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FUNCTIONALS OF DIRICHLET PROCESSES, THE
CIFARELLI-REGAZZINI IDENTITY AND
BETA-GAMMA PROCESSES!

BY LANCELOT F. AMES
Hong Kong University of Science and Technology

Suppose thatPy(g) is a linear functional of a Dirichlet process with
shaped H, wheref > 0 is the total mass and/ is a fixed probability
measure. This paper describes how one can use the well-known Bayesian
prior to posterior analysis of the Dirichlet process, and a posterior calculus
for Gamma processes to ascertain properties of linear functionals of Dirichlet
processes. In particular, in conjunction with a Gamma identity, we show
easily that a generalized Cauchy-Stieltjes transform of a linear functional of
a Dirichlet process is equivalent to the Laplace functional of a class of, what
we define as, Beta-Gamma processes. This represents a generalization of an
identity due to Cifarelli and Regazzini, which is also known as the Markov—
Krein identity for mean functionals of Dirichlet processes. These results also
provide new explanations and interpretations of results in the literature. The
identities are analogues to quite useful identities for Beta and Gamma random
variables. We give a result which can be used to ascertain specifications on
H such that the Dirichlet functional is Beta distributed. This avoids the need
for an inversion formula for these cases and points to the special nature of the
Dirichlet process, and indeed the functional Beta-Gamma calculus developed
in this paper.

1. Introduction. Let P denote a Dirichlet random probability measure on
a Polish spacéy, with law denoted asD(dP|0 H), where@ is a nonnegative
scalar andH is a (fixed) probability measure oy. In addition, let.M denote
the space of boundedly finite measures ¥%nThis space contains the space
of probability measures or{. The Dirichlet process was first made popular
in Bayesian nonparametrics by Ferguson (1973) [see also Freedman (1963) for
an early treatment], and has subsequently been used in numerous statistical
applications. Additionally, the Dirichlet process arises in a variety of interesting
contexts outside of statistics. Formallp, is said to be a Dirichlet process if
and only if for each finite collection of disjoint measurable séis..., A, the
random vectorP (A1), ..., P(Ax) has a Dirichlet distribution with parameters
OH(A1),...,0 H(A). In particular, P(A) is a Beta random variable for any
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648 L. F. JAMES

measurable set. An important representation of the Dirichlet, which is analogous
to Lukacs characterization of the Gamma distributionPis) = u(-)/ T where

u is a Gamma process with finite shape parametrand 7T = fyu(dy) is a
Gamma random variable with shapp@nd scale 1. The law of the Gamma process
is denoted ag.(du|6 H) and is characterized by its Laplace functional

f e O G (|0 H) = o~y 090N H @)
M

for each positive bounded measurable functipon Y. For our purposes we
shall consider the more general class of real-valued funcgombkich satisfy the
constraint

) ‘émm1+MQNWwa<mw

This condition, (1), as shown by Doss and Sellke (1982) and Feigin and Tweedie
(1989), is necessary and sufficient for the existence of the linear functionals

mw=4awmwy

An important fact is thaf” and P are independent, which as we shall see, has a
variety of implications.

An interesting problem initiated in a series of papers by Cifarelli and Regazzini
(1990) is the study of the exact distribution of linear function®lg) of the
Dirichlet process. One of their contributions is the important identity
2) / D(P|OH) = ey |Og[1+zg(y)]0H(dy)’

M (1+2P (@)’
where typicallyz is in the complex plan&’. We call (2) theCifarelli-Regazzini
identity. The result in (2) is sometimes called thdarkov—Krein identity for
means of Dirichlet processes. Diaconis and Kemperman (1996) discuss some
consequences of this result, which has implications relative to the Markov moment
problem, continued fractions theory, exponential representations of analytic
functions, and so on [see Kerov (1998) and Vershik, Yor and Tsilevich (2001)].
Vershik, Yor and Tsilevich (2001) expand upon this, emphasizing that the right-
hand side of (2) is the Laplace functional of a Gamma process with shdpe
That is,

©) D(P|IOH) = fM e~ &G (du|0 H).

