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GENERALIZED FUNCTIONAL LINEAR MODELS1

BY HANS-GEORGMÜLLER AND ULRICH STADTMÜLLER

University of California, Davis, and Universität Ulm

We propose a generalized functional linear regression model for a
regression situation where the response variable is a scalar and the predictor
is a random function. A linear predictor is obtained by forming the scalar
product of the predictor function with a smooth parameter function, and
the expected value of the response is related to this linear predictor via
a link function. If, in addition, a variance function is specified, this leads
to a functional estimating equation which corresponds to maximizing a
functional quasi-likelihood. This general approach includes the special cases
of the functional linear model, as well as functional Poisson regression
and functional binomial regression. The latter leads to procedures for
classification and discrimination of stochastic processes and functional
data. We also consider the situation where the link and variance functions
are unknown and are estimated nonparametrically from the data, using a
semiparametric quasi-likelihood procedure.

An essential step in our proposal is dimension reduction by approximating
the predictor processes with a truncated Karhunen–Loève expansion. We
develop asymptotic inference for the proposed class of generalized regression
models. In the proposed asymptotic approach, the truncation parameter
increases with sample size, and a martingale central limit theorem is applied
to establish the resulting increasing dimension asymptotics. We establish
asymptotic normality for a properly scaled distance between estimated and
true functions that corresponds to a suitableL2 metric and is defined through
a generalized covariance operator. As a consequence, we obtain asymptotic
tests and simultaneous confidence bands for the parameter function that
determines the model.

The proposed estimation, inference and classification procedures and
variants with unknown link and variance functions are investigated in a
simulation study. We find that the practical selection of the number of
components works well with the AIC criterion, and this finding is supported
by theoretical considerations. We include an application to the classification
of medflies regarding their remaining longevity status, based on the observed
initial egg-laying curve for each of 534 female medflies.
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1. Introduction. Many studies involve tightly spaced repeated measurements
on the same individuals or direct recordings of a sample of curves [Brumback
and Rice (1998) and Staniswalis and Lee (1998)]. If longitudinal measurements
are made on a suitably dense grid, such data can often be regarded as a sample
of curves or as functional data. Examples can be found in studies on longevity
and reproduction, where typical subjects are fruit flies [Müller et al. (2001)] or
nematodes [Wang, Müller, Capra and Carey (1994)].

Our procedures are motivated by a study where the goal is to find out whether
there is information in the egg-laying curve observed for the first 30 days of life
for female medflies, regarding whether the fly is going to be long-lived or short-
lived. Discrimination and classification of curve data is of wide interest, from
engineering [Hall, Poskitt and Presnell (2001)], and astronomy [Hall, Reimann
and Rice (2000)] to DNA expression arrays with repeated measurements, where
dynamic classification of genes is of interest [Alter, Brown and Botstein (2000)].
For multivariate predictors with fixed dimension, such discrimination tasks are
often addressed by fitting binomial regression models using quasi-likelihood based
estimating equations.

Given the importance of discrimination problems for curve data, it is clearly of
interest to extend notions such as logistic, binomial or Poisson regression to the
case of a functional predictor, which may be often viewed as a random predictor
process. More generally, there is a need for new models and procedures allowing
one to regress univariate responses of various types on a predictor process. The
extension from the classical situation with a finite-dimensional predictor vector
to the case of an infinite-dimensional predictor process involves a distinctly
different and more complicated technology. One characteristic feature is that
the asymptotic analysis involves increasing dimension asymptotics, where one
considers a sequence of increasingly larger models.

The functional linear regression model with functional or continuous response
has been the focus of various investigations [see Ramsay and Silverman (1997),
Faraway (1997), Cardot, Ferraty and Sarda (1999) and Fan and Zhang (2000)].
An applied version of a generalized linear model with functional predictors has
been investigated by James (2002). We assume here that the dependent variable
is univariate and continuous or discrete, for example, of binomial or Poisson
type, and that the predictor is a random function. The main idea is to employ a
Karhunen–Loève or other orthogonal expansion of the random predictor function
[see, e.g., Ash and Gardner (1975) and Castro, Lawton and Sylvestre (1986)], with
the aim to reduce the dimension to the first few components of such an expansion.
The expansion is therefore truncated at a finite number of terms which increases
asymptotically.

Once the dimension is reduced to a finite number of components, the expansion
coefficients of the predictor process determine a finite-dimensional vector of
random variables. We can then apply the machinery of generalized linear or
quasi-likelihood models [Wedderburn (1974)], essentially solving an estimating or
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generalized score equation. The resulting regression coefficients obtained for the
linear predictor in such a model then provide us with an estimate of the parameter
function of the generalized functional regression model. This parameter function
replaces the parameter vector of the ordinary finite-dimensional generalized
linear model. We derive an asymptotic limit result (Theorem 4.1) for the
deviation between estimated and true parameter function for increasing dimension
asymptotics, referring to a situation where the number of components in the model
increases with sample size.

Asymptotic tests for the regression effect and simultaneous confidence bands
are obtained as corollaries of this main result. We include an extension to the
case of a semiparametric quasi-likelihood regression (SPQR) model in which link
and variance functions are unknown and are estimated from the data, extending
previous approaches of Chiou and Müller (1998, 1999), and also provide an
analysis of the AIC criterion for order selection.

The paper is organized as follows: The basics of the proposed generalized
functional linear model and some preliminary considerations can be found in
Section 2. The underlying ideas of estimation and statistical analysis within the
generalized functional linear model will be discussed in Section 3. The main
results and their ramifications are described in Section 4, preceded by a discussion
of the appropriate metric in which to formulate the asymptotic result, which
is found to be tied to the link and variance functions used for the generalized
functional linear model. Simulation results are reported in Section 5. An illustrative
example for the special case of binomial functional regression with the goal to
discriminate between short- and long-lived medflies is provided in Section 6. This
is followed by the main proofs in Section 7. Proofs of auxiliary results are in the
Appendix.

2. The generalized functional linear model. The data we observe for theith
subject or experimental unit are({Xi(t), t ∈ T }, Yi), i = 1, . . . , n. We assume that
these data form an i.i.d. sample. The predictor variableX(t), t ∈ T , is a random
curve which is observed per subject or experimental unit and corresponds to a
square integrable stochastic process on a real intervalT . The dependent variable
Y is a real-valued random variable which may be continuous or discrete. For
example, in the important special case of a binomial functional regression, one
would haveY ∈ {0,1}.

Assume that a link functiong(·) is given which is a monotone and twice con-
tinuously differentiable function with bounded derivatives and is thus invertible.
Furthermore, we have a variance functionσ 2(·) which is defined on the range of
the link function and is strictly positive. The generalized functional linear model
or functional quasi-likelihood model is determined by a parameter functionβ(·),
which is assumed to be square integrable on its domainT , in addition to the link
functiong(·) and the variance functionσ 2(·).
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Given a real measuredw onT , define linear predictors

η = α +
∫

β(t)X(t) dw(t)

and conditional meansµ = g(η), whereE(Y |X(t), t ∈ T ) = µ andVar(Y |X(t),

t ∈ T ) = σ 2(µ) = σ̃ 2(η) for a function σ̃ 2(η) = σ 2(g(η)). In a generalized
functional linear model the distribution ofY would be specified within the
exponential family. For the following (except where explicitly noted), it will be
sufficient to consider the functional quasi-likelihood model

Yi = g

(
α +

∫
β(t)Xi(t) dw(t)

)
+ ei, i = 1, . . . , n,(1)

where

E
(
e|X(t), t ∈ T

) = 0,

Var
(
e|X(t), t ∈ T

) = σ 2(µ) = σ̃ 2(η).

Note thatα is a constant, and the inclusion of an intercept allows us to require
E(X(t)) = 0 for all t .

The errorsei are i.i.d. and we use integration w.r.t. the measuredw(t) to allow
for nonnegative weight functionsv(·) such thatv(t) > 0 for t ∈ T , v(t) = 0 for
t /∈ T anddw(t) = v(t) dt ; the default choice will bev(t) = 1{t∈T }. Nonconstant
weight functions might be of interest when the observed predictor processes are
function estimates which may exhibit increased variability in some regions, for
example, toward the boundaries.

