The Annals of Satistics

2005, Vol. 33, No. 2, 522-541

DOI 10.1214/009053604000001255

© Institute of Mathematical Statistics, 2005

ASYMPTOTIC RESULTS WITH GENERALIZED ESTIMATING
EQUATIONS FOR LONGITUDINAL DATA

By R. M. BALAN Y AND I. SCHIOPU-K RATINA
University of Ottawa and Statistics Canada

We consider the marginal models of Liang and Zed#oinetrika 73
(1986) 13-22] for the analysis of longitudinal data and we develop a theory
of statistical inference for such models. We prove the existence, weak
consistency and asymptotic normality of a sequence of estimators defined
as roots of pseudo-likelihood equations.

1. Introduction. Longitudinal data sets arise in biostatistics and life-time
testing problems when the responses of the individuals are recorded repeatedly
over a period of time. By controlling for individual differences, longitudinal
studies are well-suited to measure change over time. On the other hand, they
require the use of special statistical techniques because the responses on the same
individual tend to be strongly correlated. In a seminal paper Liang and Zeger
(1986) proposed the use of generalized linear models (GLM) for the analysis of
longitudinal data.

In a cross-sectional study, a GLM is used when there are reasons to believe
that each responsg depends on an observable vecxgrof covariates [see the
monograph of McCullagh and Nelder (1989)]. Typically this dependence is spec-
ified by an unknown parametet and a link functionu via the relationship
wi(B) = M(xiTﬁ), whereu; (8) is the mean ofy;. For one-dimensional observa-

tions, the maximum quasi-likelihood estimafgy is defined as the solution of the
equation

1) > i (Bi(B) My — 1i(B)) =0,
i=1

where [i; is the derivative ofu; andv;(8) is the variance ofy;. Note that this
equation simplifies considerably if we assume thaiB) = ¢,~/:L(xi7ﬂ), with a
nuisance scale parametgyr. In fact (1) is a genuine likelihood equation if the
yi’s are independent with densitiegy;, ¢;) exple; (X! 8)y; — b(xI B)1}.

In a longitudinal study, the components of an observayios (y;1, ..., Yim)'
represent repeated measurements at times Jln for subjecti. The approach
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proposed by Liang and Zeger is to impose the usual assumptions of a GLM only
for the marginal scalar observatiops and thep-dimensional design vectors; .

If the correlation matrices within individuals are known (but the entire likelihood
is not specified), then the:-dimensional version of (1) becomesgeneralized
estimating equation (GEE).

In this article we prove the existence, weak consistency and asymptotic
normality of a sequence of estimators, defined as solutions (rootggeadio-
likelihood equations [see Shao (1999), page 315]. We work within a nonparametric
set-up similar to that of Liang and Zeger and build upon the impressive work of
Xie and Yang (2003).

Our approach differs from that of Liang and Zeger (1986), Xie and Yang
(2003) and Schiopu-Kratina (2003) in the treatment of the correlation structure
of the data recorded for the same individual across time. As in Rao (1998), we
first obtain a sequence of preliminary consistent estimatf$, of the main
parameteiBy (under the “working independence assumption”), which we use to
consistently estimate the average of the true individual correlations. We then create
the pseudo-likelihood equations whose solutions provide our final sequence of
consistent estimators of the main parameter. In practice, the analyst would first use
numerical approximation methods (like the Newton—Raphson method) to solve a
simple estimating equation, where each individual correlation matrix is the identity
matrix. The next step would be to solve f®in the pseudo-likelihood equation, in
which all the quantities can be calculated from the data. This approach eliminates
the need to introduce nuisance parameters or to guess at the correlation structures,
and thus avoids some of the problems associated with these methods [see pages
112 and 113 of Fahrmeir and Tutz (1994)]. We note that the assumptions that
we require for this two-step procedure [our conditiordd), (Ty,), (Cy)] are
only slightly more stringent than those of Xie and Yang (2003). They reduce to
conditions related to the “working independence assumption” when the average of
the true correlation matrices is asymptotically nonsingular [our hypothesis (H)].

As in Lai, Robbins and Wei (1979), where the linear model is treated, we relax
the assumption of independence between subjects and consider residuals which
form a martingale difference sequence. Thus our results are more general than
results published so far, for example, Xie and Yang (2003) for GEE, and Shao
(1992) for GLM.

Since a GEE is not a derivative, most of the technical difficulties surface when
proving the existence of roots of such general estimating equations. Two distinct
methods have been developed to deal with this problem. One gives a local solution
of the GEE and relies on the classical proof of the inverse function theorem
[Yuan and Jennrich (1998) and Schiopu-Kratina (2003)]. The other method, which
uses a result from topology, was first brought into this context by Chen, Hu and
Ying (1999) and was extensively used by Xie and Yang (2003) in their proof of
consistency. We adopt this second method, which facilitates a comparison of our
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results to those of Xie and Yang (2003) and incorporates the inference results for
GLM contained in the seminal work of Fahrmeir and Kaufmann (1985).

