/|E]|.
Sincen/|E| € [t,1— t] andXA(E, n) solves (46), by (48)

AME,n)e AME, g1
LD e S AN TS (AR e,
yielding, respectively,
ME. )< —— and aE,p >0
e(t —96) i

Verifying that O< (r — 8)/(1 — t) < 1 completes the proof of claim (47)
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THEOREM 3.1. Suppose that Condition 3.1 is satisfied and let be given
7 €(0,1/2], k € N and s even. Then there exists n, such that for all (E, n) € &;
with |[E| > n,, A = A(E, n) exists, and for all |k| < «,
5/2
(49) Pr (A =paami,, 10 (D' %y, — D + O s(EITCT2/2),
1=0
forall Ae E,where F = E\ A, v=k + pax,andm%,  andn},  aredefined
in (38) and (39). In particular, for all |v| <«,

(50) Pgpik(A) = pas+ O (JEI™H  and
APE 1k (A) = pargandd o+ O (IE|72).

PrROOF By Lemma 3.6, the solutions = A(E, n) exist for all (E, n) € &;
with |E| > n, and lie in an intervaly;, 1/y;] for somey; < (0, 1] depending only
onr.

Hence, first applying Lemma 3.5,

Pa L (XF=n+k—-1)
AL (Xp=n+k—1) +qa T(XF=n+k)
(forall » > 0)

PE ik (A) =

_ parD(XF=n+k—-1)
ParD(Xp=n+k—1 +qarTh(XFr=n+k)
(upon setting. = 1).

Sincen+k=TN(Xg) +k=T(Tr) + par+k=T(Tf) +v,

PAASFAv—1
PAASFAv—1+qarfFAv

PE yik(A) =

Letting ®(s/2) = ®,,,{,s(|E|—“/2) for short and applying Lemma 3.2, this
probability equals

PAIMEAv—1+O(s +3)/2)
PAAMME A v—1+qamrpay +O(s +3)/2)

paamy 1+ O(s+2)/2)
T paam%y 1+ qaaml, , +0(s+2)/2)
[sincedr 0= 0.(E| )]
_ pawmy, 1T O +2)/2)
L, 0 +2)/2)
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0
pAm _
= AL L 0((s+2)/2)

nF,k,v

0
PAAMNE Y v—1
= PAMTEAL L o (54 2)/2).
0
1+ (nF’X’v - 1)

Equation (40) of Lemma 3.4 gives%k , — 1= 0:.,.s(|E|™Y), hence a Taylor
expansion irx of the quotient 1(1+ xj to orders/2 yields an error term of order
1% 2, = VY2 = 0., ((|E[~¢T2/2), and therefore (49).

Usings = 2 in (49) and collecting terms of order, , (| E|~2), we obtain

Pr k(A = par(L+qar(idd, 1+ w0 —1/24%, ) + 0, (|E[7?)),

proving (50). O
Under the hypotheses of Theorem 3.1 we have the following:

COROLLARY 3.1.
(51) Pr pi(A) € §2.

PROOF Fort =0, APg 1k (A) = Pg 1k (A) = Orx(1). Given arbitrary
t >1, take

s=t+trmod2—2 and «k=t.

Sincem?, , € §2 and (41) of Lemma 3.4 gives?, , — 1 € 42, repeated
application of Lemma 3.3 shows

s/2

0 I .0
PAAME X Z(nF,M -1'eg..
I=1

For the error term, by the choicet 2=1¢ +tmod 2,
A Oy, (|E|~6F2/2) = AT O, (|E| 0+ M0d2/2) — ¢ (|p|~(+1M0dD/2)
Therefore,
AP 1k (A) = Oy (|E| 70T MOD/2)

forall > 0, and (51) follows. (I
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4. High-order weighted sampling correlations. For E C N and setsu U
V) C E with unv =& andy > |u|, we define the (conditional) measurg,
supported on sets C E of sizen with d > uandd Nv =@ by

P%”\;(Dzd) =]P)E,7](D=d|D ou, DﬂV:@);

that is,IP"g"; is the measurér ,, conditioned to contain every element wfbut
none of the elements of The measures considered in the previous sections were
the unconditioned special case

2,0,
IP)E,r] = PE,r} s

the @, @ superscript may be omitted. We define (commutative) differendesn
the measur@‘g’,‘; for Be E\ (uUV) by

BmU,V _ mUUB,V u,vUB
A ]P)E,n_PE,n _PE,U :

Fork e N the operators\* will continue to be used in accordance with (30).
The following lemma gives some key properties of the conditional mea-
sureP‘,‘s’";, including a useful relation to its unconditional versiBg ,,.

LEMMA 4.1. Letu,v bedigoint subsetsof E. For H C E \ (UU V),

(52) AMPYY = 3 (plfippes,
aUB=H,aNp=2

Fordc E suchthatd DbuanddnNv =g,

(53) P%x,(d) =PE\wuv),p—ju (d \ U),
andfor A¢ (WUvyand H C E\ (UUVU A),

(54) AHIP‘;VH(A) — (—1)|H|A|H|IP’%{’H7W(A).