L4u+¢P@»9
Their interpretation, which is in the sense of a Markov—Krein transform, is that the
generalized Cauchy-Stieltjes transform of orélef P(g), whereP is a Dirichlet
process with shapgH, is the Laplace transform gf(g) whenu is the Gamma
process with shapeéH. The authors then exploit this fact to rederive (3) via an
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elementary proof using the independence property’adnd T'. An interesting
qguestion is, what can one say about

(4) D(dP|OH)

/M (1+zP(g)?
when 6 and ¢ are arbitrary positive numbers? That is, can one establish a
relationship of (4) to the Laplace functional of some random measuresay
which is similar tou, for all g and@? Lijoi and Regazzini (2004) establish analytic
results for (4), relating them to the Lauricella theory of multiple hypergeometric
functions. Theorem 5.2 of their work gives analogues of (2), stating what they call
a Lauricella identity, but does not specifically state a relationship such as (3). We
should say for the case> ¢ that it would not be terribly difficult to deduce an
analogue of (4) from their result. However, this is not the case whery, which

is expressed in terms of contour integrals. Their representations, féraaiti g,

as clearly demonstrated by the authors, however have practical utility in regards
to formulae for the density oP(g). In this case, one wants to have an expression
for (4), wheng = 1 and for alld. Some related works include the papers of Kerov
and Tsilevich (1998), Regazzini, Guglielmi and Di Nunno (2002), Regazzini, Lijoi
and Priunster (2003) and the manuscript of James (2002).

1.1. Preliminaries and outline. In this paper we develop results that are
complementary to the work of Lijoi and Regazzini (2004) and Vershik, Yor and
Tsilevich (2001). In particular, we show that (3), as interpreted in Vershik, Yor and
Tsilevich (2001), extends to a relationship between (4) and the Laplace functional
of a class of what we call Beta-Gamma processes defined by scaling the Gamma
process law b)T—d, for all numbersi such that — d > 0, that is, processes with
laws equal to

o) 4
5) BYEIOH. d) = £ T G(duIOH).
In particular, our main result concerns the choicé ef 6 — g for arbitrary positive
numbers which are not necessarily equal. The approach relies in part on, in this
case, mostly familiar Bayesian prior posterior calculus for Dirichlet and Gamma
processes in conjunction with the usage of the following well-kn@samma
identity for g > O:

1 oo
(6) T79= —f v e T gy.
I'(g) Jo

That is to say, purely analytic arguments are replaced by Bayesian arguments using
the familiar results in Ferguson (1973), Lo (1984) and Antoniak (1974), thus giving
the derivations a much more interpretable Bayesian flavor. More specifically, albeit
less well known, we use the results in Lo and Weng (1989) as demonstrated for
more general processes in James (2002). This bypasses the need, for instance,
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to verify certain integrability conditions and the usage of limiting arguments.
Moreover, somewhat conversely to Lijoi and Regazzini (2004), we show how
properties of the Dirichlet and Beta-Gamma processes yield easily interesting
identities related to Lauricella and Liouville integrals [see Lijoi and Regazzini
(2004) and Gupta and Richards (2001)]. Although we exploit the independence
property of T and P to prove our results, our approach is quite different from

the methods used by Vershik, Yor and Tsilevich (2001) to prove (3). While their
proof is certainly elegant, it does not seem possible to extend to other processes.
Our methods, however, are influenced by their proof of an analogous result for
the two-parameter extension of the Dirichlet process [see Pitman (1996)] which
relies on (6) and the fact that such processes are based on scaled laws. That is
to say, we present an approach which is extendable to other models [see James
(2002), Section 6]. However, for the Beta-Gamma processes defined in (5), the
independence property betweErand P translates into the property

) th<P>:o<dP|eH>= th<P>9<du|9H>= /th)m(dmeH, d)

for all integrables. The property (7) seems to suggest that the Beta-Gamma
process may not have much utility relative to calculations involvihdhowever,

it is precisely this property that we shall exploit. In the next section we shall first
develop, rather quickly, two supporting results concerning the calculus of Dirichlet
and Beta-Gamma processes. We will then show how these results are used to easily
derive our main results in Theorems 2.1 and 2.2 based on Bayesian arguments. We
close the paper by showing how our methodology, a Beta-Gamma calculus for
Dirichlet processes, leads to a functional analogue of the classical Beta-Gamma
calculus for random variables. That is, we provide condition&much thatPy (g)

is Beta distributed.

