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EFFICIENT ESTIMATION OF BANACH PARAMETERS IN
SEMIPARAMETRIC MODELS1

BY CHRIS A. J. KLAASSEN AND HEIN PUTTER

University of Amsterdam and University of Leiden

Consider a semiparametric model with a Euclidean parameter and an
infinite-dimensional parameter, to be called a Banach parameter. Assume:

(a) There exists an efficient estimator of the Euclidean parameter.
(b) When the value of the Euclidean parameter is known, there exists

an estimator of the Banach parameter, which depends on this value and is
efficient within this restricted model.

Substituting the efficient estimator of the Euclidean parameter for the value
of this parameter in the estimator of the Banach parameter, one obtains
an efficient estimator of the Banach parameter for the full semiparametric
model with the Euclidean parameter unknown. This hereditary property
of efficiency completes estimation in semiparametric models in which the
Euclidean parameter has been estimated efficiently. Typically, estimation of
both the Euclidean and the Banach parameter is necessary in order to describe
the random phenomenon under study to a sufficient extent. Since efficient
estimators are asymptotically linear, the above substitution method is a
particular case of substituting asymptotically linear estimators of a Euclidean
parameter into estimators that are asymptotically linear themselves and that
depend on this Euclidean parameter. This more general substitution case is
studied for its own sake as well, and a hereditary property for asymptotic
linearity is proved.

1. Introduction. Estimation of a parameter is not a goal in itself. Typically,
the purpose is to determine a reliable picture of future behavior of a random
system. In semiparametric models this means that estimation of just the finite-
dimensional, Euclidean parameters does not finish the job. The values of the
Banach parameters are needed to complete the picture. The situation in classical
parametric models is similar. Consider linear regression under normal errors with
unknown variance. The regression parameters are the parameters of interest, but
the variance of the errors, although of secondary interest, is essential to describe
the behavior of the dependent variable at a particular value of the independent
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variable, as for instance in prediction. In semiparametric linear regression the
error distribution with mean zero is completely unknown. Again, this distribution
is essential in describing the behavior of the dependent variable. Therefore, its
distribution function has to be estimated. This may be done along the following
lines:

1. Estimate the regression parameter vectorθ efficiently using (by now standard)
semiparametric theory.

2. Given the true value of the parameterθ , the error distribution functionG can
be estimated efficiently, since the i.i.d. errors can be reconstructed from the
observations in this case.

3. Using the estimated value ofθ , construct the residuals and instead of the i.i.d.
errors use these residuals to estimate the Banach parameterG in the same way
as in step 2.

The crux of the present paper is that the resulting estimator ofG is efficient.
In fact, for any semiparametric model, we will prove that this approach, which
is in line with statistical practice, yields an efficient estimator of the Banach
parameter, provided a sample splitting scheme is applied. Since we assume that
efficient estimators ofθ are available, we shall focus on efficient estimation of
the Banach parameterG in the presence of the Euclidean nuisance parameterθ .
Sample splitting is unnecessary and the direct substitution estimator works if the
conditional estimator of the Banach parameter givenθ depends onθ in a smooth
way. In order to be able to estimateG efficiently according to our approach, it
is essential in nonadaptive cases that in step 1 the Euclidean parameterθ can be
estimated efficiently in the semiparametric sense. The Banach parameter needed
for more complete inference, like the distribution functionG of the errors in
semiparametric linear regression, typically isunequal to the Banach parameter
needed in efficient semiparametric estimation ofθ , this parameter being the
score function−d log(dG(x)/dx)/dx for location in the linear regression model.
In fact, Klaassen (1987) has shown thatθ can be estimated efficiently if and only if
the efficient influence function for estimatingθ can be estimated consistently and√

n-unbiasedly, givenθ , andθ can be estimated
√

n-consistently, withn denoting
sample size. Of course, this efficient influence function depends on the Banach
parameter of interest, but typically differs from it.