PROOF Relation (52) can be shown by induction. By definition (4) and that
of conditional probability, usingg c d C E \ v, we have

Xd

u,v

PE,n(d) =

dw: UCWCE Wnv=g,|w|=n ‘W
Xd\u

- 9
dw: UCWC E,wnv=@, |w|=n *w\u

since bothd andw containu and the factorx,, which appears in bothy =
Xd\uXu andxy = xw\uXxu, can be cancelled. Furthermore, becauseare disjoint,
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wNnv=gifand only if (w\ u) Nv =g, and whenu c w and |w| = n, then
W\ u| =n—|ul|. Hence,
fw\u:ucwc E,wNnv=g, |w|=n}

={w\Uu:wW\UC E\Uu, W\uyNnv=g,|w\u|l=n—|u|}

={w:wCE\UwNv=g, |w=n—|ul}

={w:wC E\UUV), |w=n—]|ul}
andP%’L(d) equals

Xd\u

=Pg\ vy, p—ju (d \ u).
ow: WC E\(UUV), |w|=n—|u| *W

This proves (53).
It suffices to prove (54) fotu, v) = (@, @). First, note forA ¢ o U 8,

IP’%’”; (A) = > IP%’,’?] (d)
d>A,aCdCE,dN=2
= > PE\@up),n—lel(d)

dsA,acdCcE,dN=g>
= Y Preupaiw@
d>A,dCE\(xUB)
(55) = PE\@up),n—1al (A);
hence, sincel ¢ H,

APp, )= Y (—DPIPLE (a) [by (52)]
aUB=H,aNB=0

= > (—DPIPe\@up) -1l (A) by (55)]
aUB=H,aNB=9

|H] ‘
— Z Z (=D Pe g - i (A)
j=0aUB=H,aNB=3,|a|=j
|H|
-y (";") (—)H1=T g 4 (A)
=0
|H| |H| .
— (Y ( " ) (—9) P 1., (A)
j=0

=D A - w)HIPg 4, (A)
= (=DHIAHIPL 1 (A). 0
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In parallel to definition (31), for functiongz for which versionsfg’ﬁ are
defined [such agr =P} (A)], for G C N let

T9(G) = {fg: A" fp = Oy ) (|E|HIFHIHITOMOA2/2) for 3| H N G = 2},

In parallel to Lemma 3.3, we have the following:

LEMMA 4.2. Let p < g be nonnegative integers, and suppose that fr €
I',(P)and gr € T} (Q). Then

PCcQ = TL(P)DTL(0O),

afr €eTL(P), fr+grel'(PUQ),
PNH=g = AYfrer/t¥i(pun),
firmuG € TH(P),

frer €TLT(PU Q).

The proof, being parallel to that of Lemma 3.3, is omitted.

LEMMA 4.3. Let Condition 3.1 hold and = € (0,1/2]. For (E,n) € &;,
GOuuUvyandGNn{A} =g,

(56) P (A) € roGua,
(57) Py (APEY (A) e TAG U A),
(58) P (A) — P y(A) € THG U A).

PROOF ForH C E\ (G U A), by (54) and (53),
ATPEY (A) = (=D!TTAMIPLY, | (A)
= (=D AP g\ (1000, —u (A).

The result (56) now follows by (51) of Corollary 3.1. Since T9G U A), we
haveIP)“E”‘;(A) =1- IP’“E’E(A) e '%G U A), and, hence, (57) using Lemma 4.2.
Next, if Bev# o,
PE(A) — P () = —a PP a),

which is in F}(G U A) by (56). Iterating over all elements inand using the fact
thatF}(G U A) is closed under addition, we obtain

(59) PLY (A) — P ?(A) eTHG U A).
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Next, forB cuUyv,
Pg,(A) =Pr y(B)PL 7 (A) + P, (B)PE ) (A)
= (1= Pey(B)PEY (A) + Py (B)PT )] (A)
=PE2(A) — Pr,(B)(PE2(A) - PLE(4)).
Rearranging,
P2(A) —Pp.(A) = P (B)APPE,, (A).
Since Pg ,(B) € T%(G U A) and ABPg ,(A) € TX(G U A), their product is
in APPg,(A) e THG U A) by (4.2) and, thereforeP}:”(A) — P, (A) €

I'}(G U A). Iterating over allB € uUv and using the fact that}(G U A) is closed
under addition, we have

P2 (A) = Pg,(A) € THG U A),

and now by (59) and the closure propertyldf(G U A) (58) follows. [

For short, write
P’ =Pgy4) and gy’ =1-pg";
as usual, foku, v) = (&, @), we omit the superscripts.

LEMMA 4.4. For any randomvariable V.and A ¢ uUv,
Egy((a—pa)V) = ((px" = pa) + Py a5  AYEE S (V).

PROOF  Adding and subtracting,”, we have
B (s —pa)V) =EL (Ua = pyHV) + (P’ = pOEE, (V)
and
Exy(Ia=py)V)
= Py Ep, (L= pi"IV) + L= pyMEE =PV V)
=Py B, (V) B V)
=py qy AMERY (V). O
THEOREM 4.1. Let Condition 3.1 hold and (E, n) € &, for T € (0,1/2]. If
u, v aresubsets of £ with G D (uU V) and V isarandom variable such that
Ex5, (V) eT4HG),
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thenfor GN H =9,
E‘g;,( []Ua- pA)V> er?tGu m.
AeH
Inparticular, whenV =1landG=u=v=@,sincele F?(@), we have

Corr(H) = EE,,,< []da- pA)) erll(H),

AeH

and, therefore, in particular,

Corr(H) = OT’|H|(|E|—(|H|+|H|mod2/2).

PROOF ForH ={A}, by Lemma4.2,
AYEEY (V) e TG U A);
. u,v _u,v 0 . . .
sincep, g, €T'7(G), using Lemma 4.2 again yields
Palay AYERY (V) € riti(Gu a).
Since
Py’ — pa€THGUA),
we also have that
(py" — POEES (V) eTITHG U A).

The result forH = {A} now follows from Lemma 4.4, and then, in general, by
induction. O

We close this section with some results which will be useful in Section 5.