The parameter functionβ(·) is a quantity of central interest in the statistical
analysis and replaces the vector of slopes in a generalized linear model or
estimating equation based model. Settingσ 2 = E{σ̃ 2(η)}, we then find

Var(e) = Var{E(e|X(t), t ∈ T } + E{Var(e|X(t), t ∈ T }
= E{σ̃ 2(η)} = σ 2,

as well asE(e) = 0.
Letρj , j = 1,2, . . . , be an orthonormal basis of the function spaceL2(dw), that

is,
∫
T ρj (t)ρk(t) dw(t) = δjk. Then the predictor processX(t) and the parameter

functionβ(t) can be expanded into

X(t) =
∞∑

j=1

εjρj (t), β(t) =
∞∑

j=1

βjρj (t)

[in the L2(dw) sense] with r.v.’sεj and coefficientsβj , given byεj = ∫
X(t) ×

ρj (t) dw(t) andβj = ∫
β(t)ρj (t) dw(t), respectively. We note thatE(εj ) = 0 and∑

β2
j < ∞. Writing σ 2

j = E(ε2
j ), we find

∑
σ 2

j = ∫
E(X2(t)) dw(t) < ∞.
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From the orthonormality of the base functionsρj , it follows immediately that∫
β(t)X(t) dw(t) =

∞∑
j=1

βjεj .

It will be convenient to work with standardized errors

e′ = eσ (µ) = eσ̃ (η),

for which E(e′|X) = 0, E(e′) = 0, E(e′2) = 1. We assume thatE(e′4) = µ4 < ∞
and note that in model (1), the distribution of the errorsei does not need to be
specified and, in particular, does not need to be a member of the exponential
family. In this regard, model (1) is less an extension of the classical generalized
linear model [McCullagh and Nelder (1989)] than an extension of the quasi-
likelihood approach of Wedderburn (1974). We address the difficulty caused by
the infinite dimensionality of the predictors by approximating model (1) with a
series of models where the number of predictors is truncated atp = pn and the
dimensionpn increases asymptotically asn → ∞.

A heuristic motivation for this truncation strategy is as follows: Setting

Up = α +
p∑

j=1

βjεj , Vp =
∞∑

j=p+1

βjεj ,

we find E(Y |X(t), t ∈ T ) = g(α + ∑∞
j=1 βjεj ) = g(Up + Vp). Conditioning on

the firstp components and writingFVp|Up for the conditional distribution function
leads to a truncated link functiongp,

E(Y |Up) = gp(Up) = E[g(Up + Vp)|Up] =
∫

g(Up + s) dFVp|Up(s).

For the approximation of the full model by the truncated link function, we note
that the boundedness ofg′, |g′(·)|2 ≤ c, implies that{∫

[g(Up + Vp) − g(Up + s)]dFVp|Up(s)

}2

≤
∫

g′(ξ)2(Vp − s)2 dFVp|Up(s)

≤ 2c

∫
(V 2

p + s2) dFVp|Up(s)

and, therefore,

E
((

g(Up + Vp) − gp(Up)
)2)

= E
(∫

[g(Up + Vp) − g(Up + s)]dFVp|Up(s)

)2

(2) ≤ 2cE
(
V 2

p + E(V 2
p |Up)

) = 4cE(V 2
p )

≤ 4c

∞∑
j=p+1

β2
j

∞∑
j=p+1

σ 2
j .
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The approximation error of the truncated model is seen to be directly tied to
Var(Vp) and is controlled by the sequenceσj

2 = Var(εj ), j = 1,2, . . . , which
for the special case of an eigenbase corresponds to a sequence of eigenvalues.

Settingε
(i)
j = ∫

Xi(t)ρj (t) dw(t), the full model with standardized errorse′
i is

Yi = g

(
α +

∞∑
j=1

βjε
(i)
j

)
+ e′

i σ̃

(
α +

∞∑
j=1

βjε
(i)
j

)
, i = 1, . . . , n.

With truncated linear predictorsη and meansµ,

ηi = α +
p∑

j=1

βjε
(i)
j , µi = g(ηi),

thep-truncated model becomes

Y
(p)
i = gp

(
α +

p∑
j=1

βjε
(i)
j

)
+ e′

i σ̃p

(
α +

p∑
j=1

βjε
(i)
j

)
, i = 1, . . . , n,(3)

where σ̃p is defined analogously togp. Note thatg(Up) − gp(Up) and, analo-
gously, σ̃ (Up) − σ̃p(Up) are bounded by the error (2). Since it will be assumed
that this error vanishes asymptotically, asp → ∞, we may instead of (3) work
with the approximating sequence of models

Y
(p)
i = g

(
α +

p∑
j=1

βjε
(i)
j

)
+ e′

i σ̃

(
α +

p∑
j=1

βjε
(i)
j

)
, i = 1, . . . , n,(4)

in which the functionsg and σ̃ are fixed. We note that the random variables
Y

(p)
i ande′

i , i = 1, . . . , n, form triangular arrays,Y (pn)
i,n ande′

i,n, i = 1, . . . , n, with
changing distribution asn changes; for simplicity, we suppress the indicesn.

Inference will be developed for the sequence ofp-truncated models (4) with
asymptotic results forp → ∞. The practical choice ofp in finite sample
situations will be discussed in Section 5. We also develop a version where the
link function g is estimated from the data, givenp. The practical implementation
of this semiparametric quasi-likelihood regression (SPQR) version adapts to the
changing link functionsgp of the approximating sequence (3).

3. Estimation in the generalized functional linear model. One central
aim is estimation and inference for the parameter functionβ(·). Inference for
β(·) is of interest for constructing confidence regions and testing whether the
predictor function has any influence on the outcome, in analogy to the test for
regression effect in a classical regression model. The orthonormal basis{ρj , j =
1,2, . . .} is commonly chosen as the Fourier basis or the basis formed by the
eigenfunctions of the covariance operator. The eigenfunctions can be estimated
from the data as described in Rice and Silverman (1991) or Capra and Müller
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(1997). Whenever estimation and inference for the interceptα is to be included,
we change the summation range for the linear predictorsηi on the right-hand side
of thep-truncated model (3) to

∑p
0 from

∑p
1 , settingε

(i)
0 = 1 andβ0 = α. In the

following, inclusion ofα into the parameter vector will be the default.
Fixing p for the moment, we are in the situation of the usual estimating equation

approach and can estimate the unknown parameter vectorβT = (β0, . . . , βp) by
solving the estimating or score equation

U(β) = 0.(5)

Setting ε(i)T = (ε
(i)
0 , . . . , ε

(i)
p ), ηi = ∑p

j=0 βjε
(i)
j , µi = g(ηi), i = 1, . . . , n, the

vector-valued score function is defined by

U(β) =
n∑

i=1

(Yi − µi)g
′(ηi)ε

(i)/σ 2(µi).(6)

The solutions of the score equation (5) will be denoted by

β̂T = (β̂0, . . . , β̂p); α̂ = β̂0.(7)

Relevant matrices which play a well-known role in solving the estimating
equation (5) are

D = Dn,p = (
g′(ηi)ε

(i)
k /σ (µi)

)
1≤i≤n,0≤k≤p,

V = Vn,p = diag
(
σ 2(µ1), . . . , σ

2(µn)
)
1≤i≤n,

and with generic copiesη, ε,µ of ηi, ε
(i),µi , respectively,

	 = 	p = (γkl)0≤k,l≤p, γkl = E
(

g′′2(η)

σ 2(µ)
εkεl

)
,

(8)
� = 	−1 = (ξkl)0≤k,l≤p.

We note that	 = 1
n
E(DT D) is a symmetric and positive definite matrix and

that the inverse matrix� exists. Otherwise, one would arrive at the contradiction
E((

∑p
k=0 αkεkg

′(η)/σ (µ)))2) = 0 for nonzero constantsα0, . . . , αp.
With vectorsYT = (Y1, . . . , Yn), µT = (µ1, . . . ,µn), the estimating equation

U(β) = 0 can be rewritten as

DT V −1/2(Y − µ) = 0.