2. Functionals of Dirichlet processes, the Cifarelli-Regazzini identity and
Beta-Gamma processes.  We start by recalling some properties of the Dirichlet
process. Letq, ..., Y, denote random elements in the spggavhich conditional
on P are i.i.d. with law P. P is a Dirichlet process with shapgH. These
specifications define a joint law oY, P), where, from Ferguson (1973), it follows
that the posterior distribution @?|Y is also Dirichlet with shape

n
O +n)H,=0H+Y 5y,
i=1

Additionally, the marginal distribution of is the Blackwell and MacQueen (1973)
distribution described as

NG n i—-1
PdY|0H) = ﬁemdm I (9H + Z(Syj)(dyi).
i=2 j=1
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The Blackwell-MacQueen distribution admits ties. Hence one can représent
(Y*,p), whereY* ={Y}, ..., Y;f(p)} denotes the(p) < n unique values oY . The
expressiorp = {Cy, ..., Cyp} denotes a partition of the integelks ..., n} with
n(p) elements. TheC; ={i:Y; = Y;."} for j =1,...,n(p) denote the collection
of values equal to each uniqugf, for j =1,...,n(p). The cardinality of each
cell C; is denoted a8; ,. WhenH is nonatomic, then one can write

n(p)
PdY|0H)=m(plo) [ H@Y}).
j=1
where
TPl = Ty 1‘[( ejn—1

is a variant of Ewens’ (1972) sampling formula, which was independently derived
by Antoniak (1974). It is also called the Chinese Restaurant process [see Pitman
(1996)] and plays a fundamental role in Lo (1984 )Hlis discrete with probability
mass functiorp, then

re) "®Tep;) +ejn)

PY|0H) =
(@Y|6H) F@+n) ;;  TEp))

In any case, note that appealing to standard Bayesian arguments, the results
of Ferguson (1973) imply that one has

| npyoarom = | [/ h(P)fD(dPI(G+n)Hn)]IP>(dY|9H).
M yn | Jou

This simple consequence is fundamental to our presentation. It is evident that (8)
along with the various forms oP (dY|0 H) yield nontrivial expressions which
might otherwise require an appeal to, for instance, the theory of special functions
or combinatorics. In the same spirit, we now derive the posterior distribution of
the Beta-Gamma processes. From Lo and Weng (1989), one has the following
disintegration of measures:

©) [[w@yng@uloH) =

i=1

F(9+n)g<

@) dp|0H + Zsy,.)IP(deH),

i=1

where G(dw|0H + 7 _18y,) denotes a Gamma process with shapé +
Y18y, Using (7), it is easy to see that, [['_; P(dY;)BG(dnl0H,d) =
P(dY|6 H). Combining this fact with (9) easily yields the following description
of the posterior distribution of a Beta-Gamma process.



652 L. F. JAMES

PROPOSITION2.1. Let u have law BG(du|0H, d) defined for all d, such
that & — d > 0. Then from (7),thelaw of P = /T is D(d P|6 H). Suppose that
Y1,...,Y,|P arei.i.d. P;thenthe posterior distribution of u|Y isa Beta-Gamma
process with parameters (6 + n) H, and n + d, defined as

'@ +n)

BG(dp|(@ +n)Hy,n+d) = re_d)

T~ DG (4|0 4 n)H,).
Hence, similar to (8), one has

G0 BGAIOH, d)

(10)

= [ [ 185t + mtn.n+ @) [Eavion
¥ LJM

for all integrable f. Note that setting d = 0 shows that if u is 4(dur|6 H), then its
posterior distribution is 84 (du|(6 + n) H,, n), which is not a Gamma process.

REMARK 2.1. Note that the use of (7), (8) and (10) sets up a myriad of
interesting equivalences which will prove useful in our derivations. However, we
do point out that while (10) implies (8), the converse is not true.