COROLLARY 4.1. Under the hypotheses for Theorem 4.1, for A, B,C
distinct,
pa=par—+O-(EI™Y,
Eg.n(Ia — pa)(Ip — pB) = _PA,M]A,xPB,lC]B,lUE,ZX +o(|EI™Y,
Egy(Ia — pa)®(Ig — pp) = O (|E| ™),
Eg.y(Ia — pa)Up — pp)Ic — pc) = O (|E|7?).
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PrROOE The first claim is a consequence of (50). WRh= E \ (AU B),

Eg,y(Ia — pa)Up — pB)
= paqaA*EE ,(Ip — pp) (by Lemma 4.4)

= paqaA*Pg (B) [sinceEy " (pp) = pp forall u, v]

= —paqaAPp\a, ,(B) [by (54) of Lemma 4.1]

= —paqapadnady; o+ O(IE|™9) [by (50) of Theorem 3.1]
= —pardarperdeadd, o+ O:(IE[7?)  [by (19) and (50)]

= —PAAGAAPBAGBAVES o (IE|™Y [by (19)]

= _PA,XC]A,XPB,AC]B,xvgi + of(lEI_l) (by Lemma 3.1).

Further,

Eg.,(Ia — pa)?(Is — pB)
= pa(l— pA)’Ey ) (Is — ps) + (1— pa) pAET ) (Is — pB)
=pal—pa) (A= pa)(py? — pp) + paPy™ — pp))
=0.(|E|™ (by Lemma 4.3),

and the final claim is immediate from Theorem 4.1]

5. Application: asymptotics for conditional and unconditional logistic odds
ratio estimators. In this section the theory developed in the previous sections
is used to provide an asymptotic theory for the maximum likelihood conditional
and unconditional logistic regression odds ratio estimatﬁgs,and ,l?N, under
the nested case-control model. Conditions 5.1 and 5.2 ensure the asymptotic
stability and nondegeneracy of data in the study base, which is sampled using
schemes satisfying Condition 5.3. Lemma 5.1 shows how stability in the study
base leads to stability in probability for case-control samptesTheorems
5.1 and 5.2 give the consistency and asymptotic normalit)%,@fand BN. We
first consider asymptotically stable covariatesirand then specialize to the i.i.d.
case. Previously, the weights, A € E were considered fixed, but here even if
xj, j € R are fixed, the values,, A € E arrive in E through random failure and
control sampling. Suppressing explicit dependencgand (as usual) oR and
its sizeN, we indicate the study base modk}, g, given in (1) byP, and continue
to denote the conditional distributions givénn by Pg ,,.

The first two conditions are on the stability of the study base data.
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CoNDITION 5.1. For alls € (0, 1) there exist< such that for allv > 1,

1
(60) 5 2 Mzjl=0=1-8
JER

and withp; given by (1) withx = x;,

1
—> pj—>p asN— oo,
Nje{R

Clearly, we then have;/N—p> p as N — oo by independence of the failure
indicators. Furthermoreyp € (0, 1), since withC corresponding to any € (0, 1)
in (60),

1 . 1 .
Y iz ( inf p<z>>ﬁ 3" 1z, <€) = (|Z||r;fcp<z))<1— ),

<
JER lzl=c JER

which by Condition 1.1 is strictly positive for alV > 1; likewise forg;, where
pj+qgj=1.Foruj, jeR, let

1 _
(61) = > u; and &= supuy.
JjeR N=z1
We sayu ; is asymptotically stable in meaniity — u for somex asN — oo, as-

ymptotically dominated in mean | < oo, andu j(8) uniformly asymptotically
dominated in mean if there exists a neighborha&dc B containingBg, andv;
asymptotically dominated in mean, such that(8)| < v; for all 8 € Bo. For a
continuous functionw : [0, c0) — R with limy_, .o w(x) = L € (—00, 00), We say
ujis w-stable if|u ; 12 is asymptotically dominated in mean and foriak [0, oc],
ujw(ix;)p; andujw(ix;)q; are asymptotically stable in mean. In what follows,
we omit the specification “in mean.”

CONDITION 5.2. 1isx/(1+ x) stable,zf@" is x/(1 + x)2 stable fork =

0,12, z3 1z, 12 and|z’jf|2 are uniformly asymptotically dominated, and

1
(62) liminf inf aT<N Z(yj —YN)®2)a> 0,

N—oo |aj=1 e
T __ T
for yj= 1, zj).
The next condition is on the sampling design.

CONDITION 5.3. For somef € (0, 1),

(63) % L f  asN — oo,
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for B; = 1(j € E), uniformly overj € R,

. d-1Hr
64 E(B; D = —
( ) ( J|J¢ )_>:0f 1-—p)f

and uniformly over allj # k in R,
Cov((Bj, Bx)|j ¢D,k¢ D) — 0 asN — oo.

For f as in Condition 5.3, set = (1/2)min(f,1 — f) for application
of Corollary 4.1. The connection between propertiesugfon R and their
corresponding in probability versions @his made explicit by Lemma 5.1. We say

ge (1) converges uniformly in probability to(1) if SUP, ¢(0 o0y I8E(A) — g (1) Zo0
asN — oo.

LEMMA 5.1. Assume Conditions 1.1, 5.1and 5.3 hold.

(@) Foral § e (0,1), thereexistse € (0, 1) such that for all N > 1,
(65) <|E|Zl(er[ss ])31—3>31—5.

A€E
If u; is asymptotically dominated, then for all 6 € (0, 1), there exists K such that

(66) ( D IUsI<K)>1-3 for all N > 1.
|ElAeE

(b) If |Mj|2 is asymptotically dominated, then Var(N 1Y,z Ua) — 0. If, in
addition, u; p; and u jq; are asymptotically stable, then

up uq
Fia1-nt
IEIE Usn— fp-i-( f)q

(67) A€eE
1— 1+ p75
= f [M IOf 0xi| asN — o0,
1-p 1+ hox
with o givenin (64).
(c) Ifu; isw-stable, then
(68) gr () = Z Uaw(hxy)

|E| A€eE

converges in probability uniformly to a continuouslimit g% (A) as N — oo, having
form (67) with u replaced by uw (Ax). Hence, additionally, under Condition 5.2,

he) = |E|ZPAA and ex g(A) = ZZA PALGAN
AcE AcE

converge uniformly in probability to continuous functions z(1) and e (1) for
k=0, 1, 2withform (67).