This equation is usually solved iteratively by the method of iterated weighted
least squares. Under our basic assumptions, as1

n
E(DT D) = 	p is a fixed positive

definite matrix for eachp, the existence of a unique solution for each fixedp is
assured asymptotically.
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In the above developments we have assumed that both the link functiong(·)
and the variance functionσ 2(·) are known. Situations where the link and variance
functions are unknown are common, and we can extend our methods to cover the
general case where these functions are smooth, which for fixedp corresponds
to the semiparametric quasi-likelihood regression (SPQR) models considered in
Chiou and Müller (1998, 1999). In the implementation of SPQR one alternates
nonparametric (smoothing) and parametric updating steps, using a reasonable
parametric model for the initialization step. Since the link function is arbitrary,
except for smoothness and monotonicity constraints, we may require that estimates
and parameters satisfy‖β‖ = 1,‖β̂‖ = 1 for identifiability.

For givenβ̂, ‖β̂‖ = 1, settingη̂i = ∑p
j=0 β̂j ε

(i)
j , updates of the link function

estimateĝ(·) and its first derivativêg′(·) are obtained by smoothing (applying any
reasonable scatterplot smoothing method that allows the estimation of derivatives)
the scatterplot(η̂i , Yi)i=1,...,n. Updates for the variance function estimateσ̂ 2(·)
are obtained by smoothing the scatterplot(µ̂i, ε̂

2
i )i=1,...,n, whereµ̂i = ĝ(η̂i) are

current mean response estimates andε̂2
i = (Yi − µ̂i)

2 are current squared residuals.
The parametric updating step then proceeds by solving the score equation (5),
using the semiparametric score

U(β) =
n∑

i=1

(
Yi − ĝ(ηi)

)
ĝ′(ηi)ε

(i)/σ̂ 2(ĝ(ηi)
)
.(9)

This leads to the solutionŝβ, in analogy to (7). For solutions of the score equations
for both scores (6) and (9), we then obtain the regression function estimates

β̂(t) = β̂0 +
p∑

j=1

β̂j ρj (t).(10)

Matrices D and 	 are modified analogously for the SPQR case, substituting
appropriate estimates.

4. Asymptotic inference. Given anL2-integrable integral kernel function
R(s, t) :T 2 → R, define the linear integral operatorAR :L2(dw) → L2(dw) on
the Hilbert spaceL2(dw) for f ∈ L2(dw) by

(ARf )(t) =
∫

f (s)R(s, t) dw(s).(11)

OperatorsAR are compact self-adjoint Hilbert–Schmidt operators if∫
|R(s, t)|2 dw(s) dw(t) < ∞,

and can then be diagonalized [Conway (1990), page 47].
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Integral operators of special interest are the autocovariance operatorAK of X

with kernel

K(s, t) = cov
(
X(s),X(t)

) = E
(
X(s)X(t)

)
(12)

and the generalized autocovariance operatorAG with kernel

G(s, t) = E
(

g′(η)2

σ 2(µ)
X(s)X(t)

)
.(13)

Hilbert–Schmidt operatorsAR generate a metric inL2,

d2
R(f, g) =

∫ (
f (t) − g(t)

)(
AR(f − g)

)
(t) dw(t)

=
∫ ∫ (

f (s) − g(s)
)(

f (t) − g(t)
)
R(s, t) dw(s) dw(t)

for f,g ∈ L2(dw), and given an arbitrary orthonormal basis{ρj , j = 1,2, . . .}, the
Hilbert–Schmidt kernelsR can be expressed as

R(s, t) = ∑
k,l

rklρk(s)ρl(t)

for suitable coefficients{rkl, k, l = 1,2, . . .} [Dunford and Schwartz (1963),
page 1009]. Using for any given functionh ∈ L2 the notation

hρ,j =
∫

h(s)ρj (s) dw(s)

and denoting the normalized eigenfunctions and eigenvalues of the operatorAR

by {ρR
j , λR

j , j = 1,2, . . .}, the distancedR can be expressed as

d2
R(f, g) = ∑

k,l

rkl(fρ,k − gρ,k)(fρ,l − gρ,l)

(14) = ∑
k

λR
k (fρR,k − gρR,k)

2.

In the following we use the metricdG, since it allows us to derive asymptotic
limits under considerably simpler conditions than for theL2 metric, due to its
dampening effect on higher order frequencies. For the sequence ofpn-truncated
models (1) that we are considering,

d2
G(β̂, β) =

∫ ∫ (
β̂(s) − β(s)

)(
β̂(t) − β(t)

)
E

(
g′(η)2

σ 2(µ)
X(s)X(t)

)
dw(s) dw(t)

is approximated byd2
G,p(β̂, β) = (β̂ − β)T 	(β̂ − β) for eachp.

In addition to the basic assumptions in Section 2 and usual conditions on
variance and link functions, we require some technical conditions which restrict
the growth ofp = pn and the higher-order moments of the random coefficientsεj .
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Additional conditions are required for the semiparametric (SPQR) case where
both link and variance functions are assumed unknown and are estimated
nonparametrically.

(M1) The link functiong is monotone, invertible and has two continuous bounded
derivatives with‖g′(·)‖ ≤ c, ‖g′′(·)‖ ≤ c for a constantc ≥ 0. The variance
functionσ 2(·) has a continuous bounded derivative and there exists aδ > 0
such thatσ(·) ≥ δ.

(M2) The number of predictor termspn in the sequence of approximating
pn-truncated models (1) satisfiespn → ∞ andpnn

−1/4 → 0 asn → ∞.
(M3) It holds that [see (8), where theξkl are defined]

pn∑
k1,...,k4=0

E
(
εk1 εk2 εk3 εk4

g′4(η)

σ 4(µ)

)
ξk1k2 ξk3k4 = o(n/p2

n).

(M4) It holds that

pn∑
k1,...,k8=0

E
(

g′4(η)

σ 4(µ)
εk1εk3εk5εk7

)

× E
(

g′4(η)

σ 4(µ)
εk2εk4εk6εk8

)
ξk1k2 ξk3k4 ξk5k6 ξk7k8 = o(n2p2

n).

We are now in a position to state the central asymptotic result. Givenp = pn,
denote byβ̂ = (β̂0, . . . , β̂p)T the solution of the estimating equations (5), (6)
and byβ = (β0, . . . , βp)T the interceptα = β0 and the firstp coefficients of the
expansion of the parameter functionβ(t) = ∑∞

j=1 βjρj (t) in the basis{ρj , j ≥ 1}.

THEOREM 4.1. If the basic assumptions and(M1)–(M4) are satisfied, then

n(β̂ − β)T 	pn(β̂ − β) − (pn + 1)√
2(pn + 1)

d→ N(0,1) asn → ∞.(15)

We note that the matrix	pn in Theorem 4.1 may be replaced by the empirical
version	̃ = 1

n
(DDT ); this is a consequence of (21), (22) and Lemma 7.2 below.

Whenever only the “slope” parametersβ1, β2, . . . but not the intercept parameter
α = β0 are of interest,pn is replaced bypn −1 and the(p +1)× (p +1) matrix	

is replaced by thep ×p submatrix of	 obtained by deleting the first row/column.
To study the convergence of the estimated parameter functionβ̂(·), we use the

distancedG and the representation (14) withR ≡ G, coupled with the expansion

β̂(t) =
pn∑

j=1

β̂ρG
j
ρG

j (t)
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of the estimated parameter function̂β(·) in the basis{ρG
j , j = 1,2, . . .}, the

eigenbasis of operatorAG with associated eigenvaluesλG
j . We obtain

d2
G

(
β̂(·), β(·)) =

∫ ∫ (
β̂(s) − β(s)

)
G(s, t)

(
β̂(t) − β(t)

)
dw(s) dw(t)

=
p∑

j=1

λG
j

(
β̂ρG

j
− βρG

j

)2 +
∞∑

j=p+1

λG
j β2

ρG
j

= (β̂G − βG)T 	G(β̂G − βG) +
∞∑

j=p+1

λG
j β2

ρG
j

.

