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ASYMPTOTIC RESULTS WITH GENERALIZED ESTIMATING
EQUATIONS FOR LONGITUDINAL DATA

BY R. M. BALAN 1 AND I. SCHIOPU-KRATINA

University of Ottawa and Statistics Canada

We consider the marginal models of Liang and Zeger [Biometrika 73
(1986) 13–22] for the analysis of longitudinal data and we develop a theory
of statistical inference for such models. We prove the existence, weak
consistency and asymptotic normality of a sequence of estimators defined
as roots of pseudo-likelihood equations.

1. Introduction. Longitudinal data sets arise in biostatistics and life-time
testing problems when the responses of the individuals are recorded repeatedly
over a period of time. By controlling for individual differences, longitudinal
studies are well-suited to measure change over time. On the other hand, they
require the use of special statistical techniques because the responses on the same
individual tend to be strongly correlated. In a seminal paper Liang and Zeger
(1986) proposed the use of generalized linear models (GLM) for the analysis of
longitudinal data.

In a cross-sectional study, a GLM is used when there are reasons to believe
that each responseyi depends on an observable vectorxi of covariates [see the
monograph of McCullagh and Nelder (1989)]. Typically this dependence is spec-
ified by an unknown parameterβ and a link functionµ via the relationship
µi(β) = µ(xT

i β), whereµi(β) is the mean ofyi . For one-dimensional observa-
tions, the maximum quasi-likelihood estimatorβ̂n is defined as the solution of the
equation

n∑
i=1

µ̇i(β)vi(β)−1(yi − µi(β)
) = 0,(1)

whereµ̇i is the derivative ofµi and vi(β) is the variance ofyi . Note that this
equation simplifies considerably if we assume thatvi(β) = φiµ̇(xT

i β), with a
nuisance scale parameterφi . In fact (1) is a genuine likelihood equation if the
yi ’s are independent with densitiesc(yi, φi)exp{φ−1

i [(xT
i β)yi − b(xT

i β)]}.
In a longitudinal study, the components of an observationyi = (yi1, . . . , yim)T

represent repeated measurements at times 1, . . . ,m for subjecti. The approach
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proposed by Liang and Zeger is to impose the usual assumptions of a GLM only
for the marginal scalar observationsyij and thep-dimensional design vectorsxij .
If the correlation matrices within individuals are known (but the entire likelihood
is not specified), then them-dimensional version of (1) becomes ageneralized
estimating equation (GEE).

In this article we prove the existence, weak consistency and asymptotic
normality of a sequence of estimators, defined as solutions (roots) ofpseudo-
likelihood equations [see Shao (1999), page 315]. We work within a nonparametric
set-up similar to that of Liang and Zeger and build upon the impressive work of
Xie and Yang (2003).

Our approach differs from that of Liang and Zeger (1986), Xie and Yang
(2003) and Schiopu-Kratina (2003) in the treatment of the correlation structure
of the data recorded for the same individual across time. As in Rao (1998), we
first obtain a sequence of preliminary consistent estimators(β̃n)n of the main
parameterβ0 (under the “working independence assumption”), which we use to
consistently estimate the average of the true individual correlations. We then create
the pseudo-likelihood equations whose solutions provide our final sequence of
consistent estimators of the main parameter. In practice, the analyst would first use
numerical approximation methods (like the Newton–Raphson method) to solve a
simple estimating equation, where each individual correlation matrix is the identity
matrix. The next step would be to solve forβ in the pseudo-likelihood equation, in
which all the quantities can be calculated from the data. This approach eliminates
the need to introduce nuisance parameters or to guess at the correlation structures,
and thus avoids some of the problems associated with these methods [see pages
112 and 113 of Fahrmeir and Tutz (1994)]. We note that the assumptions that
we require for this two-step procedure [our conditions(ÃH), ( Ĩw), (C̃w)] are
only slightly more stringent than those of Xie and Yang (2003). They reduce to
conditions related to the “working independence assumption” when the average of
the true correlation matrices is asymptotically nonsingular [our hypothesis (H)].

As in Lai, Robbins and Wei (1979), where the linear model is treated, we relax
the assumption of independence between subjects and consider residuals which
form a martingale difference sequence. Thus our results are more general than
results published so far, for example, Xie and Yang (2003) for GEE, and Shao
(1992) for GLM.

Since a GEE is not a derivative, most of the technical difficulties surface when
proving the existence of roots of such general estimating equations. Two distinct
methods have been developed to deal with this problem. One gives a local solution
of the GEE and relies on the classical proof of the inverse function theorem
[Yuan and Jennrich (1998) and Schiopu-Kratina (2003)]. The other method, which
uses a result from topology, was first brought into this context by Chen, Hu and
Ying (1999) and was extensively used by Xie and Yang (2003) in their proof of
consistency. We adopt this second method, which facilitates a comparison of our
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results to those of Xie and Yang (2003) and incorporates the inference results for
GLM contained in the seminal work of Fahrmeir and Kaufmann (1985).

This article is organized as follows. Section 2 is dedicated to the existence
and weak consistency of a sequence of estimators of the main parameter. To
accommodate the estimation of the average of the correlation matrices in the
martingale set-up, we require two conditions: (C1) is a boundedness condition
on the(2+ δ)-moments of the normalized residuals, whereas (C2) is a consistency
condition on the normalized conditional covariance matrix. In this context we use
the martingale strong law of large numbers of Kaufmann (1987). Section 3 presents
the asymptotic normality of our estimators. This is obtained under slightly stronger
conditions than those of Xie and Yang (2003), by applying the classical martingale
central limit theorem [see Hall and Heyde (1980)]. For ease of exposition, we have
placed the more technical proofs in the Appendix.