IEI
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(d) The limit function k(i) in part (c) strictly increases from 0 to 1 as
A increases from 0 to co. For f € (0, 1),

hf=p;ho
isthe unique solutionto (A r) = f, and
(69) ek = ex(hp) = [2% G5, pao)-
With hg (X)) = n/|E|, we have
X—p> Af.

(e) if |u;|2 and |v;|? are (uniformly) asymptotically dominated, then

1
ECOVEW<Z Ua, Z VA)

AeD AeD
1
= ? Z UaVapaga + Z UaVe(paB — PAPB)
IEI\Ack A%B

is (uniformly) bounded in probability. If 1, u;, v; andu jv; arew(x) = x/(14x)?-
stable, then with gU thelimit of ¢¥ givenin (68),

|E|_1C0VE,;7<Z Uy, Z VA>

AeD AeD
5 Vo) —pf V) ® Y (hp)/eolny).
(f) 1 ]u; |2 is (uniformly) asymptotically dominated, then (uniformly)

1
N > Uala— pa) > 0.
AcE

(9) If nonnegative weights w; are asymptotically dominated, for all § € (0, 1),
there exists ¢ > 0 such that

. 1
Ibrlzflﬁ Z L(w; >e)>1-3,
JER

|u ;|3 is asymptotically dominated and

1
NP _ 1 = \®2
(70) "N”L'QJ |eﬂ1a 'va>0  wherely = ~ ];R(uj uy)%®?,

then this same lower bound holds for

— 2 —
FN,w=Z(uj_MN,w)® 27, WhereuN’w=Zuj27.
jeR keRr Wk jeR keRr Wk

Wij Wi
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In particular, under Condition 5.2with e;, k =0, 1, 2 given in (69),

(71) % = ey — ey te$? is positive definite.

PROOFE By considering coordinates, we will assume when convenient that
u; € R. To show (65), note that

Z L(xa ¢le,e” )_——Z Lxa ¢ e

IEl 1% IEIN [z

By Conditions 1.1 and 5.1 1Y, % 1(x; ¢ [¢,£7]) can be made arbitrarily
small for all N > 1 by choosinge € (0, 1) sufficiently small. Now by (63) of

Condition 5.3 and)/N 5 p, we have E|/N 5 p/f, and (65) follows. Claim (66)
follows from

—Z|UA| Z|u,|<ﬁ

AeE Jeﬁ

Chebyshev's inequality, and|/N = p/f.
For (b) note thatt is comprised of the set of failurds from R and a sample
from the complemenf \ D. Hence,

(72) —ZUA Zu]l(]ED)-i- > u;jl(j € E\D).
AeE N jeR jeR
J J
Apply Var(X +Y) < 2(Var(X) + Var(Y)) on the right-hand side of (72). For the

first term, by independence/,*1Var(Zjeﬂ u;jl(jeD)) < u2.
The indicators in the second term of (72) may not be independent. Write its
variance as the sum of the diagonal term

Zu 4/E(B;1j ¢ D)(1— q;E(B;1j ¢ D) < N~uZ 0,

N2
N JER

and the covariance term, withy = max; ; | Cov(B;, Bi|j ¢ D, k ¢ D)|,

Zu,ukqjqk(:ov(B],Bksz k ¢ D)| < cn (@)% — O;

N2
N JFk
hence, VagN 1Y 4. Ua) — 0.
From (72),
(73) ( Z UA) Z“JP/""N ZMJQJE(B lj ¢ D).
AeE ER jeR
J J

Using (64) of Condition 5.3 and the fact thaf is dominated, the limit of the
difference between the expectation (73) angy + ugyps is zero. The first
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equality in (67) now follows from the first part, the stability conditionsuignthat

N/|E| LS f/p and the definition op ;. The second equality now follows from (1),
which gives the identity

upyn uqy -f1 ~1
==+ A= fH—= == ujlp; pj+4q))-
p q 1-pN %

=

Turning to (c), sincew is continuous with finite limit at infinity, and since
the stability conditions hold if0, oo], without loss of generality, through the
mappingh — 1/(1+ A) say, it suffices to considere [0, 1]. Letu(j, A) stand for
eitheru jw(ix;)p; orujw(ix;)g;. Sincel|lw| = sup g 1; lw*)| < oo, we have
lu(j, )2 < lw||?lu;|?> and part (b) now shows that for all, gz (1) converges
in probability to g(A) having form claimed. It remains to show that the limit is
continuous and that the convergence is uniform.

Leté € (0, 1) be given. Since

— 1 N = =
U]% =— f\ <—u2 8 iuz,
|El 7% |E| p
there isM > 1 such that for alle,
(74) P(U2|<K)>1-8/6,  whereK = Mfu2/p.

Assume for nontriviality thajw || andﬁ are positive. Setting for short
1a(e) = Lxa ¢ e, 671,
and using notation as in (61), by part (a), there existq0, 1) such that for allE,
P(1g(e) < 8%/(16|w]°K)) = 1 - 5/6.

Writing gz (1) for g (1), let

(75) gEM) =gr (M) + g5~ (),
where
1
g5<(x>=m > Uaw(ixa)
A:xpele,e™1]
and
1
gé%hm > Uaw(xp).