This article is organized as follows. Section 2 is dedicated to the existence
and weak consistency of a sequence of estimators of the main parameter. To
accommodate the estimation of the average of the correlation matrices in the
martingale set-up, we require two conditions: (C1) is a boundedness condition
on the(2+ §)-moments of the normalized residuals, whereas (C2) is a consistency
condition on the normalized conditional covariance matrix. In this context we use
the martingale strong law of large numbers of Kaufmann (1987). Section 3 presents
the asymptotic normality of our estimators. This is obtained under slightly stronger
conditions than those of Xie and Yang (2003), by applying the classical martingale
central limit theorem [see Hall and Heyde (1980)]. For ease of exposition, we have
placed the more technical proofs in the Appendix.

We introduce first some matrix notation [see Schott (1997)AiEap x p
matrix, we will denote with|A|| its spectral norm, with déd) its determinant and
with tr(A) its trace. IfA is a symmetric matrix, we denote Bynin(A)[Amax(A)]
its minimum (maximum) eigenvalue. For any matAx ||A|| = {Amax(AT A)}Y/2.

For a p-dimensional vectox, we use the Euclidean norix|| = (x”x)/2 =
tr(xx’)1/2. We letA1/2 be the symmetric square root of a positive definite makrix
andA~12 = (AY2)~1 Finally, we use the matrix notatigh < B if AT AL < ATBa
for any p-dimensional vectok.

Throughout this article we will assume that the number of longitudinal
observations on each individual is fixed and equahktaViore precisely, we will
denote withy; := (y;1,..., yim)’, i <n, a longitudinal data set consisting of
respondents, where the componentsypfrepresent measurements at different
times on subject. The observations;; are recorded along with a corresponding
p-dimensional vectox;; of covariates and the marginal expectations and variances
are specified in terms of the regression paramgt#roughg;; = xiTjﬁ as follows:

@ wi(B)=Eg(yij)) =),  of(B):=Varg(y;) = i),

where i is a continuously differentiable link function withh > 0, that is, we
consider only canonical link functions.
Here are the most commonly used such link functions:

In the linear regressiom,(y) =

In the log regression for count dajaiy) = exp(y).

. In the logistic regression for binary daja;y) = exp(y)/[1 + exp(y)].

. Inthe probit regression for binary data(y) = ®(y), where® is the standard
normal distribution function; we hav@(y) = (27)~ Y2 exp(—y?/2).

roN e

In the sequel the unknown paramefeiies in an open seB € R” and o
is the true value of this parameter. We normally drop the paransigtés avoid
cumbersome notation.
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Let i (B) = (ir(B). ..., wim(B)T, Ai(B) = diagaf(B), ..., 05, (B)) and
% (B) := Covg(y;). Note thatX; _Al/ZR Al/2 whereR; is the true correlation
matrix ofy; at 8o. Let X; = (X;1, ... xlm)

We consider the sequenegf) = (¢i1(B), ..., cim(B))T with &ij(B) =Yij —
wij(B), and we assume that the residugéds);~1 form a martingale difference
sequence, that is,

E(g|F-1) =0 foralli > 1,

where #; is the minimalo -field with respect to whicla, ..., &; are measurable.

This is a natural generalization of the case of independent observations.
Finally, to avoid keeping track of various constants, we agree to denote“with

a generic constant which does not depena opnut is different from case to case.

2. Asymptotic existence and consistency. We consider the generalized
estimating equations (GEE) of Xie and Yang (2003) in the case when the
“working” correlation matrices ar®R!"®® = | for all i. This is also known
as the “working independence” case, the word “independence” referring to the
observations on the same individual. Kép)n be a sequence of estimators such
that

3) P(g®PB,)=0)—>1 and B, > Bo.

whereg®®P(g) = >, XT&; () is the “working independence” GEE.

The following quantities have been used extensively in the work of Xie and
Yang (2003) and play an important role in the conditions for the existence and
consistency of,,:

indep, _1
Hindep _ XH:X-TA,'X,' indep._ max <, kmax((Ri _ p) ) _
n 1 4 n * .
i=1 min; <, )\min((R;n ep)_l)

£ — 1y maximax((R"H 1) = m
i<n

(yn(O))indepl max X’ (Hlndep) Xij .

i<n,j<m

We will also use the following maxima:

ji(6i)) 1))

1(6:)) I (i)
The fact that the residualg;);>1 form a martingale difference sequence does

not change the proofs of Theorem 2 and Theorem A.1(ii) of Xie and Yang (2003).