We introduce first some matrix notation [see Schott (1997)]. IfA is a p × p

matrix, we will denote with‖A‖ its spectral norm, with det(A) its determinant and
with tr(A) its trace. IfA is a symmetric matrix, we denote byλmin(A)[λmax(A)]
its minimum (maximum) eigenvalue. For any matrixA, ‖A‖ = {λmax(AT A)}1/2.
For a p-dimensional vectorx, we use the Euclidean norm‖x‖ = (xT x)1/2 =
tr(xxT )1/2. We letA1/2 be the symmetric square root of a positive definite matrixA
andA−1/2 = (A1/2)−1. Finally, we use the matrix notationA ≤ B if λT Aλ ≤ λT Bλ

for anyp-dimensional vectorλ.
Throughout this article we will assume that the number of longitudinal

observations on each individual is fixed and equal tom. More precisely, we will
denote withyi := (yi1, . . . , yim)′, i ≤ n, a longitudinal data set consisting ofn

respondents, where the components ofyi represent measurements at different
times on subjecti. The observationsyij are recorded along with a corresponding
p-dimensional vectorxij of covariates and the marginal expectations and variances
are specified in terms of the regression parameterβ throughθij = xT

ijβ as follows:

µij (β) := Eβ(yij ) = µ(θij ), σ 2
ij (β) := Varβ(yij ) = µ̇(θij ),(2)

whereµ is a continuously differentiable link function witḣµ > 0, that is, we
consider only canonical link functions.

Here are the most commonly used such link functions:

1. In the linear regression,µ(y) = y.
2. In the log regression for count data,µ(y) = exp(y).
3. In the logistic regression for binary data,µ(y) = exp(y)/[1+ exp(y)].
4. In the probit regression for binary data,µ(y) = �(y), where� is the standard

normal distribution function; we havė�(y) = (2π)−1/2 exp(−y2/2).

In the sequel the unknown parameterβ lies in an open setB ⊆ Rp and β0
is the true value of this parameter. We normally drop the parameterβ0 to avoid
cumbersome notation.



ESTIMATION AND LONGITUDINAL DATA 525

Let µi(β) = (µi1(β), . . . ,µim(β))T , Ai (β) = diag(σ 2
i1(β), . . . , σ 2

im(β)) and

	i(β) := Covβ(yi ). Note that	i = A1/2
i

�RiA
1/2
i , where�Ri is the true correlation

matrix of yi atβ0. Let Xi = (xi1, . . . ,xim)T .
We consider the sequenceεi(β) = (εi1(β), . . . , εim(β))T with εij (β) = yij −

µij (β), and we assume that the residuals(εi)i≥1 form a martingale difference
sequence, that is,

E(εi |Fi−1) = 0 for all i ≥ 1,

whereFi is the minimalσ -field with respect to whichε1, . . . , εi are measurable.
This is a natural generalization of the case of independent observations.

Finally, to avoid keeping track of various constants, we agree to denote withC

a generic constant which does not depend onn, but is different from case to case.

2. Asymptotic existence and consistency. We consider the generalized
estimating equations (GEE) of Xie and Yang (2003) in the case when the
“working” correlation matrices areRindep

i = I for all i. This is also known
as the “working independence” case, the word “independence” referring to the
observations on the same individual. Let(β̃n)n be a sequence of estimators such
that

P
(
gindep
n (β̃n) = 0

) → 1 and β̃n
P→ β0,(3)

wheregindep
n (β) = ∑n

i=1 XT
i εi(β) is the “working independence” GEE.

The following quantities have been used extensively in the work of Xie and
Yang (2003) and play an important role in the conditions for the existence and
consistency of̃βn:

Hindep
n =

n∑
i=1

XT
i AiXi , π indep

n := maxi≤n λmax((R
indep
i )−1)

mini≤n λmin((R
indep
i )−1)

= 1,

τ̃ indep
n := mmax

i≤n
λmax

(
(Rindep

i )−1) = m,

(
γ (0)
n

)indep := max
i≤n,j≤m

xT
ij (H

indep
n )−1xij .

We will also use the following maxima:

k[2]
n (β) = max

i≤n
max
j≤m

∣∣∣∣ µ̈(θij )

µ̇(θij )

∣∣∣∣, k[3]
n (β) = max

i≤n
max
j≤m

∣∣∣∣µ(3)(θij )

µ̇(θij )

∣∣∣∣.
The fact that the residuals(εi)i≥1 form a martingale difference sequence does

not change the proofs of Theorem 2 and Theorem A.1(ii) of Xie and Yang (2003).
Following their work, we conclude that the sufficient conditions for the existence
of a sequence(β̃n)n with the desired property (3) are:
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(AH)indep for anyr > 0, k[l],indep
n = sup

β∈B
indep
n (r)

k[l]
n (β), l = 2,3, are bounded,

(I∗w)indep λmin(H
indep
n ) → ∞,

(C∗
w)indep n1/2(γ

(0)
n )indep→ 0,

where Bindep
n (r) := {β; ‖(Hindep

n )1/2(β −β0)‖ ≤ m1/2r}. We denote by(C)indepthe
set of conditions(AH)indep, (I∗w)indep, (C∗

w)indep.
It turns out that, in practice, the analyst will have to verify conditions similar to

(C)indep in order to produce the estimators that we propose (see Remark 5). All the
classical examples corresponding to our link functions 1–4 are within the scope of
our theory. We present below two new examples.

EXAMPLE 1. Suppose thatp = 2. Letxij = (aij , bij )
T , un = ∑

i≤n,j≤mσ 2
ij a

2
ij ,

vn = ∑
i≤n,j≤m σ 2

ij b
2
ij andwn = ∑

i≤n,j≤m σ 2
ij aij bij . In this case

Hindep
n =

[
un wn

wn vn

]
,

λmax(H
indep
n ) = (un + vn + dn)/2 and λmin(H

indep
n ) = (un + vn − dn)/2, with

dn :=
√

(un − vn)2 + 4w2
n. Note that wn = √

unvn cosθn for θn ∈ [0, π] and

det(Hindep
n ) = unvn sin2 θn [see also page 79 of McCullagh and Nelder (1989)].

Suppose that

α := lim inf
n→∞ sin2 θn > 0.

Since

1

λmin(H
indep
n )

= λmax(H
indep
n )

det(Hindep
n )

= un + vn + dn

unvn sin2 θn

,

one can show that condition(I∗w)indep is equivalent to min(un, vn) → ∞. On the
other hand,

xT
ij (H

indep
n )−1xij = a2

ij

un

− 2wn

aij bij

unvn

+ b2
ij

vn

≤
(

aij

u
1/2
n

+ bij

v
1/2
n

)2

.

Condition(C∗
w)indep holds ifn1/2 maxi≤n,j≤m(u

−1/2
n aij + v

−1/2
n bij )

2 → 0.

EXAMPLE 2. The case of a single covariate withp different levels [one-way
ANOVA; see also Example 3.13 of Shao (1999)] is usually treated by identifying
each of these levels with one of thep-dimensional vectorse1, . . . , ep, where
ek has thekth component 1 and all the other components 0. We can say that



ESTIMATION AND LONGITUDINAL DATA 527

xij ∈ {e1, . . . , ep} for all i ≤ n, j ≤ m. In this case,Hindep
n is a diagonal matrix.