A:xséle,e™1]
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Now applying the Cauchy—Schwarz inequality, with probability at leasts13,

sup gz~ (A2) — g5~ (A1)l
0<i2,A1<1

<2 sup [gg~ W]
O<i<1

< 2wl 3 1UAlLAGe) = 20wl (UE 1) <
\El Ak
Sincew is uniformly continuous ofi0, 1], there existg > 0 such that
if |y—x|<t/e thenjw(y) —wx)| <8/(2KY?).
In particular,
whenx; <& 1if [A2—Ar1l <t thenlw(iax;) — w(rix;)| < 8/(2KY/?).
Hence, by (74), with probability at least-15/6,

>

1
g5~ (h2) — g5 (Al < I Y. Uallw(raxa) — w(rixa)l

E| A:xpele,e™l]
)
- |UE| )
— 2KY/? _2

Now by (75), for everys there is ar such that for allE,
P(sup [gia)~ gl <8) = 1-8/2
[A2—A1]<t
and taking limits, sup,_,, <, 1g(A2) — g(A&1)| < §; hence,g() is continuous.
Letting F1, ..., Fy be a finite subcover dD, 1] taken from the open cover of all
open sub-intervals of lengthr2and settingh ; to be the center of the interval;,
there existsVg such that fol E| > No,
P(lge(xj) —grj)| <8)=1-5/2, j=1....M
Now (c) is finished, since for any, there exists.; with [A — 1 ;| < 7, and

lge(A) —gMI = Ige(A) — ge(A )+ |ge(Aj) — gA )+ g(A;) — g(M)],
and so for alls there existaVg such that
forall |E| > Ng IP( sup |gE(A)—g(A)|§38)zl—8.
1€[0,1]

To show (d), as in part (a), for givehe (0, 1), there existg € (0, 1) such that
forall N > 1,

1
v Y lxjele e =1-38.
JER
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Let 0< A1 < A2 < 00 and set

y= inf  (pja,—Pjn)Pj
xje[s,e—l]

which is strictly positive. Since; ; is nondecreasing iR, for all N > 1,

1
PAZPN—PMPNZN Z (Pjrs—Pja)pj = v @1 —19),

jixjele,e 1

and, hencep,,p > pr,p; Similarly, p,,q > pr,q. As the form of the limit
function & is given by (67) withu; = p; ,, h strictly increases from 0 to 1 as
A increases from 0 too. By continuity, for everyf < (0, 1) there exists a unique
Agsuchthati(hy) = f.

Next, note that setting = ,0;1)»0, we have

. (1—|—,0}71on]~)_ 1
pjkf 1+)\‘Ox] —lof p],)\oa

which by (67) gives

1
he(p) 5> —f,O p=rf

and the claimed representationepfa ).
Last, sincerg(A(E, n)) =n/|E|,

h) — h(hp) = h(M(E, 1)) — hg (L. n)) — (f _ E) 2o,

we have
A5, as|E|— oo,

sinceh () is continuous and strictly increasing.
For (e), by Corollary 4.1, the correspondence

1
-2 P 1
Vpa= |E|f‘30E( ),

and the (uniform) domination assumedzop vj, we have that

Z UaVapaqa + —
AeE

Y UaVg(pas — paps)

|E| A#B

IE |
is in probability (uniformly) withino, (1) of

1 p _
Z UaVApargan — —5— . Ua VBPA,XCIA,)\PB,M]B,leQJIZ;(l),

2
|E|A€E |E] fA,BeE,A;éB
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which by the Cauchy-Schwarz inequality and (66) is (uniformly) bounded in
probability. Adding in the diagonal term in the double sum, we see that the quantity
above is (uniformly) withirp, (1) of

£ = pf e Mgg Meg ().

Part (e) now follows from (c) and (d).

For part (f), note the given expression has conditional mean zero givep,
and apply part (e) with; = u .

For (g), let fore € (0,1), Ty = Fff + Ffj, where

1
== Y w0 and Ty =Y Gy —an®
N wj>e wj<ée
and similarly define
uN— Zul and uei Zuj
w]>£ w]<s

Applying Holder’s inequality,

L 2/3 13
|F‘1€v¢| = (N Z |uj _Eng) < Z 1(w]<£)> ,

JER JER

since |u j|3 is asymptotically dominatecf,‘f\,i can be made arbitrarily small by
choice ofe. Hence, lettingy be the value of the liminf in (70), there exists- 0
such that

(76)  liminf inf a'T'%'a>2y/3 and |_”| <y/3  forallN.

N—oo |a=1

With > the standard partial ordering on positive definite matrices, forfany

D (- v)®% > > (uj —ug)®  forus = 5 Zu, and allv e R,

jesd jEs jes
so for thise,
w e 1

w = Z (Mj —upn )®2 / z == (u] _ﬁN,w)®2
wj>e Z} wj w N wj>e
el @2 o € et —el\®2

> =— u; —u > —(I" > 0

z = > (u; )%z =( (g%

by (76). Since the weight®; = g;.5 , pj.», satisfy the given conditions; > 0 by
(62) of Condition 5.2. O
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THEOREM 5.1. Consider a study base R of N individuals with disease
probability given by the proportional odds model (1) and a case control sampling
design giving rise to the likelihood (4). If Conditions 1.1and 5.1-5.3are satisfied,

there exists a consistent and asymptotically normal sequence /§ y Of roots of the
likelihood equation £y (B) = 0; with X asin (71),

By5Bo and VN@By—Bo)>NO =D,

PrROOF We follow Theorem VLIl in Andersen, Borgan, Gill and Keiding
(1993) from Billingsley (1961). For consistency it suffices to show thaf as oo,

(77) Nlu@By L0, N HPBSE,

and, withR(B) = a4(B)/9B, that there is a finite constait such that for some
neighborhoodBy C B of B,

(78) NIi_r)nooIP(|N_lR(ﬂ)| <K forall B € B) = 1.