Here

β̂G = (
β̂ρG

1
, . . . , β̂ρG

p

)T
, βG = (

βρG
1
, . . . , βρG

p

)T
,

and the diagonal matrix	G is obtained by replacing in the definition of the matrix
	 [see (8)] theεj by εG

j that are given by

εG
j = g′(η)

σ (µ)

∫
X(t)ρG

j (t) dw(t),

with the property

E(εG
j εG

k ) =
∫ ∫

G(s, t)ρG
j (s)ρG

k (t) dw(s) dw(t) = δijλ
G
j .(16)

These considerations lead under appropriate moment conditions to the following:

COROLLARY 4.1. If the parameter functionβ(·) has the property that
∞∑

j=p+1

E
(
εG
j

2)[ ∫
β(t)ρG

j (t) dw(t)

]2

= o

(√
pn

n

)
,(17)

then

n
∫ ∫

(β̂(s) − β(s))(β̂(t) − β(t))G(s, t) dw(s) dw(t) − (pn + 1)√
2pn + 1

d→ N(0,1)

asn → ∞.

We note that property (17) relates to the rate at which higher-order oscillations,
relative to the oscillations of processesX(t), contribute to theL2 norm of the
parameter functionβ(·).

In the case of unknown link and variance functions (SPQR), one applies scatter-
plot smoothing to obtain nonparametric estimates of functions and derivatives and
then obtains the parameter estimatesβ̂ as solutions of the semiparametric score
equation (9). After iteration, final nonparametric estimates of the link functionĝ,
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its derivativeĝ′ and of the variance function̂σ 2 are obtained. We implement these
nonparametric curve estimators with local linear or quadratic kernel smoothers,
using a bandwidthh in the smoothing step. For the following result we assume
these conditions:

(R1) The regularity conditions (M1)–(M6) and (K1)–(K3) of Chiou and Müller
(1998) hold uniformly for allpn.

(R2) For the bandwidthsh of the nonparametric function estimates for link and
variance function,h → 0, nh3

logn
→ ∞ and‖ p√

nh2	
−1/2‖ → 0 asn → ∞.

The following result refers to the matrix

	̂ = (γ̂kl)1≤k,l≤pn, γ̂k,l = 1

n

n∑
i=1

(
ĝ′2(η̂i)

σ̂ 2(η̂i)
εkiεli

)
.(18)

COROLLARY 4.2. Assume(R1) and (R2) and replace the matrix	 in (15)
by the matrix 	̂ from (18). Then (15) remains valid for the semiparametric
quasi-likelihood (SPQR) estimatesβ̂ that are obtained as solutions of the
semiparametric estimating equation(9), substituting nonparametrically estimated
link and variance functions.

Extending the arguments used in the proofs of Theorems 1 and 2 in Chiou and
Müller (1998), and assuming additional regularity conditions as described there,
we find for these nonparametric function estimates,

sup
t

∣∣∣∣ ĝ′2(t)
σ̂ 2(t)

− g′2(t)
σ 2(t)

∣∣∣∣ = Op

(
logn

nh3 + h2 +
√

pn

h2 ‖β̂ − β‖
)
.

Assuming thath → 0, nh3

logn
→ ∞ and ‖ p√

nh2	
−1/2‖ → 0, we obtain from the

boundedness of the design density of the linear predictors away from 0 and∞
that

ĝ′2(η̂)

σ̂ 2(η̂)
= g′2(η)

σ 2(η)
+ op(1),

where theop-terms are uniform inp following (M2). Therefore, the matrix̂	
approximates the elements of the matrix

	̃ = 1

n
(DDT ) = (γ̃kl)1≤k,l≤pn, γ̃k,l = 1

n

n∑
i=1

(
g′2(ηi)

σ 2(ηi)
εkiεli

)
uniformly in k, l and pn. This, together with the remarks after Theorem 4.1,
justifies the extension to the semiparametric (SPQR) case with unknown link
and variance functions. This case will be included in the following, unless noted
otherwise.
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A common problem of inference in regression models is testing for no
regression effect, that is,H0 :β ≡ const, which is a special case of testing for
H0 :β ≡ β0 for a given regression parameter functionβ0. With the representation
β0(t) = ∑

β0j ρj (t), the null hypothesis becomesH0 :βj = β0j , j = 0,1,2, . . . ,

andH0 is rejected when the test statistic in Theorem 4.1 exceeds the critical value
(1 − α), for the case of a fully specified link function. Through a judicious
choice of the orthonormal basis{ρj , j = 1,2, . . .}, these tests also include null
hypotheses of the typeH0 :

∫
β(t)hj (t) dw(t) = τj , j = 1,2, . . . , for a sequence

of linearly independent functionshj ; these are transformed into an orthonormal
basis by Gram–Schmidt orthonormalization, whence it is easy to see that these
null hypotheses translate intoH0 :βj = τ ′

j , j = 1,2, . . . , for suitableτ ′
j if we use

the new orthonormal basis in lieu of the{ρj , j ≥ 1}. For alternative approaches to
testing in functional regression, we refer to Fan and Lin (1998).

Another application of practical interest is the construction of confidence bands
for the unknown regression parameter functionβ. In a finite sample situation for
which p = pn is given and estimateŝβ for p-vectorsβ have been determined, an
asymptotic(1− α) confidence region forβ according to Theorem 4.1 is given by
(β̂ − β)T 	(β̂ − β) ≤ c(α), wherec(α) = [p + 1 + √

2(p + 1)(1 − α)]/n, and
	 may be replaced by its empirical counterparts	̃ or 	̂. More precisely, we have
the following:

COROLLARY 4.3. Denote the eigenvectors/eigenvalues of the matrix	 [see
(8)] by (e1, λ1), . . . , (ep+1, λp+1), and let

ek = (ek1, . . . , ek,p+1)
T , ωk(t) =

p+1∑
l=1

ρl(t)ekl, k = 1, . . . , p + 1.

Then, for large n andpn, an approximate(1 − α) simultaneous confidence band
is given by

β̂(t) ±
√√√√√c(α)

p+1∑
k=1

ωk(t)2

λk

.(19)

A practical simultaneous band is obtained by substituting estimates for
ωk andλk that result from empirical matrices̃	 or 	̂ instead of	.

5. Simulation study and model selection.

5.1. Model order selection. An auxiliary parameter of importance in the
estimation procedure is the numberp of eigenfunctions that are used in fitting
the functionβ(t). This number has to be chosen by the statistician. An appealing
method is the Akaike information criterion (AIC), due to its affinity to increasing
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model orders, and, in addition, we found AIC to work well in practice. We discuss
here the consistency of AIC for choosingp in the context of the generalized linear
model with full likelihood and known link function.

Assume the linear predictor vectorηp consists ofn componentsηp,i =∑p
j=0 εi

jβj , i = 1, . . . , n, the vectorη̂p of the componentŝηp,i = ∑p
j=0 εi

j β̂j

and the vectorη of the components
∑∞

j=0 εi
jβj . Let G be the antiderivative

of the (inverse) link functiong so thatY has the density (in canonical form)
fY (y) = exp(yη + a(y) − G(η)). In particular,σ̃ 2(η) = g′(η). The deviance is

D = −2�n(Y, η̂p) + 2�n

(
Y,g−1(Y )

)
,

with log-likelihood

�n(Y, η̂p) =
n∑

i=1

Yiη̂i,p −
n∑

i=1

G(η̂i,p).

Taylor expansion yields

−2�n(Y, η̂p) = −2�n(Y, ηp)

+ 2
(∇βp�n(Y, η̂p)

)T
(βp − β̂p)

+ (βp − β̂p)T
(

∂2

∂βk ∂β�

�n(Y, η̃p)

)
(βp − β̂p),

where the second term on the right-hand side is zero, due to the score equation, and
the matrix in the quadratic form is essentially(DT D). It follows from the proof of
Theorem 4.1 that the quadratic formn(βp − β̂p)T (DT D

n
)(βp − β̂p) has asymptotic

expectationp. Since

−2�n(Y, ηp) = −2�n(Y, η) − 2
n∑

i=1

(
Yi − g(ηi)

)
(ηi,p − ηi)

+
n∑

i=1

g′(ηi)(ηi,p − ηi)
2,

we arrive at

E(D) = n
∑

k,l=p+1

E
(
g′(η)εkεl

)
βkβl − p

(
1+ o(1)

) + En

= n
∑

k,l=p+1

E

(
g′2(η)

σ̃ 2(η)
εkεl

)
βkβl − p

(
1+ o(1)

) + En,

whereEn is an expression that does not depend onp.
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Applying the law of large numbers, and similar considerations as in Section 7,

we find D/E(D)
p→ 1, as long asp is chosen in(p0, cn

1/4). Next, applying
results of Section 7,

d
(
β̂(·), β(·)) =

∫ ∫ (
β̂(s) − β(s)

)
G(s, t)

(
β̂(t) − β(t)

)
dw(s) dw(t)

= (β̂p − βp)T 	(β̂p − βp) +
∞∑

k,j=p+1

γj,kβjβk

+ 2
p∑

j=1

∞∑
k=p+1

γj,k(β̂j − βj )βk,

where γk,l = E(
g′2(η)

σ̃2(η)
εkεl). We obtain E(d(β̂(·), β(·))) = p/n(1 + o(1)) +∑∞

k,j=p+1 γj,kβjβk(1+ o(1)).