More precisely,

Hindep
n =

p∑
k=1

ν(k)
n ekeT

k ,

where ν
(k)
n = ∑

i≤n,j≤m;xij=ek
σ 2

ij . Let νn = mink≤p ν
(k)
n . Condition (I∗w)indep is

equivalent toνn → ∞ and condition(C∗
w)indep is equivalent ton1/2ν−1

n → 0.

The method introduced by Liang and Zeger (1986) and developed recently in
Xie and Yang (2003) relies heavily on the “working” correlation matricesRi(α)

which are chosen arbitrarily by the statistician (possibly containing a nuisance
parameterα) and are expected to be good approximations of the unknown true
correlation matrices�Ri .

In the present paper, we consider an alternative approach in which at each stepn,
the “working” correlation matricesRi(α), i ≤ n, are replaced by the random
matrix

R̃n := 1

n

n∑
i=1

Ai (β̃n)
−1/2εi(β̃n)εi(β̃n)

T Ai (β̃n)
−1/2

which depends only on the data set and is shown to be a (possibly biased)
consistent estimator of the average of the true correlation matrices

��Rn := 1

n

n∑
i=1

�Ri .

The consistency of̃Rn is obtained under the following two conditions imposed on
the (normalized) residualsy∗

i = A−1/2
i εi , with E(y∗

i y∗T
i ) = �Ri :

(C1) there exists aδ ∈ (0,2] such that supi≥1 E(‖y∗
i ‖2+δ) < ∞,

(C2) 1
n

∑n
i=1 Vi

P→ 0, whereVi = E(y∗
i y∗T

i |Fi−1) − �Ri .

REMARK 1. Condition (C1) is a bounded moment requirement which is
usually needed for verifying the conditions of a martingale limit theorem, while
condition (C2) is satisfied if the observations are independent. Condition (C2)
is in fact a requirement on the (normalized) conditional covariance matrixVn =∑n

i=1 E(y∗
i y∗T

i |Fi−1). More precisely, if the following hypothesis holds true:

(H) there exists a constantC > 0 such thatλmin(
��Rn) ≥ C for all n,

then condition (C2) is equivalent to��R−1/2

n (Vn/n)��R−1/2

n − I
P→ 0 [which is similar

to (3.1) of Hall and Heyde (1980) or (4.2) of Shao (1992)]. Note that (H) is implied
by the following stronger hypothesis, which is needed in Section 3:
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(H′) There exists a constantC > 0 such thatλmin(�Ri ) ≥ C for all i.

Hypothesis (H′) is satisfied if�Ri = �R for all i, where�R is nonsingular.

The following result is essential for all our developments.

THEOREM 1. Let Rn = E(R̃n). Under conditions (C)indep, (C1) and (C2),
we have

R̃n − Rn
L1→ 0 (elementwise).

If the convergence in condition (C2) is almost sure, then R̃n − Rn
a.s.→ 0

(elementwise). The same conclusion holds if Rn is replaced by ��Rn.

PROOF. Let R̂n = n−1 ∑n
i=1 A−1/2

i εiε
T
i A−1/2

i and note thatE(R̂n) = ��Rn.
Our result will be a consequence of the following two propositions, whose proofs
are given in Appendix A. �

PROPOSITION1. Under conditions (C1) and (C2),we have

R̂n − ��Rn
L1→ 0 (elementwise).

PROPOSITION2. Under conditions (C)indep, (C1)and (C2),we have

R̃n − R̂n
L1→ 0 (elementwise).

In what follows we will assume that the inverse of the (nonnegative definite)
random matrixR̃n exists with probability 1, for everyn. We consider the following
pseudo-likelihood equation:

n∑
i=1

Di (β)T Ṽi,n(β)−1εi(β) = 0,(4)

whereDi(β) = Ai(β)Xi andṼi,n(β) := Ai (β)1/2R̃nAi (β)1/2. Note that (4) can
be written as

g̃n(β) :=
n∑

i=1

XT
i Ai (β)1/2R̃−1

n Ai(β)−1/2εi(β) = 0.

We consider also the estimating function

gn(β) =
n∑

i=1

XT
i Ai (β)1/2R−1

n Ai (β)−1/2εi(β).

Note thatMn := Cov(gn) = ∑n
i=1 XT

i A1/2
i R−1

n
�RiR−1

n A1/2
i Xi .
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As in Xie and Yang (2003), we introduce the following quantities:

Hn :=
n∑

i=1

XT
i A1/2

i R−1
n A1/2

i Xi , πn := λmax(R−1
n )

λmin(R
−1
n )

,

τ̃n := mλmax(R−1
n ),

γ (0)
n := max

i=1,...,n
max

j=1,...,m
(xT

ij H−1
n xij ), γ̃n = τ̃nγ

(0)
n .

REMARK 2. A few comments about̃τn are worth mentioning. First,Mn ≤
τnHn, whereτn := maxi≤n λmax(R−1

n
�Ri) ≤ τ̃n. Also, sincer

(n)
jk − ¯̄r(n)

jk → 0 and

|¯̄r(n)

jk | ≤ 1, we can assume that|r(n)
jk | ≤ 2, for n large enough (herer(n)

jk , ¯̄r(n)

jk are

the elements of the matricesRn, resp.��Rn). Thereforeτ̃n ≥ 1/2. The reason why
we prefer to work withτ̃n instead ofτn will become apparent in the proof of
Proposition 3 (given in Appendix A.2). Another reason is, of course, the fact that
τ̃n does not depend on the unknown matrices�Ri .

Our approach requires a slight modification of the conditions introduced by
Xie and Yang (2003) to accommodate the use ofτ̃n instead ofτn. Let B̃n(r) :=
{β; ‖H1/2

n (β − β0)‖ ≤ (τ̃n)
1/2r}. Our conditions are:

(ÃH) for anyr > 0, k̃[l]
n = supβ∈B̃n(r) k

[l]
n (β), l = 2,3, are bounded,

( Ĩw) (τ̃n)
−1λmin(Hn) → ∞,

(C̃w) (πn)
2γ̃n → 0, andn1/2πnγ̃n → 0.