Following their work, we conclude that the sufficient conditions for the existence
of a sequencé€s, ), with the desired property (3) are:

k31 (8) = maxmax

i<n j<m

k?1(8) = maxmax

i<n j<m
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(AH)NMeP for anyr > 0, kLHndeP _ SUp, _ pincer,, k1B, 1 = 2,3, are bounded,

(1%)198P i (Hyy 2P) — oo,
(C?L)lndep n1/2(yr§0))|ndep_) 0,

where B'%P) = (8: [|(HM®P1/2(8 — Bo)|| < mY/2r}. We denote byC) %P the
set of conditiongAH)™Mdep, (1% yindep (Cx yindep

It turns out that, in practice, the analyst will have to verify conditions similar to
(C)'ndepin order to produce the estimators that we propose (see Remark 5). All the
classical examples corresponding to our link functions 1—4 are within the scope of
our theory. We present below two new examples.

EXAMPLE 1. Suppose that = 2. Letx;; = (aij, bij), un = ¥i <y j<m 0505
=i <n.j=m O5bG andw, =Y, o 05aijbij. In this case

Hindep _ |:”n wn]

" Wy VUp ’
dmas(Hn D) = (n + v + d)/2 and Amin(Hr "™ = (un + v4 — dy)/2, With
d, = \/(u,, — ;)2 +4w?2. Note thatw, = /u,v, coss, for 6, € [0,7] and

detH"%?) — v, siP6, [see also page 79 of McCullagh and Nelder (1989)].
Suppose that

o := liminf sinf6, > 0.
n—oo
Since

1 _ )\max(HLndep) _Up +v, +d,
Anin(HM%P) "~ detHM®P) — u,v, sir?6,

one can show that conditiofi )"9P is equivalent to mitu,, v,) — co. On the
other hand,

2 2 2
aijbi;  bf; ajij bi;

ooy =z B (2 ),
Un UnpUp Un Uy Un

. , . —1/2 2
Condition(C )"9eP holds |fn1/2ma>g-5n,j5m(un aij +v o Y%p bij)?— 0.

EXAMPLE 2. The case of a single covariate withdifferent levels [one-way
ANOVA; see also Example 3.13 of Shao (1999)] is usually treated by identifying
each of these levels with one of thedimensional vectore,...,e,, where
e, has thekth component 1 and all the other components 0. We can say that
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x;j€{el,...,e,) foralli <n,j<m.Inthis caseH, ‘" is a diagonal matrix.
More precisely,

_ P
H'nndep = Z v,(lk)ekekT,
k=1

where v” = ¥, iy —e, 02 Let v, = mine<, vy, Condition (I%,)"%eP is

equivalent tov, — oo and condition(C))"%Ps equivalent to:/2v* — 0.

The method introduced by Liang and Zeger (1986) and developed recently in
Xie and Yang (2003) relies heavily on the “working” correlation matriBe&x)
which are chosen arbitrarily by the statistician (possibly containing a nuisance
parametekr) and are expected to be good approximations of the unknown true
correlation matriceR;.

In the present paper, we consider an alternative approach in which at eaeh step
the “working” correlation matrice®R; («), i < n, are replaced by the random
matrix

1 A =
R 1= =3 Ai(B) ™ 2ei Brer (B) " Ac(B) ™1
i=1

which depends only on the data set and is shown to be a (possibly biased)
consistent estimator of the average of the true correlation matrices

— 10
= R;.
n n;l

The consistency of?,, is obtained under the following two conditions imposed on
the (normalized) residualg = Ai_l/ze,-, with E(yiy:T) =R;:

(C1) there exists & € (0, 2] such that sup , E([ly}[>*%) < oo,
€2) 1y v, £ o, wherev; = E(yryT|F-1) — R:.

REMARK 1. Condition (C1) is a bounded moment requirement which is
usually needed for verifying the conditions of a martingale limit theorem, while
condition (C2) is satisfied if the observations are independent. Condition (C2)
is in fact a requirement on the (normalized) conditional covariance m¥irix

?ZlE(y;“y;“TU‘?,-_l). More precisely, if the following hypothesis holds true:

(H) there exists a constaft> 0 such tha&min(ﬁn) > C for all n,
——1/2 —=—1/2
then condition (C2) is equivalent 8®, / Vn/nR, / 1%0 [which is similar

to (3.1) of Hall and Heyde (1980) or (4.2) of Shao (1992)]. Note that (H) is implied
by the following stronger hypothesis, which is needed in Section 3:
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(H') There exists a constaft> 0 such thakmin(R;) > C for all ;.

Hypothesis (H) is satisfied ifR; = R for all i, whereR is nonsingular.
The following result is essential for all our developments.

THEOREM 1. Let R, = E(R,). Under conditions (C)"d€P (C1) and (C2),
we have

~ 1
Rn— Ry, Lo (elementwise).

a.s.

If the convergence in condition (C2) is almost sure, then Ry — R, B0
(elementwise). The same conclusion holdsif R, isreplaced by R,,.

PROOF Let R, =n=13" A "% A-"% and note thatE(R,) = R,.
Our result will be a consequence of the following two propositions, whose proofs
are given in Appendix A. (I

ProPOSITIONL. Under conditions (C1)and (C2),we have

o~

= 1
Ry — Ry Lo (elementwise).
PROPOSITION2. Under conditions (C)""9eP, (C1)and (C2), we have
~ —~ 1
Ry — R, L 0 (elementwise).