This analysis shows that the target functiond(β̂(·), β(·)) to be minimized is
asymptotically close toE(D/n)+2p/n. This suggests that we are in the situation
considered by Shibata (1981) for sequences of linear models with normal residuals
and by Shao (1997) for the more general case. While the closeness of the target
function and AIC is suggestive, a rigorous proof that the orderpA selected by
AIC and the orderpd that minimizes the target function satisfypd/pA → 1
in probability asn → ∞ or a stronger consistency or efficiency result requires
additional analysis that is not provided here. One difficulty is that the usual
normality assumption is not satisfied as one operates in an exponential family or
quasi-likelihood setting.

In practice, we implement AIC and the alternative Bayesian information
criterion BIC by obtaining first the deviance or quasi-devianceD(p), dependent
on the model orderp. This is straightforward in the quasi-likelihood or maximum
likelihood case with known link function, and requires integrating the score
function to obtain the analogue of the log-likelihood in the SPQR case with
unknown link function. Once the deviance is obtained, we choose the minimizing
argument of

C(p) = D(p) + P (p),(20)

whereP is the penalty term, chosen as 2p for the AIC and asp logn for the BIC.
Several alternative selectors that we studied were found to be less stable and

more computer intensive in simulations. These included minimization of the leave-
one-out prediction error, of the leave-one-out misclassification rate via cross-
validation [Rice and Silverman (1991)], and of the relative difference between the
Pearson criterion and the deviance [Chiou and Müller (1998)].



GENERALIZED FUNCTIONAL LINEAR MODELS 789

5.2. Monte Carlo study. Besides choosing the numberp of components to
include, an implementation of the proposed generalized functional linear model
also requires choice of a suitable orthonormal basis{ρj , j = 1,2, . . . }. Essentially
one has two options, using a fixed standard basis such as the Fourier basisρj ≡
ϕj ≡ √

2sin(πjt), t ∈ [0,1], j ≥ 1, or, alternatively, to estimate the eigenfunctions
of the covariance operatorAK (11), (12) from the data, with the goal of achieving a
sparse representation. We implemented this second option following an algorithm
for the estimation of eigenfunctions which is described in detail in Capra and
Müller (1997); see also Rice and Silverman (1991). Once the number of model
componentsp has been determined, theith observed process is reduced to the
p predictorsε(i)

j = ∫
Xi(t)ρj (t) dw(t), j = 1, . . . , p. We substitute the estimated

eigenfunctions for theρj and evaluate the integrals numerically.
Once we have reduced the infinite-dimensional model (1) to itsp-truncated

approximation (3), we are in the realm of finite-dimensional generalized linear
and quasi-likelihood models. The parametersα andβ1, . . . , βp in thep-truncated
generalized functional model are estimated by solving the respective score
equation. We adopted the weighted iterated least squares algorithm which is
described in McCullagh and Nelder (1989) for the case of a generalized linear
or quasi-likelihood model with known link function, and the QLUE algorithm
described in Chiou and Müller (1998) for the SPQR model with unknown link
function.

The purpose of our Monte Carlo study was to compare AIC and BIC as selection
criteria for the orderp, to study the power of statistical tests for regression
effect in a generalized functional regression model and, finally, to investigate
the behavior of the semiparametric SPQR procedure for functional regression,
in comparison to the maximum or quasi-likelihood implementation with a fully
specified link function. The design was as follows: Pseudo-random processes
based on the first 20 functions from the Fourier baseX(t) = ∑20

j=1 εj ϕj (t) were

generated by using normal pseudo-random variablesεj ∼ N(0,1/j2), j ≥ 1.

Choosingβj = 1/j , 1 ≤ j ≤ 3, β0 = 1, βj = 0, j > 3, we definedβ(t) =∑20
j=1 βjϕ(t) andp(X(·)) = g(β0 + ∑20

j=1 βjεj ), choosing logit link [withg(x) =
exp(x)/(1 + exp(x))] and c-loglog link [with g(x) = exp(−exp(−x))]. Then
we generated responsesY(X) ∼ Binomial(p(X), 1) as pseudo-Bernoulli r.v.s
with probability p(X), obtaining a sample(Xi(t), Yi), i = 1, . . . , n. Estimation
methods included generalized functional linear modeling with logit, c-loglog and
unspecified (SPQR) link functions.

In results not shown here, a first finding was that the AIC performed somewhat
better than BIC overall, in line with theoretical expectations, and, therefore, we
used AIC in the data applications. To demonstrate the asymptotic results, in
particular, Theorem 4.1, we obtained empirical power functions for data generated
and analyzed with the logit link, using the test statisticT on the left-hand side
of (16) to test the null hypothesis of no regression effectH0 :βj = 0, j = 1,2, . . . .
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This test was implemented as a one-sided test at the 5% level, that is, rejection was
recorded whenever|T | > −1(0.95). The average rejection rate was determined
over 500 Monte Carlo runs, for sample sizesn = 50,200, as a function ofδ, 0≤
δ ≤ 2, where the underlying parameter vector was as described in the preceding
paragraph, multiplied byδ, and is given by(δ, δ, δ/2, δ/3). The resulting power
functions are shown in Figure 1 and demonstrate that sample size plays a critical
role.

To demonstrate the usefulness of the SPQR approach with automatic link
estimation, we calculated the means of the estimated regression parameter
functions β̂(·) over 50 Monte Carlo runs for the following cases: In each run,
1000 samples were generated with either the logit or c-loglog link function and the
corresponding functionsβ(·) were estimated in three different ways: Assuming
a logit link, a c-loglog link and assuming no link, using the SPQR method.
The resulting mean function estimates can be seen in Figure 2. One finds that
misspecification of the link function can lead to serious problems with these
estimates and that the flexibility of the SPQR approach entails a clear advantage
over methods where a link function must be specified a priori.

FIG. 1. Empirical power functions for the significance test for a functional logistic regression effect
at the5% level. Based on500simulations, for sample sizes50 (dashed) and200 (solid), with p = 3.



GENERALIZED FUNCTIONAL LINEAR MODELS 791

FIG. 2. Average estimates of the regression parameter functionβ(·) obtained over50Monte Carlo
runs from data generated either with the logit link(left panel) or with the c-loglog link(right
panel).Each panel displays the target function(solid), and estimates obtained assuming the logit
link (dashed), the c-loglog link(dash-dot) and the SPQR method incorporating nonparametric link
function estimation(dotted).

6. Application to medfly data and classification. It is a long-standing
problem in evolution and ecology to analyze the interplay of longevity and
reproduction. On one hand, longevity is a prerequisite for reproduction; on the
other hand, numerous articles have been written about a “cost of reproduction,”
which is the concept that a high degree of reproduction inflicts a damage on the
organism and shortens its lifespan [see, e.g., Partridge and Harvey (1985)]. The
precise nature of this cost of reproduction remains elusive.