REMARK 3. Note that( Ĩw) implies(I∗w)indep, which impliesλmin(Hn) → ∞.
This follows from the inequalities

1

2m
Hindep

n ≤ λmin(R−1
n ) · Hindep

n ≤ Hn ≤ λmax(R−1
n ) · Hindep

n = τ̃n

m
Hindep

n .

REMARK 4. Our conditions depend on the matrixRn, which cannot be written

in a closed form. SincẽRn − Rn
P→ 0, it is desirable to express our conditions in

terms of the matrixR̃n. In practice, if the sample size is large enough, one may
choose to verify conditions( ÃH), ( Ĩw), (C̃w) by usingR̃n (instead ofRn) in the
definitions ofHn,πn, γ̃n.

REMARK 5. If we suppose that hypothesis (H) holds, then forn large

C

2
≤ λmin(Rn) ≤ λmax(Rn) ≤ 2m.

In this case(τ̃n)n and (πn)n are bounded,C′(γ (0)
n )indep ≤ γ

(0)
n ≤ C(γ

(0)
n )indep,

and for everyr > 0 there existsr ′ > 0 such thatB̃n(r) ⊆ B
indep
n (r ′). Therefore,
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conditions (ÃH), ( Ĩw), (C̃w) are equivalent to(AH)indep, (I∗w)indep, (C∗
w)indep,

respectively. In order to verify(H), it is sufficient to check that there exists a
constantC > 0 such that

det(R̃n) ≥ C for all n a.s.

under the hypothesis of Theorem 1.
We need to consider the derivatives

D̃n(β) := −∂ g̃n(β)

∂βT
, Dn(β) := −∂gn(β)

∂βT
.

The next theorem is a modified version of Theorem A.2, respectively, Theo-
rem A.1(ii) of Xie and Yang (2003).

THEOREM 2. Under conditions (ÃH) and (C̃w):

(i) for every r > 0

sup
β∈B̃n(r)

‖H−1/2
n Dn(β)H−1/2

n − I‖ P→ 0;

(ii) there exists c0 > 0 such that for every r > 0

P
(
Dn(β) ≥ c0Hn for all β ∈ B̃n(r)

) → 1.

PROOF. (i) The first two terms produced by the decompositionDn(β) =
Hn(β) + Bn(β) + En(β) are shown to be bounded byπ2

n γ̃n, whereas the third
term is bounded inL2 by

√
nπnγ̃n. [Here Hn(β),Bn(β),En(β) have the same

expressions as those given in Xie and Yang (2003) withRi (α), i ≤ n, replaced
by Rn.] The arguments are essentially the same as those used in Lemmas A.1(ii),
A.2(ii) and A.3(ii) of Xie and Yang (2003). The fact that we are replacing the
“working” correlation matricesRi(α), i = 1, . . . , n, with the matrixRn and we
assume that(εi)i≥1 is a martingale difference sequence does not influence the
proof. Finally we note that (ii) is a consequence of (i).�

The next two results are intermediate steps that are used in the proof of our main
result. Their proofs are given in Appendix A.2.

PROPOSITION3. Suppose that the conditions of Theorem 1 hold. Then

(τ̃n)
−1/2H−1/2

n (g̃n − gn)
P→ 0.

PROPOSITION 4. Suppose that the conditions of Theorem 1 hold. Under
conditions (ÃH) and (C̃w),

sup
β∈B̃n(r)

‖H−1/2
n [D̃n(β) − Dn(β)]H−1/2

n ‖ P→ 0.
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The next theorem is our main result. It shows that under our slightly modified
conditions(ÃH), ( Ĩw), (C̃w) and the additional conditions of Theorem 1, one can
obtain a solutionβ̂n of the pseudo-likelihood equatioñgn(β) = 0, which is also a
consistent estimator ofβ0.

THEOREM 3. Suppose that the conditions of Theorem 1 hold. Under condi-
tions (ÃH), ( Ĩw) and (C̃w), there exists a sequence (β̂n)n of random variables such
that

P
(
g̃n(β̂n) = 0

) → 1 and β̂n
P→ β0.

PROOF. Let ε > 0 be arbitrary andr = r(ε) =
√

(24p)/(c2
1ε), wherec1 is a

constant to be specified later. We consider the events

Ẽn :=
{
‖H−1/2

n g̃n‖ ≤ inf
β∈∂B̃n(r)

∥∥H−1/2
n

(
g̃n(β) − g̃n

)∥∥}
,

�̃n := {D̃n(β̄) nonsingular, for allβ̄ ∈ B̃n(r)}.
By Lemma A of Chen, Hu and Ying (1999), it follows that on the eventẼn ∩ �̃n,
there existsβ̂n ∈ B̃n(r) such thatg̃n(β̂n) = 0. Therefore, it remains to prove that
P(Ẽn ∩ �̃n) > 1− ε for n large.

By Taylor’s formula and Lemma 1 of Xie and Yang (2003) we obtain that for
anyβ ∈ ∂B̃n(r) there existβ̄ ∈ B̃n(r) and ap × 1 vectorλ, ‖λ‖ = 1 such that∥∥H−1/2

n

(
g̃n(β) − g̃n

)∥∥
≥ |λT H−1/2

n D̃n(β̄)H−1/2
n λ| · r(τ̃n)

1/2

≥ {|λT H−1/2
n Dn(β̄)H−1/2

n λ|
− |λT H−1/2

n [D̃n(β̄) − Dn(β̄)]H−1/2
n λ|} · r(τ̃n)

1/2.

By Theorem 2(ii) there existsc0 > 0 such that

P
(
λT H−1/2

n Dn(β)H−1/2
n λ ≥ c0

(5)
for all β ∈ B̃n(r), for all λ,‖λ‖ = 1

)
> 1− ε/6

whenn is large. Letc′
0 ∈ (0, c0) be arbitrary. By Proposition 4,

P
(|λT H−1/2

n [D̃n(β) − Dn(β)]H−1/2
n λ| ≤ c′

0
(6)

for all β ∈ B̃n(r), for all λ
)
> 1− ε/6

whenn is large. Therefore, if we putc1 := c0 − c′
0, we have

P

(
inf

β∈∂B̃n(r)

∥∥H−1/2
n

(
g̃n(β) − g̃n

)∥∥ ≥ c1r(τ̃n)
1/2

)
> 1− ε/3.(7)
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From (5) and (6) we can also conclude thatP(�̃n) > 1− ε/3 for n large.
On the other hand, by Chebyshev’s inequality and our choice ofr , we

have P(‖H−1/2
n gn‖ ≤ c1r(τ̃n)

1/2/2) > 1 − ε/6 for all n. By Proposition 3,
P(‖H−1/2

n (g̃n − gn)‖ ≤ c1r(τ̃n)
1/2/2) > 1− ε/6 for n large. Hence

P
(‖H−1/2

n g̃n‖ ≤ c1r(τ̃n)
1/2) > 1− ε/3.(8)

From (7) and (8) we obtain thatP(Ẽn) > 1 − (2ε)/3 for n large. This concludes
the proof of the asymptotic existence.