In what follows we will assume that the inverse of the (nonnegative definite)
random matrixR,, exists with probability 1, for every. We consider the following
pseudo-likelihood equation:

4 Y " Di(B) Vi (B) tei(B) =0,
i=1

whereD; (8) = A;(B)X; andV;,(8) := A;(B)Y2R,A; (B)Y2. Note that (4) can
be written as

G (B) ==Y XTA(BY2R, A (B) Y261 (B) = 0.
i=1
We consider also the estimating function
a3 (B) =Y XTA(BY?R, A (B) V2 (B).
i=1

Note thatM,, := Cow(g,) = >/, X7 AY?R-IR,R; 1A Y2,
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As in Xie and Yang (2003), we introduce the following quantities:

n A R_l
Hoi= Y XTAPRIAAX;,  myi= L,l)
i1 )»min(Rn )

Ty = m)»max(R_l)

y 9= max max (x H %), =100

i=1,..nj=1,..,

REMARK 2. A few comments about, are worth mentioning. Firsi,, <

,H,, Wheret, := max <, Amax(R;; IR) < 7,. Also, smcer(”) ( ) — 0 and

|‘(’}3 (2), (, " are

the elements of the matricéy,, resp.Rn). Thereforet, > 1/2. The reason why

we prefer to work withz, instead ofz, will become apparent in the proof of
Proposition 3 (given in Appendix A.2). Another reason is, of course, the fact that
7,, does not depend on the unknown matriBgs

| <1, we can assume that(”)| < 2, for n large enough (here

Our approach requires a slight modification of the conditions introduced by
Xie and Yang (2003) to accommodate the use,pinstead ofz,. Let B, (r) :=

{B: IHY2(B — Bo)|l < (7,)¥?r}. Our conditions are:
(AH) for anyr > 0,k = sup, 5, ., k/(B), | = 2.3, are bounded,

(Tw) &)™ Ymin(Hy) — o0,
(Cw) ()29, — 0, andn/2x, 7, — 0.

REMARK 3. Note that(T,,) implies (1% )"P, which impliesimin(H,) — oco.
This follows from the inequalities
1

. B . - . 7
%Hlnndepf Amin(R,, 1) : le?depf H, < Amax(R, 1) : H:?dep= Znlendep-

REMARK 4. Our conditions depend on the matRy, which cannot be written

in a closed form. SincR,, — R, £ 0, it is desirable to express our conditions in
terms of the matrix®,. In practice, if the sample size is large enough, one may
choose to verify conditionéAHR), (T,), (Cy) by usingﬁn (instead ofR,) in the
definitions ofH,,, 7,,, .

REMARK 5. If we suppose that hypothesis (H) holds, thervftarge
C
> < Amin(Rn) < Amax(Ryp) < 2m.

In this case(z,), and (m,), are bounded(’(y,?)inder < O — ¢ (,,(0)indep
and for everyr > 0 there exists’ > 0 such thatB, (r) C B'"dep(r/) Therefore,
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conditions (AH), (T,), (C,) are equivalent to/AH)"dep, (|* yindep (Cx )indep
respectively. In order to verifyH), it is sufficient to check that there exists a
constantC > 0 such that

detR,) >C  forallnas.

under the hypothesis of Theorem 1.
We need to consider the derivatives
38,8 _99:(B)
opT ' pT
The next theorem is a modified version of Theorem A.2, respectively, Theo-
rem A.1(ii) of Xie and Yang (2003).

Dn(B) =

Dyp(B) =

THEOREM?2. Under conditions (AH) and (C,):

(i) foreveryr >0

sup [H; Y20, (BH; Y2 -1 5 o;
BEB,(r)

(i) thereexists cg > 0 such that for every r > 0
P(D,(B) = coH, for all B € B,(r)) — 1.

PrROOE (i) The first two terms produced by the decompositidn(8) =
H,(B) + B,(B) + &,(B) are shown to be bounded by?)?n, whereas the third
term is bounded in.2 by J/nm,v,. [Here H, (B), B, (B), &€,(B) have the same
expressions as those given in Xie and Yang (2003) Wittw), i < n, replaced
by R,.] The arguments are essentially the same as those used in Lemmas A.1(ii),
A.2(ii) and A.3(ii) of Xie and Yang (2003). The fact that we are replacing the
“working” correlation matriceRR; (), i =1, ..., n, with the matrixR,, and we
assume thate;);>1 is a martingale difference sequence does not influence the
proof. Finally we note that (ii) is a consequence of (i)J

The next two results are intermediate steps that are used in the proof of our main
result. Their proofs are given in Appendix A.2.