Studies with Mediterranean fruit flies (Ceratitis capitata), or medflies for short,
have been of considerable interest in pursuing these questions as hundreds of
flies can be reared simultaneously and their daily reproduction activity can be
observed by simply counting the daily eggs laid by each individual fly, in addition
to recording its lifetime [Carey et al. (1998a, b)]. For each medfly, one may thus
obtain a reproductive trajectory and one can then ask the operational question
whether particular features of this random curve have an impact on subsequent
mortality [see Müller et al. (2001) for a parametric approach and Chiou, Müller
and Wang (2003) for a functional model, where the egg-laying trajectories are
viewed as response]. In the present framework we cast this as the problem to
predict whether a fly is short- or long-lived after an initial period of egg-laying
is observed. We adopt a functional binomial regression model where the initial
egg-laying trajectory is the predictor process and the subsequent longevity status
of the fly is the response. Of particular interest is the shape of the parameter
function β(·), as it provides an indication as to which features of the egg-laying
process are associated with the longevity of a fly.

From the one thousand medflies described in Carey et al. (1998a), we select
flies which lived past 34 days, providing us with a sample of 534 medflies. For
prediction, we use egg-laying trajectories from 0 to 30 days, slightly smoothed to
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obtain the predictor processesXi(t), t ∈ [0,30], i = 1, . . . ,534. A fly is classified
as long-lived if the remaining lifetime past 30 days is 14 days or longer, otherwise
as short-lived. Of then = 534 flies, 256 were short-lived and 278 were long-lived.
We apply the algorithm as described in the previous section, choosing the logit
link, fitting a logistic functional regression.

Plotting the reproductive trajectories for the long-lived and short-lived flies
separately (upper panels of Figure 3), no clear visual differences between the two
groups can be discerned. Failure to visually detect differences between the two
groups could result from overcrowding of these plots with too many curves, but
when displaying fewer curves (lower panels of Figure 3), this remains the same.
Therefore, the discrimination task at hand is difficult, as at best subtle and hard to
discern differences exist between the trajectories of the two groups.

We use the Akaike information criterion (AIC) for choosing the number of
model components. As can be seen from Figure 4, where the AIC criterion is

FIG. 3. Predictor trajectories, corresponding to slightly smoothed daily egg-laying curves, for
n = 534 medflies. The reproductive trajectories for256 short-lived medflies are in the upper left
and those for278 long-lived medflies in the upper right panel. Randomly selected profiles from the
panels above are shown in the lower panels for50 medflies.
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FIG. 4. Akaike information criterion(AIC ) as a function of the number of model componentsp for
the medfly data.

shown in dependency on the model orderp, this leads to the choicep = 6. The
cross-validation prediction error criterionPE= 1

n

∑n
i=1(Yi − p̂

(−i)
i )2, wherep̂

(−i)
i

is the leave-one-out estimate forpi , supports a similar choice. The leave-out
misclassification rate estimates are, for the group of long-lived flies, 37% with
logit link and 35% for the nonparametric SPQR link, while for the group of short-
lived flies these are 47% for logit and 48% for SPQR, demonstrating the difficulty
of classifying short-lived flies correctly.

The fitted regression parameter functionsβ̂(·) for both logistic (logit link)
and SPQR (nonparametric link) functional regression, along with simultaneous
confidence bands (19), are shown in Figure 5; we find that the estimate with
nonparametric link is quite close to the estimate employing the logistic link,
thus providing some support for the choice of the logistic link in this case. The
asymptotic confidence bands allow us to conclude that the link function has a steep
rise at the right end towards age 30 days, and that the null hypothesis of no effect
would be rejected.

The shape of the parameter function̂β(·) highlights periods of egg-laying
that are associated with increased longevity. We note that under the logit link
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FIG. 5. The regression parameter function estimatesβ̂(·) (19) (solid) for the medfly classification
problem, with simultaneous confidence bands(5) (dashed). Left panel:Logit link. Right panel:
Nonparametric link, using the SPQR algorithm.

function, the predicted classification probability for a long-lived fly isg(η) =
exp(η)/(1 + exp(η)). Overlaid with this expit-function, the nonparametric link
function estimate that is employed in SPQR is shown in Figure 6 (choosing
local linear smoothing and the bandwidth 0.55 for the smoothing steps), along
with the corresponding indicator data from the last iteration step. For both links,
larger linear predictorsη, and therefore larger values of the parameter regression
functionβ(·), are seen to be associated with an increased chance for longevity.

Since the parameter function is relatively large between about 12–17 days and
past 26 days, we conclude that heavy reproductive activity during these periods is
associated with increased longevity. In contrast, increased reproduction between
8–12 days and 20–26 days is associated with decreased longevity. A high level
of late reproduction emerges as a significant and overall as the strongest indicator
of longevity in our analysis. This is of biological significance since it implies that
increased late reproduction is associated with increased longevity and may have a
protective effect. Increased reproduction during the peak egg-laying period around
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FIG. 6. Logit link (dashed) and nonparametric link function(solid) obtained via the SPQR
algorithm, with overlaid group indicators, versus level of linear predictorη.

10 days has previously been associated with a cost of reproduction, an association
that is supported by our analysis.

7. Proof of Theorem 4.1 and auxiliary results. Proofs of the auxiliary
results in this section are provided in the Appendix. Throughout, we assume
that all assumptions of Theorem 4.1 are satisfied and work with the matrices
	 = (γkl), � = 	−1 = (ξkl), 0≤ k, l ≤ p, defined in (8) and also with the matrix
�1/2 =: (ξ (1/2)

kl ), 0≤ k, l ≤ p. We will use both versionsσ(·) andσ̃ (·) to represent
the variance function, depending on the context, noting thatσ(µ) = σ̃ (η) and the
notationβ, β̂ for the(pn + 1)-vectors defined before Theorem 4.1 andβ(·) for the
parameter function.

For the first step of the proof of Theorem 4.1, we adopt the usual Taylor
expansion based approach for showing asymptotic normality for an estimator
which is defined through an estimating equation; see, for example, McCullagh
(1983). Writing the Hessian of the quasi-likelihood asJβ = �β U(β) and noting
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that

DT D =
n∑

i=1

g′2(ηi)ε
(i)ε(i)T /σ̃ 2(ηi),

we obtain

Jβ =
n∑

i=1

∂

∂ηi

[
g′(ηi)ε

(i)(Yi − g(ηi)
)
/σ̃ 2(g(ηi)

)] · �βηi

= −DT D −
n∑

i=1

(
Yi − g(ηi)

)
ε(i)ε(i)T

{
g′′(ηi)

σ̃ 2(ηi)
− g′2(ηi)σ̃

2′(ηi)

σ̃ 4(ηi)

}
= −DT D + R, say.

We aim to show that the remainder termR can eventually be neglected. By a Taylor
expansion, for ãβ betweenβ andβ̂,

U(β) = U(β̂) − Jβ̃(β̂ − β) = −Jβ̃(β̂ − β)

= −[DT D(β̂ − β) + (Jβ̃ − Jβ)(β̂ − β) + (Jβ − DT D)(β̂ − β)].
Denoting theq × q identity matrix byIq , this leads to
√

n(β̂ − β) = √
n
(
DT D + (Jβ̃ − Jβ) + (Jβ − DT D)

)−1
U(β)

=
(
Ipn+1 +

(
DT D

n

)−1(Jβ̃ − Jβ

n

)
+

(
DT D

n

)−1(Jβ − DT D

n

))−1

×
(

DT D

n

)−1U(β)√
n

.

Using the matrix norm‖M‖2 = (
∑

m2
kl)

1/2, we find (see Appendix for the
proof ) the following:

LEMMA 7.1. Asn → ∞,∥∥∥∥√n(β̂ − β) −
(

DT D

n

)−1U(β)√
n

∥∥∥∥
2
= op(1).

The asymptotically prevailing term is seen to be

√
n(β̂ − β) ∼

(
DT D

n

)−1U(β)√
n

,

corresponding to

Zn =
(

DT D

n

)−1DT V −1/2(Y − µ)√
n

=
(

DT D

n

)−1DT V −1/2e√
n

=
(

DT D

n

)−1DT e′
√

n
.
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Of interest is then the asymptotic distribution ofZT
n 	Zn. Defining(p+1)-vectors

Xn and(p + 1) × (p + 1)-matrices�n by

Xn = �
1/2
n DT e′
√

n
, �n = 	1/2

n

(
DT D

n

)−1

	1/2
n ,(21)

we may decompose this into three terms,

ZT
n 	Zn = XT

n �2
nXn(22)

= XT
n Xn + 2XT

n

(
�n − Ipn+1

)
Xn

(23) + XT
n

(
�n − Ipn+1

)(
�n − Ipn+1

)
Xn

= Fn + Gn + Hn, say.(24)

The following lemma is instrumental, as it implies that in deriving the limit
distribution,Gn andHn are asymptotically negligible as compared toFn.