Another important property of the Gamma process that we shall exploit is the
algebraic identity

(11) f e_(”T+w“(g))9(d,u,|9H) —(1+ v)—ee—fy log[1+(w/(1+v)g IO H (dy)
M

Let

B(dula,b) = E((“)i;f([;))u“—l(l— W’ ldu  forO<u<1
a

denote the density of a Beta random variable with paraméteris). We now
establish our final preliminary result before our main theorem.

PROPOSITION2.2. Let 6 and ¢ be arbitrary nonnegative numbers. Then for
any integer n > 0 that satisfies the constraint 6 +n — g > 0, the following formula
holds:

' +n)
F'O+n—q)Jm (T +zu(g))?

:/ ¢~ BG(d (O +n)Hy, 6 + 1 — q).
M

9(d,u|(9 + ”l)Hn)
(12)
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PROOF Apply the Gamma identity toT" + 1 (g))~¢ and then (11) withv = w
andé H replaced by® + n) H,, to show that the left-hand side of (12) is equal to

'@ +n) % a1, ly10g11+(v/(L+v)zg (DI H (dy)
r'®+n—-q)T(qg) o

n(p) —ej
X 1_[ ( . Zg(Y’-“)) (1+v)~ 0 qu.
A+v)°

Similarly, the following expression is obtained for the right-hand side of (12) by
applying the Gamma identity t6~©¢+"~4) (11) withw = 1 and a further change
of variable:

(13) / —/y|09[1+uzg()’)]9H(dy) l_[ 1+ng(Y )) ejnc(B(dulq Q‘Jl‘n—q)
j=1

The result is obtained by applying the transformatica v/(1+v). O

We now present a new result which relates the generalized Cauchy-Stieltjes
transform of Dirichlet process linear functionals to the Laplace functional of
Beta-Gamma processes. This presents a generalization of the Cifarelli-Regazzini
identity, complementary to the Lauricella identities deduced in Lijoi and Regazzini
[(2004), Theorem 5.2]. We also present some interesting additional identities.

THEOREM 2.1. Let D(dP|0H) denote a Dirichlet process with shape 6 H.
Let ¢ denote a function satisfying (1). Then the following relationships are
established:

(i) For any positiveg and 6,
(14) f (1—|—zP(g))_q£D(dP|9H):/ e~ & BG(A|OH, 0 — q).
M M

Note that thelaw B8G(du|60 H, 6 — q) existsfor all positive # and ¢, and arbitrary
H,sinced — (6 —qg) =g > 0.

(i) For any positiveg and 6, and any integer n > O which satisfiesf +n — g >
0,thequantitiesin (14)areequivalent to [y.[ [, e ¢ BG(d |0 +n)Hy, 0 +n—
q)IP(dY |6 H). An explicit expression can be deduced from the equivalence of the
inner termto (13).1n particular, when H isnonatomic, the expression is equivalent
to

1

Z”(p|9)/ oy 1091+uzg (NG H (dy)
0

P

n(p)
[Hf (1+uzg(y)~ ewmdy)}mqu 6+n—q).
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For the Gamma process with law G(du|60 H), its Laplace functional may be
represented asabovefor all n > 1 and g = 6.
(i) When 6 — g > 0, statements (i) and (ii) with n = 0 imply that

/M (1+2P(g) " DEPIOH)
(15) 1
=/0 e~ Jy109HUzgWMWH @Y By 10 0 — g),

which coincides with the result in Lijoi and Regazzini [(2004), Theorem 5,
equation (5.2)].

PROOF A general strategy is formed by first writingl +zP(g)) 7 =
T9(T + zu(g))~ 9 = h(P). For the proof of statement (i), we first assume without
loss of generality thaj = n + d, whered is a positive number such thét- d > 0,
andn > 0is an integer chosen such that n —g > 0. This means that? = 779,
Now using (8) and then (7) witlBG.(du|(0 + n)H,, q) yields

/M (1+zP(g)) 'D@PIVH)

_Te+n) [/7
L@ —d)Jy LIu (T +zp(8))?