PROPOSITION3. Suppose that the conditions of Theorem 1 hold. Then
(&) Y2H 2@ — g0) > O

PROPOSITION 4. Suppose that the conditions of Theorem 1 hold. Under
conditions (AH) and (C,,),

sup [H;Y2[D,(8) — Da(BIH; Y2 5 0.
BeB,(r)
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The next theorem is our main result. It shows that under our slightly modified
conditions(AH), (T,,), (C,) and the additional conditions of Theorem 1, one can
obtain a solutiorg, of the pseudo-likelihood equatidi (8) = 0, which is also a
consistent estimator ¢f.

THEOREM 3. Suppose that the conditions of Theorem 1 hold. Under condi-

tions (AH), (T,,) and (C,,), there exists a sequence (B,),, of randomvariables such
that

P@(B)=0—1 and B, fo.

PROOF Lete > 0 be arbitrary and =r(e) = ,/(24p)/(c§s), wherec is a
Evi= I 2g0 < int M0, - 6]
BedB,(r)

constant to be specified later. We consider the events
Q, := {D,(B) nonsingular, for alB € B, (r)}.

By Lemma A of Chen, Hu and Ying (1999), it follows that on the evEpi <,,,
there exists@n € B,(r) such thatg,l(f?n) = 0. Therefore, it remains to prove that
P(E,N$,) > 1— ¢ forn large.

By Taylor's formula and Lemma 1 of Xie and Yang (2003) we obtain that for
any B € 3B, (r) there exist8 € B,(r) and ap x 1 vectora, ||A|| = 1 such that

IH,2(8.(8) — )|
> [WTH V2D, (BH;, A - r (3012
> {(IATH, 2D, (BH, Y25
— IWTH 2D, (B) — Du(B)IH, Y241} - r (7)) Y2
By Theorem 2(ii) there exists > 0 such that
P(ATH Y22, (B)H, Y2 > co

(5) -
forall B € B, (r), forall &, |A|=1) >1—¢/6

whenn is large. Letc; € (0, co) be arbitrary. By Proposition 4,

P(IATH, YD, (B) — Du(B)IH, Y24 < ¢}

(6) -
forall B € B, (r), forall1) >1—¢/6

whenn is large. Therefore, if we put; := cg — ¢, we have

©) P( inf - [H,Y2(8.(8) — Gu)| = c1r<fn>1/2) >1—¢/3.
BedB,(r)
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From (5) and (6) we can also conclude tt#a€2,) > 1 — /3 for n large.
On the other hand, by Chebyshev’s inequality and our choice,olve
have P(|[Hy Y?g,|l < cir(£)Y?/2) > 1 — /6 for all n. By Proposition 3,

P(H 2@, — go)ll < c1r(£0)Y2/2) > 1 — ¢/6 for n large. Hence

(8) P(IH, Y281l < c1r(B)Y?) > 1—¢/3.

From (7) and (8) we obtain tha(E,) > 1 — (2¢)/3 for n large. This concludes
the proof of the asymptotic existence.

We proceed now with the proof of the weak consistency.sLetO be arbitrary.
By (T,) we havet,/Amin(H,) < (8/r)2 for n large. We know that on the event
E, N, there exist®, € B, (r) such thaf),(8,) = 0. Therefore, on this event

1Bn = Boll < IH, Y21 - IHY2(By = Bo)Il < Dhmin(H)1 ™2 - (32 <6

for n large. This proves thal (|| B, — Boll <8) > 1—¢ forn large. O

3. Asymptotic normality. Let ¢, = kmaX(M,le,,). In this section we will
suppose thatc, 7,,),, is bounded.

THEOREM4. Under the conditions of Theorem 3,
M, Y28, = M, Y2H, (B, — Bo) + op (D).

PROOF  Onthe setg, (B,) =0, B € B, (1)}, we haved, = Dy (1) (Bn — Po)
for someg, € B, (r) by Taylor’s formula. Multiplication withM ,1_1/2 yields

M, /28, = M, Y2HY2AHY (B, — o) + M, Y2H, By — o).,

whereA,, := H;l/zﬁn (B,,)H,Zl/2 —1 =0p(1), by Theorem 2(i) and Proposition 4.

The result follows sinceiM;, Y?HY?|| < ¥ and |HY? (8, — Bo)ll < () ¥2r.
O

Lety, 2 := maxi<i <, Amax(H;, /2XT A2R-AMY2X H, /%) Note thaty, ) <
Cdyyn, Whered, = maX <, j<m 05.. We consider the following conditions:
(Ns) there exists & > 0 such that:
(i) ¥ :=sup-1 E(Iy;I*"|Fi-1) < oo as,;
(i) (caf) 2y >0,
(C2) MaX <y Amax(Vi) — 0.
REMARK 6. Note that conditionNs)(i), with Y integrable, implies condi-

tion (C1), whereas condition (C2p a stronger form of (C2). Part (ii) of condi-
tion (Ns) was introduced by Xie and Yang (2003).
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The following result gives the asymptotic distributiongpf

LEMMA 1. Suppose that the conditions of Theorem 1 hold. Under condi-
tions (Ns), (C2) and (H')

M-12g, 4 NGO, I).