LEMMA 7.2. Under the conditions

(M3′) pn = o(n1/3),

(M4′) ∑pn

k1,...,k4=0 E(εk1εk2εk3εk4
g′4(η)

σ̃4(η)
)ξk1k2ξk3k4 = o(n/p2

n),

we have that ∥∥�n − Ipn+1
∥∥2

2 = Op(1/pn).

Note that conditions (M3′) and (M4′) are weaker than the corresponding
conditions (M2) and (M3) and, therefore, will be satisfied under the basic
assumptions. A consequence of Lemma 7.2 is∣∣XT

n

(
�n − Ipn+1

)
Xn

∣∣ ≤ |XnX
T
n |∥∥�n − Ipn+1

∥∥
2

= Op(pn)op

(
1/

√
pn

) = op

(√
pn

)
.

Therefore,Gn/
√

pn
p→ 0. The bound for the termHn is completely analogous.

Since we will show in Proposition 7.1 below that(XT
n Xn − (pn + 1))/

√
2pn

d→
N(0,1) [this implies |XnX

T
n | = Op(pn)], it follows that Gn + Hn = op(Fn) so

that these terms can indeed be neglected. The proof of Theorem 4.1 will therefore
be complete if we show the following:

PROPOSITION7.1. Asn → ∞, (XT
n Xn − (pn + 1))/

√
2pn

d→ N(0,1).

For the proof of Proposition 7.1, we make use of

Xn = �1/2DT e′
√

n
=

(
n∑

ν=1

pn∑
t=0

ξ
(1/2)
it

g′(ην)

σ̃ (ην)
ε
(ν)
t e′

ν/
√

n

)p

i=0
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and
pn∑

k=0

ξ
(1/2)
kt1

ξ
(1/2)
kt2

= ξt1t2

to obtain

XT
n Xn = 1

n

pn∑
k=0

n∑
ν1,ν2=1

pn∑
t1,t2=0

e′
ν1

e′
ν2

g′(ην1)

σ̃ (ην1)

g′(ην2)

σ̃ (ην2)
ε
(ν1)
t1

ε
(ν2)
t2

ξ
(1/2)
kt1

ξ
(1/2)
kt2

= 1

n

n∑
ν=1

e′2
ν

pn∑
t1,t2=0

ε
(ν)
t1

ε
(ν)
t2

g′2(ην)

σ̃ 2(ην)
ξt1,t2

+ 1

n

n∑
ν1 �=ν2=1

e′
ν1

e′
ν2

g′(ην1)

σ̃ (ην1)

g′(ην2)

σ̃ (ην2)

pn∑
t1,t2=0

ε
(ν1)
t1

ε
(ν2)
t2

ξt1t2

= An + Bn, say.

We will analyze these terms in turn and utilize the independence of the random
variables associated with observations(Xi, Yi) for different values ofi, the
independence of thee′

i of all ε’s, andE(e′) = 0, E(e′2) = 1.

LEMMA 7.3. For An, it holds that

An − (pn + 1)√
pn

p→ 0.

Turning now to the second termBn, we show that it is asymptotically normal.
Defining the r.v.s

Wnj =
j−1∑
k=1

e′
ke

′
j

g′(ηk)

σ̃ (ηk)

g′(ηj )

σ̃ (ηj )

pn∑
t1,t2=0

ε
(k)
t1

ε
(j)
t2

ξt1t2,

we may write

Bn = 2

n

n∑
j=1

Wnj .

A key result is now the following:

LEMMA 7.4. The random variables{Wnj ,1 ≤ j ≤ n,n ∈ N} form a tri-
angular array of martingale difference sequences w.r.t. the filtrations (Fnj ) =
σ(ε

(i)
t , ei,1≤ i ≤ j,0≤ t ≤ pn)(1 ≤ j ≤ n,n ∈ N).
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Note thatFn,j ⊂ Fn+1,j . Lemma 7.4 implies that the r.v.s̃Wnj = 2
n
√

2pn
Wnj

also form a triangular array of martingale difference sequences. According to the
central limit theorem for martingale difference sequences [Brown (1971); see also
Hall and Heyde (1980), Theorem 3.2 and corollaries], sufficient conditions for

the asymptotic normality
∑n

j=1 W̃nj
d→ N(0,1) are the conditional normalization

condition and the conditional Lyapunov condition. The following two lemmas
which are proved in the Appendix demonstrate that these sufficient conditions are
satisfied. We note that martingale methods have also been used by Ghorai (1980)
for the asymptotic distribution of an error measure for orthogonal series density
estimates.

LEMMA 7.5 (Conditional normalization condition).
n∑

j=1

E(W̃2
nj |Fn,j−1)

p→ 1, n → ∞.

LEMMA 7.6 (Conditional Lyapunov condition).
n∑

j=1

E(W̃4
nj |Fn,j−1)

p→ 0, n → ∞.

A consequence of Lemmas 7.5 and 7.6 is thenBn/
√

2pn
d→ N(0,1). Together

with Lemma 7.4, this implies Proposition 7.1 and, thus, Theorem 4.1.

APPENDIX

We provide here the main arguments of the proofs of several corollaries and of
the auxiliary results which were used in Section 7 for the proof of Theorem 4.1.

PROOF OFCOROLLARY 4.2. Extending the arguments used in the proofs of
Theorems 1 and 2 in Chiou and Müller (1998), we find for these nonparametric
function estimates under (R1) that

sup
t

∣∣∣∣ ĝ′2(t)
σ̂ 2(t)

− g′2(t)
σ 2(t)

∣∣∣∣ = Op

(
logn

nh3 + h2 +
√

pn

h2 ‖β̂ − β‖
)
.

Define the matrix

	̃ = 1

n
(DDT ) = (γ̃kl)1≤k,l≤pn, γ̃k,l = 1

n

n∑
i=1

(
g′2(ηi)

σ 2(ηi)
εkiεli

)
.

According to (21) and (22), the result (15) remains the same when replacing	

by 	̃. From (R2) and observing the boundedness ofg′2/σ 2 below and above, we
obtainγ̂kl = γ̃kl(1+op(1)), where theop-term is uniform ink, l andpn. The result
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follows by observing that the semiparametric estimateβ̂ has the same asymptotic
behavior as the parametric estimate, except for some minor modifications due to
the identifiability constraint. �

PROOF OF COROLLARY 4.3. The asymptotic(1 − α) confidence ellipsoid
for β ∈ R

p+1 is (β̂ − β)T (	/c(α))(β̂ − β) ≤ 1. Expressing the vectorsβ, β̂ in
terms of the eigenvectorsek leads to the coefficientŝβ∗

k = ∑
l eklβ̂l, β

∗
k = ∑

l eklβl ,
and with γ ∗

k = (β̂∗
k − β∗

k )/
√

c(α)/λk,ω
∗
k(t) = ωk(t)

√
c(α)/λk the confidence

ellipsoid corresponds to the sphere
∑

k γ ∗
k

2 ≤ 1. To obtain the confidence band,
we need to maximize|∑k(β̂

∗
k − β∗

k )ωk(t)| = |∑k γ ∗
k ω∗

k (t)| w.r.t. γ ∗
k , and subject

to
∑

k γ ∗
k

2 ≤ 1. By Cauchy–Schwarz,|∑k γ ∗
k ω∗

k (t)| ≤ [∑k ω∗
k (t)

2]1/2 and the
maximizingγ ∗

k must be linear dependent with the vectorω∗
1(t), . . . ,ω

∗
p+1(t), so

that the Cauchy–Schwarz inequality becomes an equality. The result then follows
from the definition of theω∗

k (t). �

PROOF OFLEMMA 7.1. We observe

E
(∥∥∥∥Jβ − DT D

n

∥∥∥∥2

2

)
= O

(
p2

n

n

)
→ 0,

since‖g(ν)(·)‖ ≤ c < ∞, ν = 1,2, σ̃ ′2(·) ≤ c̃ < ∞ and σ̃ 2(·) ≥ δ > 0 according
to (M1).