We proceed now with the proof of the weak consistency. Letδ > 0 be arbitrary.
By ( Ĩw) we haveτ̃n/λmin(Hn) < (δ/r)2 for n large. We know that on the event
Ẽn ∩ �̃n, there existŝβn ∈ B̃n(r) such that̃gn(β̂n) = 0. Therefore, on this event

‖β̂n − β0‖ ≤ ‖H−1/2
n ‖ · ‖H1/2

n (β̂n − β0)‖ ≤ [λmin(Hn)]−1/2 · (τ̃n)
1/2r < δ

for n large. This proves thatP(‖β̂n − β0‖ ≤ δ) > 1− ε for n large. �

3. Asymptotic normality. Let cn = λmax(M−1
n Hn). In this section we will

suppose that(cnτ̃n)n is bounded.

THEOREM 4. Under the conditions of Theorem 3,

M−1/2
n g̃n = M−1/2

n Hn(β̂n − β0) + oP (1).

PROOF. On the set{g̃n(β̂n) = 0, β̂n ∈ B̃n(r)}, we havẽgn = D̃n(β̄n)(β̂n − β0)

for someβ̄n ∈ B̃n(r) by Taylor’s formula. Multiplication withM−1/2
n yields

M−1/2
n g̃n = M−1/2

n H1/2
n AnH1/2

n (β̂n − β0) + M−1/2
n Hn(β̂n − β0),

whereAn := H−1/2
n D̃n(β̄n)H

−1/2
n −I = oP (1), by Theorem 2(i) and Proposition 4.

The result follows since‖M−1/2
n H1/2

n ‖ ≤ c
1/2
n and‖H1/2

n (β̂n − β0)‖ ≤ (τ̃n)
1/2r .

�

Letγ (D)
n := max1≤i≤n λmax(H

−1/2
n XT

i A1/2
i R−1

n A1/2
i XiH

−1/2
n ). Note thatγ (D)

n ≤
Cdnγ̃n, wheredn = maxi≤n,j≤m σ 2

ij . We consider the following conditions:

(Ñδ) there exists aδ > 0 such that:
(i) Y := supi≥1 E(‖y∗

i ‖2+δ|Fi−1) < ∞ a.s.;

(ii) (cnτ̃n)
1+2/δγ

(D)
n → 0,

(C2)′ maxi≤n λmax(Vi )
P→ 0.

REMARK 6. Note that condition(Ñδ)(i), with Y integrable, implies condi-
tion (C1), whereas condition (C2)′ is a stronger form of (C2). Part (ii) of condi-
tion (Ñδ) was introduced by Xie and Yang (2003).
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The following result gives the asymptotic distribution ofg̃n.

LEMMA 1. Suppose that the conditions of Theorem 1 hold. Under condi-
tions (Ñδ), (C2)′ and (H′)

M−1/2
n g̃n

d→ N(0, I).

PROOF. We note that

M−1/2
n g̃n = M−1/2

n gn + M−1/2
n (g̃n − gn)

and‖M−1/2
n (g̃n − gn)‖ ≤ (cnτ̃n)

1/2‖(τ̃n)
−1/2H−1/2

n (g̃n − gn)‖ P→ 0, by Proposi-

tion 3. Therefore it is enough to prove thatM−1/2
n gn

d→ N(0, I). By the Cramér–
Wold theorem, this is equivalent to showing that:∀λ,‖λ‖ = 1

λT M−1/2
n gn =

n∑
i=1

Zn,i
d→ N(0,1),(9)

whereZn,i = λT M−1/2
n XT

i A1/2
i R−1

n A−1/2
i εi . Note thatE(Zn,i |Fi−1) = 0 for all

i ≤ n, that is,{Zn,i; i ≤ n,n ≥ 1} is a martingale difference array.
Relationship (9) follows by the martingale central limit theorem with the

Lindeberg condition [see Corollary 3.1 of Hall and Heyde (1980)] if
n∑

i=1

E[Z2
n,iI(|Zn,i | > ε)|Fi−1] → 0 a.s.(10)

and
n∑

i=1

E(Z2
n,i |Fi−1)

P→ 1.(11)

Relationship (10) follows from condition(Ñδ) exactly as in Lemma 2 of Xie
and Yang (2003) withψ(t) = tδ/2. Relationship (11) follows from conditions
(C2)′ and (H′):

n∑
i=1

E(Z2
n,i |Fi−1) − 1

=
n∑

i=1

[E(Z2
n,i |Fi−1) − E(Z2

n,i)]

=
n∑

i=1

λT M−1/2
n XT

i A1/2
i R−1

n ViR−1
n A1/2

i XiM−1/2
n λ

≤ max
1≤i≤n

λmax(Vi ) · max
1≤i≤n

λmax(�R−1
i ) · λT M−1/2

n MnM−1/2
n λ

≤ C−1 max
i≤n

λmax(Vi )
P→ 0. �



534 R. M. BALAN AND I. SCHIOPU-KRATINA

Putting together the results in Theorem 4 and Lemma 1, we obtain the
asymptotic normality of the estimator̂βn.

THEOREM 5. Under the conditions of Theorem 3 and conditions (Ñδ),
(C2)′ and (H′),

M−1/2
n Hn(β̂n − β0)

d→ N(0, I).

REMARK 7. In applications we would need a version of Theorem 5 where
Mn is replaced by a consistent estimator. We suggest the estimator proposed by
Liang and Zeger (1986) [see also Remark 8 of Xie and Yang (2003)]. The details
of the proof are omitted.

APPENDIX

A.1. The following lemma is a consequence of Kaufmann’s (1987) martingale
strong law of large numbers and can be viewed as a stronger version of
Theorem 2.19 of Hall and Heyde (1980).