PRoOOE We note that
M, Y/%g, =M, Y2g, + M, 2@, — g,)

n

and [M;, 2@, — gl < (caf)Y2[1(F)"Y2H, Y2@, — g0)|| & 0, by Proposi-

tion 3. Therefore it is enough to prove thﬂt;l/zgn LY N(0,1). By the Cramér—
Wold theorem, this is equivalent to showing thég:, ||1]| =1

9) MM Y29, =37, % N, D),
i=1
whereZz, ; = /\TM;l/ZXiTAil/ZR,lei_l/Zei. Note thatE(Z, ;|F;_1) = 0 for all
i <n,thatis,{Z,;;i <n,n> 1} is a martingale difference array.
Relationship (9) follows by the martingale central limit theorem with the
Lindeberg condition [see Corollary 3.1 of Hall and Heyde (1980)] if

(10) S E[ZZ1(1Zyil > &)|Fi-1]1 >0 as.
i=1
and
“ P
(11) Y E(ZZ1Fi-1)—> L
i=1

Relationship (10) follows from conditiotiNs) exactly as in Lemma 2 of Xie
and Yang (2003) withy () = %/2. Relationship (11) follows from conditions
(C2) and (H):

n
Y EZF 1% — 1
i=1
n
— 2 g 2
=) [E(Z; |1Ficy) — E(Z;))]
i=1
n
=3 ATM VXTI AR YR IATAX M Y2
i=1

1<i<n

< MaX hmax(Vi) - MaX Amax(Ri ) - ATM/2M, M1/

< C Y maximax(Vi) = 0. O
1<n
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Putting together the results in Theorem 4 and Lemma 1, we obtain the
asymptotic normality of the estimatgy,.

THEOREM 5. Under the conditions of Theorem 3 and conditions (Nj),
(C2) and (H"),

M, Y2H,, (B, — o) > N(O.1).
REMARK 7. In applications we would need a version of Theorem 5 where
M, is replaced by a consistent estimator. We suggest the estimator proposed by

Liang and Zeger (1986) [see also Remark 8 of Xie and Yang (2003)]. The details
of the proof are omitted.

APPENDIX

A.1l. The following lemma is a consequence of Kaufmann’s (1987) martingale
strong law of large numbers and can be viewed as a stronger version of
Theorem 2.19 of Hall and Heyde (1980).

LEMMA A.1. Let (x;);>1 be a sequence of random variables and let (#;);>1
be a sequence of increasing o -fields such that x; is #;-measurable for every i > 1.
Suppose that sup E|x;|* < oo for some« € (1, 2]. Then

12 .
=3 (xi— E(xi|Fi-1)) >0 asandinL®.
n  —

PrROOF Note thaty; = x; — E(x;|¥i—1), n > 1, is a martingale difference
sequence. By the conditional Jensen inequality

il < 227 | + [ Ea | Fi—0) %) < 227 |* + E(x %] Fi-1)

and sup.; Ely;|* <2%sup.; E|x;|* < co. Hence

Elyi|* 1
> l’ < SUpE|y;|% Zi_a<°°‘

i>1 izl i>1

The lemma follows by Theorem 2 of Kaufmann (1987) witk=1, B; =i L. [

PROOF OF PROPOSITION1. We denote b)ﬁj(',?, Ek)’ ;’,’3 (jk=1,...,m)
the elements of the matrice®,, R,,, V.., respectively. We write

N o
(12) ;Z)_rjnk _;Z(yljylk_E(yljylklfl 1) + ZU(I)
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The first term converges to zero almost surely andLit®/2 by applying
Lemma A.1 withr; =y y;;, and using condition (C1). The second term converges
to zero in probability by condition (C2). This convergence is alsaLir%/2

because the sequenpe 1", v(’k)},, has uniformly bounded moments of order

1+ /2 and hence is uniformly mtegrabIeD

PROOF OFPROPOSITION2. We denote byj(") (j,k=1,...,m)the elements

of the matrixR,. Let §; jx := [oij0i]/101; (Ba)oik Bu)] — L, Apuij := i (By) —
wij(Po) and

Aeijein) = eij(Bu)ei(Bn) — eijeik = (Api)) (Apix) — (Apij)eix — (Apix)ei).
With this notation, we have

) _ s _X”: eij(Bei(Bn) L sijsik

ik ik — 5 5
g g n.- O—ij(/gn)aik(ﬂn) n .= 9ijOik
_ Z A(Sljglk) Z A(Sljelk) 3 P Z 81]81k 3
- l ik i,jk
0ijOik n.-7 9ij0ik aljalk

From here, we conclude that

|r(") fj(-';?| < Un,jk +rin<<’:,11X|5i,jk|- Un,jk + = Zly ikl 1
- 1 =1

L& Al - 1Akl 1 &N Al | Apik|
Upjpi==-y — 2 4 = yhl+ = v
] ",-_21 p—— n; oy i Z; N