Together withpn = o(n1/4) (M2), this implies∥∥∥∥(
DT D

n

)−1(Jβ − DT D

n

)(
DT D

n

)−1U(β)√
n

∥∥∥∥
2
= op(1).

Similarly, ∥∥∥∥(
DT D

n

)−1(Jβ̃ − Jβ

n

)(
DT D

n

)−1U(β)√
n

∥∥∥∥ = op(1),

whence the result follows.�

PROOF OFLEMMA 7.2. Note that∥∥�n − Ipn+1
∥∥

2 ≤ ‖�n‖2
∥∥�−1

n − Ipn+1
∥∥

2.

We show that‖�−1
n − Ipn+1‖2 = op(1), implying

‖�n‖2 ≤ ∥∥Ipn+1
∥∥

2 + ‖�−1
n − Ipn+1‖2

1− ‖�−1
n − Ipn+1‖2

∼ ∥∥Ipn+1
∥∥

2 = √
pn + 1.

Observe that

�−1
n = �1/2

n

1

n
DT D�1/2

n

=
(

1

n

pn∑
j,m=0

ξ
(1/2)
kj ξ

(1/2)
ml

n∑
ν=1

g′2(ην)

σ̃ 2(ην)
ε
(ν)
j ε(ν)

m

)pn

k,l=0
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and, therefore,

E
(∥∥�−1

n − Ipn+1
∥∥2

2

)
= E

( pn∑
k,l=0

(
1

n

n∑
ν1=1

pn∑
j1,m1=0

ξ
(1/2)
kj1

ξ
(1/2)
m1l

g′2(ην1)

σ 2(µν1)
ε
(ν1)
j1

ε(ν1)
m1

− δkl

)

×
(

1

n

n∑
ν2=1

p∑
j2,m2=0

ξ
(1/2)
kj2

ξ
(1/2)
m2l

g′2(ην2)

σ̃ 2(ην2)
ε
(ν2)
j2

ε(ν2)
m2

− δkl

))

= O

(
pn + 1

n

)
+ o(1/p2

n),

due to (M3′). Hence, by (M4′),

∥∥�n − Ipn+1
∥∥

2 = Op

(√
pn

)
Op

(
1

pn

)
= Op

(√
1/pn

)
. �

PROOF OFLEMMA 7.3. Since

E(An) = 1

n

n∑
ν=1

pn∑
t1,t2=0

E(e′2
ν )E

(
εt1εt2

g′2(ην)

σ̃ 2(ην)

)
ξt1t2 = pn + 1

using the definition of	,� = 	−1 andE(e′2) = 1, and, similarly, by (M3),

E(A2
n) = o(pn) + (pn + 1)2 − (pn + 1)2

n
.

We find that 0≤ Var(An) = o(pn). This concludes the proof.�

PROOF OF LEMMA 7.4. All random variables with upper indexj are
independent ofFn,j−1. Hence, we obtain

E(Wnj |Fn,j−1) =
j−1∑
i=1

e′
i

g′(ηi)

σ̃ (ηi)

pn∑
t1,t2=0

ε
(i)
t1

ξt1t2E
(
e′
j

g′(ηj )

σ̃ (ηj )
ε
(j)
t2

|Fn,j−1

)
= 0

since

E
(
e′
j

g′(ηj )

σ̃ (ηj )
ε
(j)
t2

|Fn,j−1

)
= E(e′

j )E
(

g′(ηj )

σ̃ (ηj )
ε
(j)
t2

)
= 0. �
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PROOF OFLEMMA 7.5. We note

E(W2
nj |Fn,j−1)

=
j−1∑

i1,i2=1

e′
i1
e′
i2

g′(ηi1)g
′(ηi2)

σ̃ (ηi1)σ̃ (ηi2)

pn∑
t1,...,t4=0

ε
(i1)
t1

ε
(i2)
t3

ξt1t2ξt3t4

× E
(
ε
(j)
t2

ε
(j)
t4

g′(ηj )

σ̃ 2(ηj )
e′2
j |Fn,j−1

)

=
j−1∑

i1,i2=1

e′
i1
e′
i2

g′(ηi1)g
′(ηi2)

σ̃ (ηi1)σ̃ (ηi2)

pn∑
t1,t3=0

ε
(i1)
t1

ε
(i2)
t3

ξt3t1

and obtain

E
(
E(W2

nj |Fn,j−1)
) =

j−1∑
i=1

pn∑
t1,t3

E
(

g′2(η)

σ̃ 2(η)
εt1εt3

)
ξt3t1

= (j − 1)(pn + 1).

This implies

E

(
n∑

j=1

E(W̃2
nj |Fn,j−1)

)
→ 1, n → ∞.

We are done if we can showVar(
∑n

j=1{E(W̃2
nj |Fn,j−1)}) → 0. In order to obtain

the second moments, we first note

E{E(W2
nj |Fn,j−1)E(W2

nk|Fn,k−1)}

=
j−1∑

i1,i2=1

k−1∑
i3,i4=1

E
(
e′
i1
e′
i2
e′
i3
e′
i4

g′(ηi1)g
′(ηi2)g

′(ηi3)g
′(ηi4)

σ̃ (ηi1)σ̃ (ηi2)σ̃ (ηi3)σ̃ (ηi4)

)

×
pn∑

t1,...,t4=0

ε
(i1)
t1

ε
(i2)
t2

ε
(i3)
t3

ε
(i4)
t4

ξt1t2ξt3t4

= µ4(k − 1)

pn∑
t1,...,t4=0

E
(

g′4(η)

σ̃ 4(η)
· εt1εt2εt3εt4

)
ξt1t2ξt3t4

+ (j − 1)(k − 1)(pn + 1)2 + 2(k − 1)2(pn + 1),
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and then obtain

E

((
n∑

j=1

{E(W2
nj |Fn,j−1)}

)2)

=
n∑

j=1

E
({E(W2

nj |Fn,j−1)}2) + 2
∑

1≤k<j≤n

E{E(W2
nj |Fn,j−1)E(W2

nk|Fn,k−1)}

=
n∑

j=1

[
µ4(j − 1)

pn∑
t1,...,t4=0

E
(

g′4(η)

σ̃ 4(η)
· εt1 · · · εt4

)
ξt1t2ξt3t4

+ (j − 1)2(pn + 1)2 + 2(j − 1)2(pn + 1)

]

+ 2
n∑

j=1

j−1∑
k=1

(
(k − 1)µ4

pn∑
t1,...,t4=0

E
(

g′4(η)

σ̃ 4(η)
· εt1 · · · εt4

)
ξt1t2ξt3t4

+ (j − 1)(k − 1)(pn + 1)2 + 2(k − 1)2(pn + 1)

)

= O

(
n3

pn∑
t1,...,t4=0

E
(

g′4(η)

σ̃ 4(η)
· εt1 · · · εt4

)
ξt1t2ξt3t4

)

+ n4

4
(pn + 1)2(1+ o(1)

) + n4

6
(pn + 1)

(
1+ o(1)

)
.

Applying (M2), we infer

E

((
n∑

j=1

{E(W̃2
nj |Fn,j−1)}

)2)
= 1+ o(1)

and conclude that

Var

(
n∑

j=1

{E(W̃2
nj |Fn,j−1)}

)
→ 0,

whence the result follows.�

PROOF OFLEMMA 7.6. Combining detailed calculations ofE(W4
nj |Fn,j−1)



804 H.-G. MÜLLER AND U. STADTMÜLLER

andE(E(W4
nj |Fn,j−1)) with (M2) and (M3) leads to

n∑
j=1

E(W̃4
nj )

= O

(
1

n4p2
n

)[
O(n2)

pn∑
t1,...,t8=0

E
(

g′4(η)

σ̃ 4(η)
εt1εt3εt5εt7

)

× E
(

g′4(η)

σ̃ 4(η)
εt2εt4εt6εt8

)
ξt1t2ξt3t4ξt5t6ξt7t8

+ O(n3)

pn∑
t3,t4,t7,t8=0

ξt3t4ξt7t8E
(

g′4(η)

σ 4(µ)
εt3εt4εt7εt8

)]

= o(1),

completing the proof. �
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