The first claim in (77) and thay — times (7) tends to zero in probability follow
from Lemma 5.1, part (f), Condition 5.2 and the fact tmax|E|—”> f/p. The
second claim in (77) now follows from (6) and Lemma 5.1, part (e).

Turning to (78), write, for exampl&gq for 3" 4.qZ 4, S0 by (5),

R(B) = (—Zp +EEg,,(Zp)) + 2Covg,,(Zp. Zp)
+ Covg ,(Zp, Zp) + Eg , UB)®3.

Divided by N, the term inside the first parentheses tends to zero uniformly in
probability over8g by Lemma 5.1, part (f) and Condition 5.2. The covariances
are uniformly bounded in probability upon division Byby Lemma 5.1, part (e).

Last, the final term (79) ovefE| expands to terms of three types. For the
diagonal,

(79)

Z ZPEg y(Ia — pa)?| <

PNE
|E|Z| Al”,

|E| AcE AcE
for the double sums of the following form apply Corollary 4.1 to see that

1
= 2 ZP®ZgEe,(a— pa)*Us — pp)
| | I{A.B}|=2

0:(1)

< W > 1ZalPZsl
I{A,B}|=2

of(1><|E| Y 1Zal )<|E| > |ZB|>

A€E BeE
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and for the triple sums, by Corollary 4.1,

1
£l Z ZA®ZpQ®ZcEEg ;(Ia — pa)Up — pB)Ic — pc)
l{A,B,C}|=3
3
0:(1) 1
< T—g > ZalZslZcel = 0D — > |ZA|) .
IEI® | (4.5C)1=3 \E| 7ok

These terms are uniformly bounded oy by Condition 5.2, giving the existence
of the requiredk in (78) and completing the proof of consistency.

By the Cramér—Wold device, to prove the asymptotic normality claim, it suffices
to show

1
(80) ﬁb/U(ﬁo) 4 N(0,b'=b) for all nonzerob € R?.
Fore > 0, define
®2
> [IE| ,< 613(’»))
=-——D A)——= b,
e =", P\ 2ED T w
b’ A
Gep= {A eE:|bZ4— Pere® > o~ N },
eo,e(A)
1 ber £ (A)\?
Lop— bz, — erEd )
&, E Nag Ae%;f( A 0. (M) PALGA L

and
ep=infle: L, g <e¢}.
Hajek’s (1964) CLT, with the variabless replaced byb'Z 4 p4 1, gives (80) if
3 £ 0asN - . By Hdlder’s inequality,
1

T > 1ZAIPL(Z 4l > €| E[Y?)

A€E

1 2/3 1 1/3
<= |zA|3) (— 1<|zA|>s|E|1/2>) ,
(|E|Z |E|Z

A€E A€eE

which tends to zero in probability for al > 0 by Conditions 5.2 and 5.1 and
Lemma 5.1, part (a). Sin(zeg is of orderO (1) in probability, L, g £o0. O

Turning now to the unconditional logisitic likelihood, for simplicity we
parameterize. = exp(a), leta g, =log(A) and recall thap , maximizes (8).
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THEOREMb5.2. Under the conditions of Theorem5.1,

o) e [45)

.
epeé
T:[ 0 1]

el e2

PROOF We proceed as in the proof of Theorem 5.1. Since

dlog(1+ Axa) px.A
————————=pia and ——==p; Aqx A,
Ja o
taking first and second partial derivatives of the logarithm of (8) with respect
to (a, B), the unconditional logistic score and information are given, respectively,

by

where

(82) U= Y s - pa) |7 |

A€eE A
and

B 1 ZT 0 OT
(83) l(k,ﬂ):fé[zA Z§2:| PArGAN— | O Z(IA_pA,A)ZfA .
€ AcE
By (82) and (46),
- 0 0
(84) UM, Bo) = [u(ﬂo)] + EZA(PA —pay) |-
By Corollary 4.1,p4 — pax = O,(N~1), so by (a) of Lemma 5.1,
(85) Y Zapa—par) = 0,().
AeE

In view of (77), N~ (A, Bo) = 0. Handling the second term if(A, Bo) in this
same manner and applying (c) of Lemma 5.1 to the first,

NN B2 Y.

By boundingp; 1g;,» below and following a similar but simpler argument as in (g)
of Lemma 5.1, we have that > 0 by (62) of Condition 5.2.

Next we consider the remainder term. Writigg= (1,2") andy™ = (o, B7),
taking the derivative off with respect toy yields

Ry)=> st(pA,xqi,,\ — PAsgan) + D (YA®Ya+Ya®Y)pasrgan
AcE AcE

+ Y Ua—pa)Yy—pargarYa®Yy,
AcE
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of which all terms, once divided by 1, are uniformly asymptotically dominated
by Condition 5.2.
By (84), (85), (80) and Slutsky’s lemma,

(86) N=Y200, Bo) S N (O, V)  whereV = [0 OT} .

0x

The proof is completed by applying the well-known partitioned matrix inverse
formula,

-1 -1 Ty-1 -1 -1 Ty-1
+v-1_1¢ +eg e X Terey T —eg e u
N —E_leleal »-1 ’

and observing

-1 -1 -1 -1 -1 _
y-lyy—1_ e eIE elen —eg eIZ -l eOlOT '
—E_leleal »-1 00 O

We note from Theorems 5.1 and 5.2 the conditional and unconditional logistic
maximum likelihood estimators of the odds ratio paramgdehave the same
asymptotic distribution since{ 1)z 5 = =7 1.

The following specialization of Theorems 5.1 and 5.2 is a direct consequence
of the law of large numbers.

THEOREMS5.3. LetZ;, j € R, bei.i.d. replicates of Z. Then the conclusions
of Theorems 5.1 and 5.2 hold when Conditions 1.1, 5.1and 5.3 are satisfied,
E|Z,|* < oo, there existsan integrable random variable which bounds |Z |3, |Z’;|2

and |Z/jf|2 in a neighborhood B C B of B, and Var(Z) is positive definite.