Apply Proposition 2.2 to the inner term, recalling tlfat- n — g =0 — d. This
yields the desired expression,

G(dul(O + n)Hn)}IP’(dYWH).

f%n UM e O BG(dnl(0 +n)Hy, 0 +n — q)]P(dweﬂ)

(16)
:/ e~ BG (Al H, 6 — q).
M

Note how again an appeal to a Bayesian argument, that is, using (10) in
Proposition 2.1 withf (1) = e~?*®) is used to deduce easily the equivalence of
the right- and left-hand sides of (16)

REMARK 2.2. SinceH is an arbitrary distribution, the result applies to a
Dirichlet process posterior distribution based on, say, a sample ofistzaving
no particular relationship te. For concreteness, suppoBds a Dirichlet process
with shapex Pg + Y"1 4 8x,, where Py is an arbitrary probability measure,is a
positive scalar an&X4, ..., X,, are fixed points. Then the results in Theorem 2.1
hold for this P by settingd =« +m and0H =a Py + Y 7" 4 8x,.

REMARK 2.3. As in Kerov and Tsilevich (1998) and Vershik, Yor and
Tsilevich (2001), Theorem 2.1 applies to the joint distribution of linear functionals,
say (P(g1),..., P(gm)), where g1,..., g, are functions satisfying (1). The



BETA-GAMMA PROCESSES 655

generalized Cauchy-Stieltjies transform for joint distributions is defined by
replacingz P(g) by > ;1 z; P(gi). Since}_" ; z; P(gi) = P(3_"1 zi&i), the result
is seen by replacingg with " ; z; g; in Theorem 2.1.

We now discuss some interesting results obtained from Theorem 2.1. Note
the relative ease by which Bayesian arguments can be used to derive otherwise
complex expressions such as that appearing in Theorem 2.1(ii). They cade
is of particular interest in terms of giving an expression for the Cauchy-Stieltjes
transformP (g), which can be inverted to obtain an expression for the distribution
of P(g). Settingg = 1 in Theorem 2.1(ii) gives a variety of equivalent expressions
which hold for all6 andn > 1. Here, as a corollary, we present the simplest
expression that holds for allwith n = 1.

COROLLARY 2.1. Let D(dP|6H) denotea Dirichlet processwith shaped H,
where H isan arbitrary probability measure. Let g denote a function satisfying (1);
then for all 6 > 0,

/ D(dP|OH)
e (1+2P(g)
_ f b fyloatuzgopry) [ _OHEY) g o1
0 y 1+uzg(y)

When 6 > 1, this expression equates to the expression in Theorem 2.1(iii). When
6 = 1, Theorem 2.1(ii) shows that the right-hand side of (17) is the Laplace
functional of a Gamma process with shape H, which correspondsto (2).

The expression (17) can be seen as complementary to the expressions obtained
in Lijoi and Regazzini (2004). However, our results are quite different in the case
where 0< 6 < 1, where those authors obtained an expression in terms of contour
integrals.

Let £(Z) denote the law of a random elementFor the remainder of this work,
let up,0—q be a Beta-Gamma process with parame(@rs, 6 — ¢), and letU, ,
denote a Beta, b) random variable. Lef, denote a Gamma random variable
with shapex and scale 1, and lef; be a random element with distributidf.

Let 1y denote a Gamma process with sh&# and assume that the variables
e, Uap, Ty, Y1 are independent. Additionally, Ié% denote a Dirichlet process
with shaped. When convenient we will simply writ& = T to denote that the
distribution of X is equivalent to that off'. That is, X = U, ;, means thatX

has a Beta distribution with parametdrs ). The next result involves a series

of distributional identities. These are based on Bayesian mixture representations
deduced from the form of the posterior distribution mixed over the marginal
distribution, P(dY|0H). Some important consequences will be demonstrated
thereafter.