To give a more explicit and precise statement of our results, letP be our
semiparametric model given by

P = {Pθ,G : θ ∈ �,G ∈ G}, � ⊂ R
k,G ⊂ H ,(1.1)

where� is an open subset ofRk and G is a subset of a Banach or preferably
a Hilbert space(H , 〈·, ·〉H ). Typically, in a natural parametrization,G would be
a distribution function and hence an element of a Banach spaceL∞. If a σ -finite
measure would dominate the distributions inG, then an obvious parametrization
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would be via the corresponding densitiesg of G, which are elements of a Banach
spaceL1. However, via the square roots

√
g we parametrize by elements of a

Hilbert spaceL2. Therefore, we shall assume thatG is a subset of a Hilbert space
or can be identified with it. We are interested in estimating a parameter

ν = ν(Pθ,G) = ν̃(G),(1.2)

where ν̃ :G → B (B Banach space) is pathwise differentiable; see (4.4) for
details. Estimation has to be based on i.i.d. random variablesX1,X2, . . . ,Xn

with unknown distributionPθ,G ∈ P on the sample space(X,A). Let P2(θ) be
the submodel ofP whereθ is known. Let the submodel estimatorν̂θ,n be an
efficient estimator ofν within P2(θ). Suppose that we also have an estimatorθ̂n

of θ at our disposal withinP . Following step 3 above, an obvious candidate
for estimatingν in the full modelP would be the substitution estimatorν̂

θ̂n,n
.

We shall show that a split-sample modification ofν̂
θ̂n,n

is an efficient estimator

of ν in P if θ̂n is an efficient estimator ofθ in P . In adaptive cases, for̂ν
θ̂n,n

to be efficient inP it is sufficient that the estimator̂θn be
√

n-consistent. The
substitution estimator̂ν

θ̂n,n
itself is semiparametrically efficient if the submodel

estimatorν̂θ,n depends smoothly onθ , which is typically the case.
The asymptotic linearity of the efficient estimators involved warrants the

resulting substitution estimator to be asymptotically linear as well. We study
this hereditary property of asymptotic linearity of estimators for its own sake
in Section 2, where we refrain from the efficiency assumptions made above. In
Section 3 we discuss such simple examples as the sample variance and estimators
of the standardized error distribution in linear regression. There we will also
introduce models that we propose to call parametrized linkage models. In Section 4
we will collect some results about efficient influence functions in the various
(sub)models that we consider. Section 5 contains our main results for efficiency. In
Section 6 we will discuss a number of examples.

A general class of semiparametric modelsP = {Pθ,G : θ ∈ �,G ∈ G} in which
our results apply is the class of models that can be handled by profile likelihood.
If ln(θ,G) is the appropriately defined likelihood ofn independent observations
from P , then a maximum likelihood estimatorθ̂n of θ can be found by maximizing
theprofile likelihood

pln(θ) = sup
G∈G

ln(θ,G).(1.3)

This amounts to maximizing the likelihood in two steps. First maximize with
respect toG for a givenθ . The maximizer ofln(θ,G) with respect toG, sayĜn(θ),
will generally depend onθ . Placing the submodel estimatorĜn(θ) back into the
likelihood, we obtain a function ofθ only, pln(θ) = ln(θ, Ĝn(θ)). Murphy and
van der Vaart (2000) show that the profile likelihood can to a large extent be
viewed as an ordinary likelihood. In particular, under some regularity conditions,
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asymptotic efficiency of the maximizer̂θn of (1.3) can be proved. Important in
this construction is the fact that the maximizer of the likelihood with respect toG,
obtained in the first maximization step,Ĝn(θ), is not yet a complete estimator
of G. This submodel estimator is only an estimator ofG for a given value ofθ ,
just as in step 2 of our linear regression example above. Having found an efficient
estimator ofθ , estimation of(θ,G) is then completed by considering the obvious
substitution estimator̂Gn = Ĝn(θ̂n). The estimatorĜn(θ) for given θ is already
available as a result of the maximizing step in (1.3). The Banach parameterν̃(G)

or G itself will not generally be estimable at
√

n-rate, but it may be possible to
estimate real-valued functionalsκ = κ(Pθ,G) = κ̃(G) of G at

√
n-rate. In cases

where κ̃(Ĝn(θ)) is an efficient estimator of̃κ(G) given θ , our results can be
applied to yield a fully efficient estimator̃κ(Ĝn(θ̂n)) of κ̃(G). Numerous examples
fall into this class, some of them treated in some detail in this paper, like the Cox
proportional hazards model for right censored data (Example 6.6) and for current
status data [Huang (1996) and Bolthausen, Perkins and van der Vaart (2002)],
frailty models [Nielsen, Gill, Andersen and Sørensen (1992)], the proportional
odds model [Murphy, Rossini and van der Vaart (1997)], selection bias models
[Gilbert, Lele and Vardi (1999) and Cosslett (1981)] and random effects models
[Butler and Louis (1992)].

We will consider a number of examples in more detail in Section 6, namely
estimation of the variance with unknown mean, estimation of the error distribution
in parametrized linkage models and in particular in the location problem with
the bootstrap as an application, estimation of a (symmetric) error distribution in
linear regression as an example of the adaptive case, and finally, estimation of the
baseline distribution function in the Cox proportional hazards model.