LEMMA A.1. Let (xi)i≥1 be a sequence of random variables and let (Fi )i≥1
be a sequence of increasing σ -fields such that xi is Fi -measurable for every i ≥ 1.
Suppose that supi E|xi |α < ∞ for some α ∈ (1,2]. Then

1

n

n∑
i=1

(
xi − E(xi |Fi−1)

) → 0 a.s. and in Lα.

PROOF. Note thatyi = xi − E(xi |Fi−1), n ≥ 1, is a martingale difference
sequence. By the conditional Jensen inequality

|yi |α ≤ 2α−1{|xi |α + |E(xi |Fi−1)|α} ≤ 2α−1{|xi |α + E(|xi |α|Fi−1)}
and supi≥1 E|yi |α ≤ 2α supi≥1 E|xi |α < ∞. Hence∑

i≥1

E|yi |α
iα

≤ sup
i≥1

E|yi |α · ∑
i≥1

1

iα
< ∞.

The lemma follows by Theorem 2 of Kaufmann (1987) withp = 1,Bi = i−1. �

PROOF OF PROPOSITION 1. We denote bŷr(n)
jk , ¯̄r(n)

jk , v
(n)
jk (j, k = 1, . . . ,m)

the elements of the matriceŝRn, ��Rn, Vn, respectively. We write

r̂
(n)
jk − ¯̄r(n)

jk = 1

n

n∑
i=1

(
y∗
ij y

∗
ik − E(y∗

ij y
∗
ik|Fi−1)

) + 1

n

n∑
i=1

v
(i)
jk .(12)
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The first term converges to zero almost surely and inL1+δ/2 by applying
Lemma A.1 withxi = y∗

ij y
∗
ik , and using condition (C1). The second term converges

to zero in probability by condition (C2). This convergence is also inL1+δ/2

because the sequence{n−1 ∑n
i=1 v

(i)
jk }n has uniformly bounded moments of order

1+ δ/2 and hence is uniformly integrable.�

PROOF OFPROPOSITION2. We denote bỹr(n)
jk (j, k = 1, . . . ,m) the elements

of the matrixR̃n. Let δ̃i,jk := [σijσik]/[σij (β̃n)σik(β̃n)] − 1, �̃µij := µij (β̃n) −
µij (β0) and

�̃(εij εik) := εij (β̃n)εik(β̃n) − εij εik = (�̃µij )(�̃µik) − (�̃µij )εik − (�̃µik)εij .

With this notation, we have

r̃
(n)
jk − r̂

(n)
jk = 1

n

n∑
i=1

εij (β̃n)εik(β̃n)

σij (β̃n)σik(β̃n)
− 1

n

n∑
i=1

εij εik

σij σik

= 1

n

n∑
i=1

�̃(εij εik)

σijσik

+ 1

n

n∑
i=1

�̃(εij εik)

σijσik

δ̃i,jk + 1

n

n∑
i=1

εij εik

σij σik

δ̃i,jk.

From here, we conclude that

∣∣r̃ (n)
jk − r̂

(n)
jk

∣∣ ≤ Un,jk + max
i≤n

|δ̃i,jk| ·
{
Un,jk + 1

n

n∑
i=1

|y∗
ij y

∗
ik|

}
,

where

Un,jk := 1

n

n∑
i=1

|�̃µij | · |�̃µik|
σijσik

+ 1

n

n∑
i=1

|�̃µij |
σij

· |y∗
ik| +

1

n

n∑
i=1

|�̃µik|
σik

· |y∗
ij |

= U
[1]
n,jk + U

[2]
n,jk + U

[3]
n,jk.

Recall that our estimator̃βn was obtained in the proof of Theorem 2 of Xie
and Yang (2003) as a solution of the GEE in the case when all the “working”
correlation matrices areRindep

i = I. One of the consequences of the result of Xie
and Yang is that for every fixedε > 0, there existr = rε andN = Nε such that, if
we denote�n,ε = {β̃n lies inB

indep
n (r)}, then

P(�n,ε) ≥ 1− ε for all n ≥ N.

We defineβ̃n to be equal toβ0 on the event�c
n,ε. Therefore,

on�c
n,ε : max

i≤n
|δ̃i,jk| = 0 and �̃µij = 0.
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Using Taylor’s formula and condition(AH)indep, we can conclude that on the
event�n,ε, there exists a constantC = Cε such that

|δ̃i,jk| =
∣∣∣∣ µ̇(xT

ijβ0)

µ̇(xT
ij β̃n)

− 1
∣∣∣∣ ≤ C · (γ 0

n )indep· (m1/2r) for all i ≤ n,

1

n

n∑
i=1

(�̃µij )
2

σ 2
ij

= n−1(β̃n − β0)
T

{
n∑

i=1

(σ 2
ij (β̄n)

σ 2
ij

)2

σ 2
ij xij xT

ij

}
(β̃n − β0)

≤ n−1(β̃n − β0)
T

{
n∑

i=1

XT
i A1/2

i [Ai (β̄n)A
−1
i ]2A1/2

i Xi

}
(β̃n − β0)

≤ n−1 max
i≤n

λ2
max[Ai(β̄n)A

−1
i ] · ‖(Hindep

n )1/2(β̃n − β0)‖2

≤ Cn−1(m2r).

Note also thatE[n−1 ∑n
i=1(y

∗
ij )

2] = E[r̂ (n)
jj ] = O(1) since r̂

(n)
jj − ¯̄r(n)

jj

L1→ 0 and

¯̄r(n)

jj = 1. Applying the Cauchy–Schwarz inequality to each of the three sums that
form Un,jk , we can conclude that

E
[
U

[1]
n,jk

] → 0 and E
[(

U
[l]
n,jk

)2] → 0, l = 2,3.

On the other hand,

E

[
max
i≤n

|δ̃i,jk| · Un,jk

]
=

∫
�n,ε

max
i≤n

|δ̃i,jk| · Un,jk dP

≤ C
(
γ (0)
n

)indep
∫
�

Un,jk → 0,

E

[
max
i≤n

|δ̃i,jk| · 1

n

n∑
i=1

|y∗
ij y

∗
ik|

]
≤ C

(
γ (0)
n

)indep[
E

(
r̂
(n)
jj

)]1/2[
E

(
r̂
(n)
kk

)]1/2 → 0.

�

A.2.