WhenZ; in the study base are independent with common distriblKipﬁZ,
whereZ has distribution functior;, the case-control s€E, ) consists ofy and
|E| — n covariates with distribution functionS1, G, respectively, where

P'@A—p@)t .

. -dG(2), i=01,
Epi(Z)(1— pZ)*
with p(z) asin (1). Therp = Ep(Z), and the asymptotic distribution &f, in the
case-control study is therefore given 6y, where

1— f(1+/\f x(2)
1-p\1+20x(2

and the functiong: g (1) and e, (1) converge uniformly in probability, respec-
tively, to h(A) = E s[p; 1] andex(A) = Ef[Z¥ pj 5.q;.1.

dGi(2) =

dGy(2)=fdG1(@D)+ (1 - f)dGo(2) =

).
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6. Discussion.

Local central limit theorem expansion for the Poisson—Binomial distribu-
tion. The distribution of the sum of independent Bernoulli random variables with
differing probabilities of success has no simple form. Theorem 2.1 gives an expan-
sion, with rates, to any desired accuracy.

Rejective sampling: inclusion and correlations. The probability that an
individual is included in a simple random sample has a simple form. Theorem 3.1,
which gives an expansion for the probability of inclusion in a rejective sample,
shows how special the equally weighted simple random sampling special case is.

Additionally, the decay rate of the high-order correlations for inclusion in a
rejective sample (9) has not been previously studied, even for simple random
sampling. Theorem 4.1 shows that (wjiti| = k) the kth order correlations decay
at the ratg £|~k+tkmod2/2 that s, the odd correlations decay at the same rate as
the next even one. In the case of simple random sampling, we have conjectured in
Section 1.2 the values of the limiting constants.

Sampling designs. Table 1 is a list of control sampling methods most
commonly used in unmatched case-control studies. The designs are classified as
“case-control” type when sampling is done directly from the controls in the study
base, and as “case-base” type when the sampling is from the study base without
regard to case-control status. Each can be sub-classified according to whether the

TABLE 1
Examples of sampling methods that satisfy Condition 5.3with the parametersto yield
case-proportion f in the case-control set

Desigif  Sampling®  Observed/ Sampling method
type method expected to yieldf
c/C SRS Obs ExactliD|(1 — f)/f controls
ciC SRS Exp ExactlWp(1— f)/f controls
C/C BT Obs Sample controls with prdbf—f nLID|IID\
CIC BT Exp Sample controls with prob}—f ﬁ
CB SRS Obs Exacth# ID|/(N — |D|) from study base
CB SRS Exp Exactlw¥p/(1 — p) from study base
CB BT Obs Sample with pro@ ID|/(N — |D|) from study base
CB BT Exp Sample with prol}}—f p/(1— p) from study base

aC/C—case-control, CB—case-base
bSRS—simpIe random sampling, BT—Bernoulli trials
CObserved or expected number of cases
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sampling is by simple random sampling without replacement or by independent
Bernoulli trials, and whether the number of subjects to be sampled is determined
by the “observed’D| or “expected’Np number of cases. Each design satisfies
Condition 5.3. The fourth column in the Table 1 provides the parameters for the
chosen sampling design that yield asymptotic case-propoytidrhus, under the
stated conditions on the covariates in the study base, Theorems 5.1 and 5.2 apply
for each design.

Conditional and unconditional logistic regression. Theorems 5.1 and 5.2
provide the asymptotics of the conditional and unconditional logistic likelihood
estimators of the odds ratio parameter under very broad conditions. The asymp-
totics for the conditional estimator for this wide variety of sampling schemes are
new; see Table 1. Those for the unconditional estimator extend its validity to a
much wider range of applications.

Under Conditions 1.1 and 5.1-5.3, these two estimators have the same
asymptotic distribution. Thus, from a statistical efficiency standpoint, either may
be used. Generally, permutation likelihoods are computationally quite intensive,
with complexity increasing exponentially with sample size [Liang and Qin (2000)].
However, exploiting the simplifications possible with a dichotomous outcome,
a recursive algorithm for the conditional logistic likelihood reduces the order of
computation to linear im [Cox (1972) and Gail, Lubin and Rubinstein (1981)],
the same order as for the unconditional logistic likelihood. This algorithm has been
implemented in a number of computer software packages. Since the unconditional
estimator is biased when the number of cases is small [Breslow and Day (1980)],
the conditional estimator may be preferred in situations where the case-control
study consists of multiple case-control sets, some with small numbers of cases.

Comparison to the analysis of individually matched case-control studies.

In earlier work, we studied the asymptotic behavior of conditional logistic (partial
likelihood) estimators of the rate ratio from individually matched (nested) case-
control data [Goldstein and Langholz (1992) and Borgan, Goldstein and Langholz
(1995)].

In the individually matched case-control setting, the within case-control set
variability is constant with sample size and the asymptotics are driven by the
increasing number of case-control sets. The situation for the unmatched case-
control setting that we studied here is very different. There is a single (or a
fixed number, see Extensions below) case-control set, and the number of cases
in the set increases with sample size. Consequently, a very different set of analytic
techniques is required for individually matched and unmatched case-control study
designs.
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Comparison to the retrospective model. It is of interest to compare our
development of the asymptotic theory of the unconditional logistic estimator to
that developed under the retrospective model by Prentice and Pyke (1979). In
contrast to our results, which only require asymptotic stability of the covariates,
the asymptotic theory developed under the retrospective model assumes that
the Z 4 are random variables with realizations that are i.i.d. conditional on the
failure indicator/,. As the antihypertensive drug-MI study example in Section 1
illustrates, the identical distribution assumption may not hold in practice.