The framework of the present paper has been presented in Klaassen and Putter
(1997) within the linear regression model with symmetric error distribution and
has been used by Müller, Schick and Wefelmeyer (2001) in their discussion of
substitution estimators in semiparametric stochastic process models.

There are fundamental theorems of algebra, arithmetic and calculus. Statistics
has its fundamental rule of thumb. It states that “replacing unknown parameters in
statistical procedures by estimators of them yields appropriate procedures.” This
paper describes a large class of estimation problems where this rule of thumb is
indeed atheorem.

2. Heredity of asymptotic linearity of substitution estimators. In this
section we will study the local asymptotic behavior of estimators that are obtained
by combining two asymptotically linear estimators in the way described in
Section 1. We will prove the hereditary property that under certain regularity
conditions the resulting estimators are asymptotically linear as well and we will
describe their influence functions. The main application of this heredity result is
to efficient estimators as described in Section 1. This will be pursued in Section 5,
but we believe the hereditary property is of independent interest as well.
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Although we will apply this hereditary property to semiparametric modelsP
as in (1.1), we will be able to restrict attention in the present section to parametric
models since the phenomenon under study occurs within the natural parametric
submodelsP1(G) = {Pθ,G : θ ∈ �} of P with G ∈ G fixed.

So, within this section, letP = {Pθ : θ ∈ �}, � ⊂ R
k open, be a parametric

model, and letX1,X2, . . . ,Xn be the i.i.d. random variables with distribution
Pθ ∈ P on the sample space(X,A) that are used for estimation. Since our
considerations are of the usual local asymptotic type, we introduce an arbitrary
fixed θ0 ∈ � at which the local asymptotics is focused.

For every m ∈ N let �m be the set of all measurable functionsψ from
X × � into R

m such that
∫

ψ(x; θ) dPθ(x) = 0 and
∫ |ψ(x; θ)|2 dPθ(x) < ∞

for all θ ∈ �, where| · | denotes a Euclidean norm. Fixm ∈ N and consider a
differentiable functionκ from � into R

m.

DEFINITION 2.1. An estimatorκ̂n of κ(θ) is locally asymptotically linear
at θ0 if there exists aψ ∈ �m such that

√
n

∣∣∣∣∣κ̂n − κ(θn) − n−1
n∑

i=1

ψ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0(2.1)

for all sequences{θn} with {√n(θn − θ0)} bounded. We callψ the influence
function of κ̂n.

Suppose we have an estimatorθ̂n = tn(X1, . . . ,Xn), tn :Xn → R
k , An-Borel

measurable, that is a locally asymptotically linear estimator ofθ at θ0 with
influence functionψθ ∈ �k , that is,

√
n

∣∣∣∣∣θ̂n − θn − 1

n

n∑
i=1

ψθ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0(2.2)

holds for all sequences{θn} with {√n(θn−θ0)} bounded. Suppose furthermore that
there is a procesŝκθ,n = kn(X1, . . . ,Xn; θ) that is locally asymptotically linear in
ψκ ∈ �m aroundκ(θ) such that

√
n

∣∣∣∣∣κ̂θn,n − κ(θn) − n−1
n∑

i=1

ψκ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0(2.3)

holds for all sequences{θn} with {√n(θn − θ0)} bounded. Note that we have
extended here the concept of local asymptotic linearity from estimators ofκ(θ),
as in Definition 2.1, to statistics indexed byθ . This is quite reasonable since
the gist of the concept is that the relevant statistic behaves as an average locally
asymptotically.

We want to describe the local asymptotic behavior of the substitution estimator

κ̂n,1 = κ̂
θ̂n,n

,(2.4)
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which replaces the unknownθ by its estimator̂θn in κ̂θ,n.
Heuristically, by (2.3),

√
n(κ̂

θ̂n,n
− κ(θ0)) behaves like

√
n

(
κ(θ̂n) − κ(θ0) + n−1

n∑
i=1

ψκ(Xi; θ̂n)

)
.(2.5)

Now it is natural to assume the existence of a matrix-valued functionc :� → R
m×k

that is continuous atθ0 and that is such that for every sequence{θn} with
{√n(θn − θ)} bounded,∣∣∣∣∣ 1√

n

n∑
i=1

ψκ(Xi; θn) − 1√
n

n∑
i=1

ψκ(Xi; θ0) − c(θ0)
√

n(θn − θ0)

∣∣∣∣∣
Pθ0→ 0(2.6)

holds. Sinceκ is differentiable,
√

n(κ̂
θ̂n,n

− κ(θ0)) would then behave like

√
n

(
κ ′(θ0)(θ̂n − θ0) + n−1

n∑
i=1

ψκ(Xi; θ0) + c(θ0)(θ̂n − θ0)

)

and hence, by (2.2), like

1√
n

n∑
i=1

(
ψκ(Xi; θ0) + (

κ ′(θ0) + c(θ0)
)
ψθ(Xi; θ0)

)
.