— U[l]k + U[Zlk + U[3}k

n

Recall that our estimatos, was obtained in the proof of Theorem 2 of Xie
and Yang (2003) as a solution of the GEE in the case when all the “working”
correlation matrices ar®!"**" = |. One of the consequences of the result of Xie
and Yang is that for every fixed> 0, there exist =r, andN = N, such that, if
we denote2,, . = {B, lies in By ")}, then

P(Qpe)>1—c¢ foralln > N.
We defineB, to be equal tgBo on the event2; .. Therefore,

onQS . :max|§; x| =0 and Aw;; =0.
’ i<n
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Using Taylor’s formula and conditiotAH)™"9€P we can conclude that on the
events2, ., there exists a consta@t= C, such that

T
|i,jk|_"u( s 1‘56-<y,?)‘“dep-(ml/zr) foralli <n,
i)
Aui " (05 (Bn)
Z( b _ 1, ﬂo)TiZ( ’ )al,xu l,}o‘ﬂn Po)
'j i=1 u

<n B, — o) {ZX[T AY2IA; (BATPAY Zx,-}oén — o)

i=1
< n~tmaxia A (B)AT - I(H9DY2(B, — fo) |2
< Cn_l(mzr).

Note also thatE[n~1Y°" 107 2l = E[fj(?)] o) smcer(”) rij) — 0 and
rjj = 1. Applying the Cauchy—-Schwarz inequality to each of the three sums that
form U, jx, we can conclude that