656 L. F. JAMES

THEOREM 2.2. Let upg—, be a Beta-Gamma process with parameters
(OH,0 — q) and let uy denote a Gamma process with shape 6 H. Then for all
positive 6 and ¢ and an integer n chosen such that 6 +n — ¢ > 0, the following
distributional equalities hold:

(i) For all & > 0and g, and aninteger n chosen suchthat +n — g > 0,

n(p)
(18) °C(M9,9—q) = °C<Uq,9+n—qﬂé + Uq,@-i—n—q Z Gj,n(SYj’.">,

j=1
where conditional on p the distinct variables on the right-hand side are mutually
independent such that U, ¢1,—, is Beta with parameters (¢,0 +n —q), g isa
Gamma processwith shape6 H, {G ; ,} areindependent Gamma random variables
with shape ¢; , and scale 1. The distribution of Y = (Y*,p) is P(dY|0H). In
particular, if H is nonatomic, the Y* for j = 1,...,n(p) arei.i.d. H, and the
distribution of p is 7 (p|6). Statement (i) implies the following results.

(i) Foralloandg =1,

(19) £L(pg,o—1) = L(Urope + Ur9T1y,).
If o denotes a Gamma process with arbitrary shape parameter 6 H, then
(20) L(1g) = L(Us, 116 + Ug 1 T18y,).
(iii) For all positive 9 and ¢,
(21) L(g,0—q) = L(Ty Pp),

where T, is a Gamma random variable with shape ¢ and scale 1 independent
of Py, which is a Dirichlet process with shape 6 H. Hence for all positive 6
and g, L(Toup,0—q) = L(T, 1), Where Ty is Gamma with shape 6 and scale 1,
independent of 1 9—,. Smilarly, T, and 1 are independent.

ProOOF The distributional identity in (i) is a direct consequence of the mixture
representation of the law qfy »y_,, in the form of the posterior distribution of
e,0—q|Y andP(dY |0 H), deduced from the expression for the Laplace functional
in Theorem 2.1(ii). Note that all quantities on the right-hand side of (18),
including p, are random. We now show statement (jii) follows from statement (i).

Notice Ty, := no(Y) + Z’;f{ Gj. is a Gamma random variable with shape
6 4+ n independent ot/, g4,—,. Moreover, using the mixture representation of

the Dirichlet process derived from its posterior distribution &dY |0 H), it
follows that (g + Z';-(:p{ G_,-,,,ay_;r)/Teﬂ is a Dirichlet process with shapeH,
independent offy,,, and U, ¢+,—4. Hence the right-hand side of (18) can be
written asUy g 4n—q To+n Po. The result is completed by noting thay ¢,y Tp1x

is equal in distribution ta,. [J
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REMARK 2.4. The distributional identities in (19) and (20), which are new,

are analogous to similar identities for Dirichlet processes which have a variety
of applications, as can be seen in Diaconis and Kemperman (1996), Sethuraman
(1994) and Hjort (2003). In addition, distributional results between Beta and
Gamma random variables have quite striking consequences, as can be seen from,
for instance, Dufresne (1998). We view our results as functional extensions of
some of those ideas, and it seems worthwhile to pursue more analogous results.
Note importantly that our results do not require thatg) is Gamma distributed.

REMARK 2.5. The expression in Corollary 2.1 is obtained by evaluating the
Laplace transform of the right-hand side of (19), in the order of integration of
we, T1, Y1 and finally Uy ¢. It is evident that other equivalent expressions can be
formed by changing the order of integration. It is no coincidencetihgthas the
same distribution a%; /(71 + T) whereT = [y, u(dy) = Ty. Additionally, further
representations can be obtained by using the distributional identity

(T)?
(TP + TQTp ,

whereTy, T, andz, are all independent ang, is a stable random variable with
index 0< p < 1.

Uiy =

2.1. Didtributional characterizations via the Beta-Gamma calculus. The ex-
pression (21) tells us precisely that, for @landg, a Beta-Gamma process with
parameter® H andé — ¢ is equivalent in distribution to a Dirichlet process with
shape& H, scaled by an independent Gamma random variable with shajence,
using this interpretation the first result in Theorem 2.1 is an immediate conse-
quence of

E[e™H00-4(8)] = %/wﬂ_l[/ e_Z’P(g)i)(dPIQH)]e_’dt
q) Jo M

:/M (1+2P(9) ' DAPIOH).