PROOF OF PROPOSITION 3. Let h
(0)
ijk = [σ 2

ij /σ
2
ik]1/2, R̃−1

n := Q̃n

= (q̃
(n)
jk )j,k=1,...,m andR−1

n := Qn = (q
(n)
jk )j,k=1,...,m. With this notation, we write

(τ̃n)
−1/2H−1/2

n (g̃n − gn)

=
m∑

j,k=1

(
q̃

(n)
jk − q

(n)
jk

) ·
{
(τ̃n)

−1/2H−1/2
n

n∑
i=1

h
(0)
ijkxij εik

}
.
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By Theorem 1,q̃(n)
jk − q

(n)
jk

P→ 0 for everyj, k. The result will follow once we

prove that{(τ̃n)
−1/2H−1/2

n
∑n

i=1 h
(0)
ijkxij εik}n is bounded inL2 for everyj, k. Since

(εik)i≥1 is a martingale difference sequence, we have

E

(∥∥∥∥∥(τ̃n)
−1/2H−1/2

n

n∑
i=1

h
(0)
ijkxij εik

∥∥∥∥∥
2)

= (τ̃n)
−1 tr

{
H−1/2

n

(
n∑

i=1

(
h

(0)
ijk

)2
σ 2

ikxij xT
ij

)
H−1/2

n

}

= (τ̃n)
−1 tr

{
H−1/2

n

(
n∑

i=1

σ 2
ij xij xT

ij

)
H−1/2

n

}

≤ (τ̃n)
−1(4mτ̃n) tr(I) = 4mp

because
∑n

i=1 σ 2
ij xij xT

ij ≤ ∑n
i=1 XT

i AiXi ≤ λmax(Rn)Hn ≤ 4mτ̃nHn. �

PROOF OFPROPOSITION4. We write

Dn(β) = Hn(β) + Bn(β) + En(β), D̃n(β) = H̃n(β) + B̃n(β) + Ẽn(β),

whereH̃n(β), B̃n(β), Ẽn(β) have the same expressions asHn(β),Bn(β),En(β),
with Rn replaced byR̃n. Our result will follow by the following three lemmas.

�

LEMMA A.2. Suppose that condition (ÃH) holds. If (πnγ̃n)n is bounded, then
for any r > 0 and for any p × 1 vector λ with ‖λ‖ = 1,

sup
β∈B̃n(r)

|λT H−1/2
n [H̃n(β) − Hn(β)]H−1/2

n λ| P→ 0.

LEMMA A.3. Suppose that condition (ÃH) holds. If (π2
n γ̃n)n is bounded, then

for any r > 0 and for any p × 1 vector λ with ‖λ‖ = 1,

sup
β∈B̃n(r)

|λT H−1/2
n [B̃n(β) − Bn(β)]H−1/2

n λ| P→ 0.

LEMMA A.4. Suppose that condition (ÃH) holds. If (n1/2γ̃n)n is bounded,
then for any r > 0 and for any p × 1 vector λ with ‖λ‖ = 1,

sup
β∈B̃n(r)

|λT H−1/2
n [Ẽn(β) − En(β)]H−1/2

n λ| P→ 0.
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PROOF OF LEMMA A.2. Using Theorem 1 and the fact that|r(n)
jk | ≤ 2

for n large, we haveAn = R1/2
n R̃−1

n R1/2
n − I = R1/2

n (R̃−1
n − R−1

n )R1/2
n

P→ 0
(elementwise). For everyβ,

|λT H−1/2
n [H̃n(β) − Hn(β)]H−1/2

n λ|

=
∣∣∣∣∣

n∑
i=1

λT H−1/2
n XT

i Ai (β)1/2R−1/2
n AnR−1/2

n Ai (β)1/2XiH−1/2
n λ

∣∣∣∣∣
≤ max{|λmax(An)|, |λmin(An)|} · {λT H−1/2

n Hn(β)H−1/2
n λ}.

The result follows, since one can show that for everyβ ∈ B̃n(r)

|λT H−1/2
n Hn(β)H−1/2

n λ − 1|
≤ λT H−1/2

n H[1]
n (β)H−1/2

n λ + 2|λT H−1/2
n H[2]

n (β)H−1/2
n λ|(13)

≤ Cπnγ̃n + 2C(πnγ̃n)
1/2 ≤ C,

where

H[1]
n (β) =

n∑
i=1

XT
i

(
A1/2

i (β) − A1/2
i

)
R−1

n

(
A1/2

i (β) − A1/2
i

)
Xi ,

H[2]
n (β) =

n∑
i=1

XT
i

(
A1/2

i (β) − A1/2
i

)
R−1

n A1/2
i Xi .

We used the fact that supβ∈B̃n(r) maxi≤n λmax{(A1/2
i (β)A−1/2

i − I)2} ≤ Cγ̃n, which

follows by condition(ÃH) as in Lemma B.1(ii) of Xie and Yang (2003).�

PROOF OF LEMMA A.3. Let wi,n(β)T = λT H−1/2
n XT

i G[1]
i (β) ×

diag{XiH
−1/2
n λ}R−1/2

n andzi,n(β) = R−1/2
n Ai(β)−1/2(µi − µi(β)). We have∣∣λT H−1/2

n

[
B̃[1]

n (β) − B[1]
n (β)

]
H−1/2

n λ
∣∣

=
∣∣∣∣∣

n∑
i=1

wi,n(β)T Anzi,n(β)

∣∣∣∣∣
≤ ‖An‖

{
n∑

i=1

‖wi,n(β)‖2

}1/2{ n∑
i=1

‖zi,n(β)‖2

}1/2

by using the Cauchy–Schwarz inequality. Methods similar to those developed in
the proof of Lemma A.2(ii) of Xie and Yang (2003) show that for anyβ ∈ B̃n(r),∑n

i=1 ‖wi,n(β)‖2 ≤ Cπnγ
(0)
n and

∑n
i=1 ‖zi,n(β)‖2 ≤ Cπnτ̃nλmax(H

−1/2
n Hn(β̄) ×

H−1/2
n ) ≤ Cπnτ̃n [using (13) for the last inequality]. Hence

sup
β∈B̃n(r)

∣∣λT H−1/2
n

[
B̃[1]

n (β) − B[1]
n (β)

]
H−1/2

n λ
∣∣ ≤ C‖An‖πn(γ̃n)

1/2 P→ 0.
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Let vi,n(β)T = λT H−1/2
n XT

i Ai(β)1/2R−1/2
n AnR−1/2

n diag{XiH
−1/2
n λ}G[2]

i (β) ×
Ai (β)1/2R1/2

n . We have∣∣λT H−1/2
n

[
B̃[2]

n (β) − B[2]
n (β)

]
H−1/2

n λ
∣∣

=
∣∣∣∣∣

n∑
i=1

vi,n(β)T zi,n(β)

∣∣∣∣∣ ≤
{

n∑
i=1

‖vi,n(β)‖2

}1/2{ n∑
i=1

‖zi,n(β)‖2

}1/2

.