E[uh]—>0 and E[@U,)?]>0. 1=23

n

On the other hand,

E[max|8, jkl - njk] max|8, jkl - Un, jxd P

Qn e i<n

< C(J/,fo))mlelo'/Q Un,jx — 0,

E [rfﬁx'gw‘k' Zly y,kl} OB £ (V2 £ ()2 s
U

A2

PROOF OF PROPOSITION 3. Let h(y) = [02/021Y2, R;* = @,

= (q";.’,?)j,kzl nandR-1:=Q, = (qﬂ))j k=1 m. With this notation, we write

~~~~~~~~~~~

() Y2H V2@, — g)

m

0
= 3@ ) G Y x|
jk=1 i=1



ESTIMATION AND LONGITUDINAL DATA 537

By Theorem 1,q(2) q(Z) — 0 for every j, k. The result will follow once we

prove that{(%,)~Y?H, 1/2 P 1hf?,){xljs,k}n is bounded irL.2 for every, k. Since
(eik)i>1 IS a martingale difference sequence, we have

d )

_(‘L')_ltl'{ 1/2(Z(hf?,){) kx,jxu>H 1/2}

i=1

=<fn>—1tr{ 1/2(20,,&, l,)H 1/2}

i=1

(Tn)~ ey l/ZZhZ(JO])(legzk

< (#) " Ydmi,) tr(l) = dmp

because_;_; o5xijx}; < X7_1 XTAiXi < Amax(Ro)H, < 4mE,H,. O

PROOF OFPROPOSITION4. We write

Du(B) =Hn(B) + Br(B) + & (B), Du(B) = Hu(B) + Bu(B) + Ea(B).

where 7, (8). 8, (B). €,(8) have the same expressionsHs(8), Bu (). € (B).
with R, replaced byR,. Our result will follow by the following three lemmas.
O

LEMMA A.2. Suppose that condition (AH) holds. If (,, ), is bounded, then
for any r > 0 and for any p x 1 vector A with ||1|| =1,

sup ATH Y213, (8) — Ha(B)IH Y2 S o,
BEBL(r)

LEMMA A.3. Supposethat condition (AH) holds. If (nf)?”)” isbounded, then
for any r > 0 and for any p x 1 vector A with ||1|| =1,

sup [ATHY2[B,(8) — Bu(B)IH Y2 5 o,
ﬂGE,,(r)

LEMMA A.4. Suppose that condition (AH) holds. If (nY/2},), is bounded,
then for any » > 0 and for any p x 1 vector A with ||A]| =1,

sup [ATHIY2[E,(8) — &, (B)IH Y2 S 0,
BeB,(r)
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PrROOF OF LEMMA A.2. Using Theorem 1 and the fact that(”)| <2

for n large, we haves, = RY2R-IRY? — | = RV (R-1 - 1)Rl/2 £o
(elementwise). For every,

THY2 7, () — Ha(B)IH, Y24

Z)\'TH l/2xTA (ﬁ)l/zR 1/2An l/ZA (ﬂ)l/ZX H 1/2)\4
i=1

< max{|Amax(vAn)|, [Amin(Aa)[} - (ATH, 2H, (B)H;, Y22).
The result follows, since one can show that for evéry B, (r)
DTHSY2H, (B)H Y20 — 1
(13) <A TH V2RI g H Y20 4 20 TH V2RI (B)H Y2
< CrpPn +2C ()2 < C,
where

H[l](,B) ZxT 1/2(,3) 1/2) (1/2(,8) 1/2) N
i=1

H[Z](ﬂ) ZxT 1/2(13) 1/2) lA?-/ZXi.

1/2 ~1/2

We used the fact that SPPE, () MaX <, Amaxt (A" “(B)A; 2 —1)2} < C7y, which
follows by condition(AH) as in Lemma B.1(ii) of Xie and Yang (2003)J

PROOF OF LEMMA A.3. Let w;,(8) = ATH,Y?x7GcMp) x
diag{X;H, “/?2}R, /2 " andz,..(p) =R 1/2A (ﬂ) V2(u; — 1i(B)). We have

= > Win(B) Anzin(B)

i=1

snmn!an,-,n(ﬁ)nz} {Zuzi,n(ﬁ)uz}
i=1 i=1

by using the Cauchy—Schwarz inequality. Methods similar to those developed in
the proof of Lemma A.2(ii) of Xie and Yang (2003) show that for ghyg B, (r),
Z” L Wi (B2 < Crraya® and X0y 11Zin (B < CrtuFahmax(Ha 2 Ha(B) x

H, s ) < Cm, 1, [using (13) for the last inequality]. Hence

sup [2TH,Y2[8H(B) — BIY(B)H, V24| < CllAsllm ) Y2 5 0.
BEB,(r)

1/2
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-1/2

Let vi,(B)T = ATH;, Y2XT A:(B)Y2R;, Y24, R;, M2 diagiX H;, 201G (8) x

A, (,8)1/2R1/2 We have

n 12 , 1/2
E{Z”Vi,n(ﬂ)”z} {Zuz,-,n(ﬁ)nz} :
i=1

i=1

=Y VinB) zia(B)

i=1

One can prove that for ang € B,(r), Y7_; [Vin(B)1I? < Crayi® Amax(A2) x
DTHYPHL (BHR Y20 < Crny@ 1A N12 [using (13) for the last inequality].
Hence

sup [2TH;Y2[B12(8) — BIZI(B)H, V2| < CllAllm )2 5 0.
BeB,(r)

_PROOF OFLEMMA A.4. We write &,(8) — &,(B) = [EIM(B) — &M(B)] +
[€121(8) — €121(B)] and we use a decomposition which is similar to that given in
the proof of Lemma A.3(ii) of Xie and Yang (2003). More precisely, we write

WTH2EM () — 6N (B)H, Y2 =T + 18(8) + TP (),
WTHZ[EA(B) — 61 (B)H, 2a = T + T8y + T°(B),

whereT,(8) = X", 1G5 —q) - Sh) (B for1=1,....6 and

1 —-1/2A[1 . _ 0
st =2"H 1/22 12N [diagiX;H, /2 ei

S, (8) = AT H; V2 Y (A Y26 )] g H; V2 A () Y2AY 1,
i=1

Oy, ..
X hijkxljglk’

S (B) = 1/22 TG (B) — G [diagXiH, 2 Ak G i,
st = ATHrjl/ZZ[diag{XiH;l/Zk}]k [GIPAL 2] nDixijei.
i=1
n
SE(B) = ATH M2 S IATEA (B2 — 11 IdiagiXiH, Y2 kG (A7),
i=1

Oy, ..
X hiijZngk,
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St (B =2TH, 1/22[d|ag{x Hy 201G (B) — GI)AL 2] hDixijein
i=1

(here we have denoted witiA]; the jth element on the diagonal of a matry).

since g — 4\ £ 0, it is enough to prove thats! St dn, (8123 and

{suggeBn(,)|S[”Jk(ﬂ)|}n, [ = 3,4,5,6, are bounded |nL2 for every j, k =
..., M.
We have
1
E(|sH)
n
S"{HJ 2 0a; e a1 B P 1/2]
i=1

= CVn(O) tl’{ 1/2(2011)(1] tj)H 1/2} = CV(O)(4mPTn) =Cyp <C.
i=1

By the Cauchy—Schwarz inequality, for evehe B, (r),

SN = {Z[A‘”Zemw)] [diagiX;H, /22113 1A: (B)?A} " - ],%}

i=1

oo,

i=1

3 _ 0
<cny @y, - {ATHn 1/2<Z(hl(j,)() lkx,Jx”>H 1/2k}
i=1

-1/2 12

HenceE(supﬁeBn(,) |S[3]k(,3)|2) <Cny23, - 1WTH,

M) < Cny 2y, - (4miy) < Cn(7)* < C.
Similarly, by the Cauchy—Schwarz inequality, for everyg B, (r),

(Ciq 0% X H

SB[ < !Z[A: V3G - GE”)]?[diag{xiH,:l/Zx}]?}

i=1

[0 orn e, |

i=1
< Cny, 0% - HATH;”(Z(%IS’D kxux,]>H 1/2A}
i=1
andE (SUpsc3, () IS[S]k(ﬂ)IZ) <Cn()*<C.
The termsS[”/k(ﬁ) 1 =2,4,6, can be treated by similar method$.]
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