Although this viewpoint at first may seem to have limited usage, it has interesting
consequences when combined with our other results, within the context of the
Beta-Gamma calculus. Note that sinegs—,(g) = T, Po(g), one may apply the
special features of the classical Beta-Gamma calculus combined with our results
to deduce the following characterization of whej(g) is Beta distributed, in the
case wherg(Y) is not an indicator variable.

PROPOSITION2.3. Let 0, ¢ and o denote positive real numbers. Suppose
that for some g > 0, ug,0—q(g) = Ty, that is, it is Gamma distributed with shape
parameter « and scale 1; then for the case 0 < @ < ¢, Py(g) = Uy g—o and
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o (g) = ToUy, q—« . Fromthedistributional identity (18),thisistrueif one chooses
the distribution of g(Y) such that, for afixedn > 1,

n(p)
(22) ToUsg—a+ ) Gjg(Y}) = TosnUsg—a
j=1

where Tg_Ua_,q_o, and Z;(:pi G g(YJ’-“) are independent. For clarity, when n =1,
(22) specializesto Ty Uy, g—o + T18(Y1) = To41Uq g—a-

Proposition 2.3 provides a characterization for the reverse question as to which
choice of H produces a Beta distribution faPy(g). This is of course seen to
be equivalent to specifyingl to induce a particular distribution on the quantity
Z;’(:p{ ng(YJ’.‘), for some fixed value ofi, which satisfies the constraint (22). It
is clear by using (18), that this particular feature, of inducing a distribution on
Z;’(:pi G (YY) satisfying appropriate constraints, can be applied to any choice of
distribution f]orPg (g). However, because of the available independence properties
between Beta and Gamma random variables, the occurrence of a Beta distribution
for Py(g) can be checked several ways, not available to other distributions. In
particular, note thaPy(g) = Uy 4« if and only if ug 94, = T,,. Hence one can
chooseg(Y) (or check this), such that the Laplace transform

E[e—zue,ofq(g)] — (1_|_ Z)_a,
or perhaps more easily using the Gamma process to check whett©rsatisfies

e_fy |09[1+zg(y)]9H(dy) — E[e—ZTGUa,q—a]'

We show in the next proposition the limitations, within the context of Proposi-
tion 2.3, of choosingi?g ng(YJ’.") to be a Gamma random variable.

PrROPOSITION2.4. Supposethat H ischosen such that for some fixed n > 1,
Z;‘(ﬂ Gj g(Yj‘) has a Gamma distribution with shape parameter ¢,, depending
onn, and scale 1. Then the only value of ¢, such that Py(g) hasa Beta distribution
isc, =n/2. Moreover, the distribution of Py(g) is a symmetric Beta distribution
with parameters (0 +n/2,6 + n/2), for all n > 1 and all 6§ > 0. Equivalently
16, —+n) (&) = Toyny2 and g (g) = ToUp1n/2,60+n/2, and hence is never Gamma
distributed. These specifications correspond to the choice of « = 6 + n/2 and
q =20 + n in Proposition 2.3.

PROOF The proof is obtained by applying Theorem 2 of Dufresne (1998),
combined with the constraints deduced from (22) in Proposition 2.3. It follows
that the only solution is given by

ToUgsn/2.04n/2 + Tnj2 = To4nUgtn/2,604n)2- O
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It is already known [see Cifarelli and Melilli (2000)] that #f(Y) = U1/2,1/2,
the arcsine law, thenPy(g) = Upi1/2,041/2. That is the case ofi = 1 in
Proposition 2.4. The case for= 2 corresponds to

ToUpt1.0+41+ [pT{ + T1lg(Y1) + (1 — p)T{g(Y2) = Ty12Up+1.0+1,

whereT;, T1 are independent exponential (1) random variablgsand Y, both
have distributionH, but may be tied.p is a Bernoulli random variable with
success probability /16 + 1), corresponding to the case whéfe= Y», from the
Blackwell-MacQueen urn scheme. It is not immediately clear how to chéfose
such thalpT{ + T1lg(Y1) + (1 — p)T g (Y2) = Tx.
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