One can prove that for anyβ ∈ B̃n(r),
∑n

i=1 ‖vi,n(β)‖2 ≤ Cπnγ
(0)
n λmax(A

2
n) ×

{λT H−1/2
n Hn(β)H−1/2

n λ} ≤ Cπnγ
(0)
n ‖An‖2 [using (13) for the last inequality].

Hence

sup
β∈B̃n(r)

∣∣λT H−1/2
n

[
B̃[2]

n (β) − B[2]
n (β)

]
H−1/2

n λ
∣∣ ≤ C‖An‖πn(γ̃n)

1/2 P→ 0.
�

PROOF OF LEMMA A.4. We write Ẽn(β) − En(β) = [Ẽ [1]
n (β) − E [1]

n (β)] +
[Ẽ [2]

n (β) − E [2]
n (β)] and we use a decomposition which is similar to that given in

the proof of Lemma A.3(ii) of Xie and Yang (2003). More precisely, we write

λT H−1/2
n

[
Ẽ [1]

n (β) − E [1]
n (β)

]
H−1/2

n λ = T [1]
n + T [3]

n (β) + T [5]
n (β),

λT H−1/2
n

[
Ẽ [2]

n (β) − E [2]
n (β)

]
H−1/2

n λ = T [2]
n + T [4]

n (β) + T [6]
n (β),

whereT [l]
n (β) = ∑m

j,k=1(q̃
(n)
jk − q

(n)
jk ) · S[l]

n,jk(β) for l = 1, . . . ,6 and

S
[1]
n,jk = λT H−1/2

n

n∑
i=1

[
A−1/2

i G[1]
i

]
j [diag{XiH−1/2

n λ}]jh(0)
ijkxij εik,

S
[3]
n,jk(β) = λT H−1/2

n

n∑
i=1

[
A−1/2

i G[1]
i (β)

]
j [diag{XiH−1/2

n λ}]j [Ai(β)−1/2A1/2
i − I ]k

× h
(0)
ijkxij εik,

S
[5]
n,jk(β) = λT H−1/2

n

n∑
i=1

[
A−1/2

i

(
G[1]

i (β) − G[1]
i

)]
j [diag{XiH−1/2

n λ}]jh(0)
ijkxij εik,

S
[2]
n,jk = λT H−1/2

n

n∑
i=1

[diag{XiH−1/2
n λ}]k[G[2]

i A1/2
i

]
kh

(0)
ijkxij εik,

S
[4]
n,jk(β) = λT H−1/2

n

n∑
i=1

[A−1/2
i Ai (β)1/2 − I ]j [diag{XiH−1/2

n λ}]k[G[2]
i (β)A1/2

i

]
k

× h
(0)
ijkxij εik,
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S
[6]
n,jk(β) = λT H−1/2

n

n∑
i=1

[diag{XiH−1/2
n λ}]k[(G[2]

i (β) − G[2]
i

)
A1/2

i

]
kh

(0)
ijkxij εik

(here we have denoted with[�]j thej th element on the diagonal of a matrix�).

Since q̃
(n)
jk − q

(n)
jk

P→ 0, it is enough to prove that{S[1]
n,jk}n, {S[2]

n,jk}n and

{supβ∈B̃n(r) |S[l]
n,jk(β)|}n, l = 3,4,5,6, are bounded inL2 for every j, k =

1, . . . ,m.
We have

E
(∣∣S[1]

n,jk

∣∣2)
≤ tr

{
H−1/2

n

(
n∑

i=1

[
A−1/2

i G[1]
i

]2
j [diag{XiH−1/2

n λ}]2j
(
h

(0)
ijk

)2
σ 2

ikxij xT
ij

)
H−1/2

n

}

≤ Cγ (0)
n tr

{
H−1/2

n

(
n∑

i=1

σ 2
ij xij xT

ij

)
H−1/2

n

}
≤ Cγ (0)

n (4mpτ̃n) = Cγ̃n ≤ C.

By the Cauchy–Schwarz inequality, for everyβ ∈ B̃n(r),∣∣S[3]
n,jk(β)

∣∣2 ≤
{

n∑
i=1

[
A−1/2

i G[1]
i (β)

]2
j [diag{XiH−1/2

n λ}]2j [Ai (β)−1/2A1/2
i − I ]2k

}

×
{

n∑
i=1

(
h

(0)
ijk

)2
ε2
ik(λ

T H−1/2
n xij )

2

}

≤ Cnγ (0)
n γ̃n ·

{
λT H−1/2

n

(
n∑

i=1

(
h

(0)
ijk

)2
ε2
ikxij xT

ij

)
H−1/2

n λ

}
.

HenceE(supβ∈B̃n(r) |S[3]
n,jk(β)|2) ≤ Cnγ

(0)
n γ̃n · {λT H−1/2

n (
∑n

i=1 σ 2
ij xij xT

ij )H
−1/2
n ×

λ} ≤ Cnγ 0
n γ̃n · (4mτ̃n) ≤ Cn(γ̃n)

2 ≤ C.
Similarly, by the Cauchy–Schwarz inequality, for everyβ ∈ B̃n(r),∣∣S[5]

n,jk(β)
∣∣2 ≤

{
n∑

i=1

[
A−1/2

i

(
G[1]

i (β) − G[1]
i

)]2
j [diag{XiH−1/2

n λ}]2j
}

×
{

n∑
i=1

(
h

(0)
ijk

)2
ε2
ik(λ

T H−1/2
n xij )

2

}

≤ Cnγ (0)
n γ̃n ·

{
λT H−1/2

n

(
n∑

i=1

(
h

(0)
ijk

)2
ε2
ikxij xT

ij

)
H−1/2

n λ

}

andE(supβ∈B̃n(r) |S[5]
n,jk(β)|2) ≤ Cn(γ̃n)

2 ≤ C.

The termsS[l]
n,jk(β), l = 2,4,6, can be treated by similar methods.�
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