Furthermore, we note that the retrospective model is actually semiparametric,
the unknown parameters beir(@ o, ), the control covariate distribution and
the odds ratio parameter. Hence, efficiency questions regarding this model must
be addressed by consideridgy as an infinite-dimensional nuisance parameter.
On the other hand, the nested case-control model considered here is parametric,
leaving such questions amenable to simpler analysis.

Interestingly, the derivation of the asymptotic theory in Prentice and Pyke
(1979) is quite different from the one given here. In particular, up to the scaling
factor of f/p which appears here, the asymptotic informationis the same
for both models but the asymptotic variance of the score under the retrospective
model isY — (f 71+ (L — f)"Hleo e]1"[eo e]], compared td/ in (86). In spite
of this difference, the asymptotic distribution of the estima8oobtained using
the unconditional logistic I|keI|hood is the same under both models. The same
is almost true fora, except thal‘e0 in the nested case-control model variance
(81) is replaced by 1 + (1 — f)~1in the retrospective model variance [Prentice
and Pyke (1979), page 408], the difference being explained by the choice of
centering values which here i ,, and in Prentice and Pyke (1979) ds
Noting that( £+ (L— £)") 2= (L~ ) =E/(pa,)Ef(ga,) and that
eof/p =Er(pan,qa.,), it can be shown that the nested case-control variance
associated withix |s smaller than its retrospective model counterpart due to the
extra conditioning here on the,.

Efficiency. The maximum unconditional logistic likelihood estimator has
been shown to be efficient under the retrospective model [Breslow, Robins and
Wellner (2000)]. These authors assume ttiat Z 4) are i.i.d., a somewhat more
restricted setting than that considered by Prentice and Pyke (1979). An open
guestion is under what conditions eﬁeandﬁ efficient for all designs that satisfy
Condition 5.3 under the nested case-control model. It would seem that the number
of casesn has no information abouB, so that the likelihoodP, g(DI|E, n)
conditioning additionally oy should not result in loss of information relative
to the likelihood P, g(D|E). The asymptotic theory for estimators based on
P,.s(DIE) has not yet been developed (indeed, the results in this paper are a
relevant step to develop such theory) so that it is not possible to compare. However,
we show that the asymptotic variances of the odds ratio estimators based on
Py.s(DIE, n) andP; g(D|E) are equal in the following three important special
cases.
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Smple random sampling of controls. This class of designs, where a fixed
number of controls is sampled from the study base, includes frequency matching
and sampling a fixed number of controls proportional to the “expected” number
of cases (i.e., the C/C-SRS entries in Table 1). For these designs, the number
of cases is a function of the number in the case-control set s@thatD|E) =
P, s(DIE, n).

Full study base. Condition 5.3 clearly holds witlf = p, so noting that the full,
efficient likelihoodP;, g(D|R) has the form of an unconditional logistic likelihood,
by Theorem 5.2 and 5.1 both the conditional and unconditional likelihood are
efficient for 8, and in particular have the same asymptotic variance.

Independent Bernoulli trials sampling of controls with probability po. Under
this independent control sampling design, Condition 5.3 holds With p/(p +
(1— p)p) andP;, g(D|E) has the form of an unconditional logistic likelihood, and
the desired conclusion follows as for the full study base.

Extensions. The extension to sampling controls from each of a fixed number
of large strata is straightforward. Consider a failure probability model given by (1),
with baseline odds parametersfor individuals in stratuns, and control selection
independent between strata. For eaclket A; be the solution to

! Y pas= s and ek, E, (L) = L > Z 3 pasrgan,
Esl &7 |Es| Esl 5
whereE, andn, are the case-control set and the number of cases from stsatum
respectively. Suppose the limiting fractiops of subjects in stratum exist and
are positive, and that Conditions 5.1-5.3 are satisfied by all strata. Then the
conclusions of Theorems 5.1 and 5.2 hold wih= )", s X;, whereX; is the
stratums contribution to the score of form (71).

Usually disease is rare and efforts are made to enroll all cases into a case-control
study. The reasons that cases are not enrolled may depend on a variety of factors,
including the death of the patient or physician refusal. If nonenroliment can be
modeled as i.i.d. Bernoullicasg events, then the theory can easily be extended
to accommodate such case selection. Specifically, the probability of sampling the
case is absorbed into the baseline by repladingn (1) by Aopcase the theory
proceeds without further change.

We have used the “observed informatior;9U(B)/d8, in our analysis. In
data analysis, it is more common to use the “expected information,” which is
the conditional expectation over case-occurrence of the informaiignand Jd
for the conditional and unconditional likelihoods, given in (6), (7) and (83),
respectively [Thomas (1981)]. Because taking this expectation eliminates the term
(7) in g, and a corresponding term iz that was asymptotically negligible,
it is immediate that the “expected information” is a consistent estimator of the
asymptotic information.

hg,(A) =
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Further work. Thati ; = Ao/ ps suggests thatg can be estimated using the
unconditional logistic likelihood when the number of subjects in the study base
(and thus the proportion of cases) is known. This has been done under (essentially)
Bernoulli trials by Weinberg and Wacholder (1993), and under independent simple
random sampling of (cases and) controls by Scott and Wild (1986) and Breslow
and Cain (1988), but further work is needed to accommodate general Condition 5.3
sampling. In particular, there is nonnegligible variability in the differehce X
that depends on the sampling design, and which needs to be accounted for in the
estimation of.q.

It is of interest to know when the techniques used here can be generalized to
accommodate other forms of conditioning on informatras in likelihood (3).

The particular case of no conditioning, = @, represents a “full likelihood”
under the nested case-control model. The difficulty is finding an analog to the
independent product measufgin Lemma 3.5.
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