The estimatorκ̂
θ̂n,n

thus inherits its asymptotic linearity from the submodel

estimator κ̂θ,n and the estimator̂θn. To study this asymptotic linearity more
carefully, we first describe a sample splitting procedure, for which we can prove
statements under minimal conditions. Fix a sequence of integers{λn}∞n=1, such that

λn

n
→ 1

2
.(2.7)

We split the sample(X1, . . . ,Xn) into two parts,(X1, . . . ,Xλn) and (Xλn+1,

. . . ,Xn). Define

θ̃n1 = tλn

(
X1, . . . ,Xλn

)
, θ̃n2 = tn−λn

(
Xλn+1, . . . ,Xn

)
,

κ̃
(1)
θ,λn

= kλn

(
X1, . . . ,Xλn; θ

)
, κ̃

(2)
θ,n−λn

= kn−λn

(
Xλn+1, . . . ,Xn; θ)(2.8)

and

κ̂n,2 = λn

n
κ̃

(1)

θ̃n2,λn
+ n − λn

n
κ̃

(2)

θ̃n1,n−λn
.(2.9)

The following theorem describes the influence function of this split-sample
substitution estimator̂κn,2.
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THEOREM 2.1. Fix θ0 ∈ �. Suppose that κ :� → R
m is continuously

differentiable in a neighborhood of θ0 with derivative matrix κ ′ and suppose that
conditions (2.2), (2.3)and (2.6) hold for some c :� → R

m×k that is continuous
at θ0. Then κ̂n,2 defined by (2.7)–(2.9) is locally asymptotically linear for κ at θ0
with influence function ψ̃ given by

ψ̃(x; θ) = ψκ(x; θ) + (
κ ′(θ) + c(θ)

)
ψθ(x; θ),(2.10)

that is, for every sequence {θn} with {√n(θn − θ0)} bounded,

√
n

∣∣∣∣∣κ̂n,2 − κ(θn) − 1

n

n∑
i=1

ψ̃(Xi; θn)

∣∣∣∣∣
Pθ0→ 0.(2.11)

PROOF. Fix θ0 ∈ � and the sequence{θn}. Take another sequence{θ̃n} such
that {√n(θ̃n − θ0)} stays bounded. Combining (2.3), withθn replaced byθ̃n,
and (2.6), both withθn and withθn replaced bỹθn, we obtain, using(X1, . . . ,Xλn),

√
n

∣∣∣∣∣κ̃ (1)

θ̃n,λn
− κ(θ̃n) − 1

λn

λn∑
i=1

ψκ(Xi; θn) − c(θ0)(θ̃n − θn)

∣∣∣∣∣
Pθ0→ 0,

which by continuous differentiability ofκ(·) and continuity ofc(·) at θ0 yields

√
n

∣∣∣∣∣κ̃ (1)

θ̃n,λn
− κ(θn) − 1

λn

λn∑
i=1

ψκ(Xi; θn) − (
κ ′(θn) + c(θn)

)
(θ̃n − θn)

∣∣∣∣∣
Pθ0→ 0.(2.12)

By the asymptotic linearity of̂θn, we have

√
n

∣∣∣∣∣θ̃n2 − θn − 1

n − λn

n∑
i=λn+1

ψθ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0.(2.13)

Hence, by the independence of(X1, . . . ,Xλn) and (Xλn+1, . . . ,Xn), (2.12)
and (2.13) together yield

√
n

∣∣∣∣∣κ̃ (1)

θ̃n2,λn
− κ(θn) − 1

λn

λn∑
i=1

ψκ(Xi; θn)

− 1

n − λn

n∑
i=λn+1

(
κ ′(θn) + c(θn)

)
ψθ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0.

Similarly we obtain

√
n

∣∣∣∣∣κ̃ (2)

θ̃n1,n−λn
− κ(θn) − 1

n − λn

n∑
i=λn+1

ψκ(Xi; θn)

− 1

λn

λn∑
i=1

(
κ ′(θn) + c(θn)

)
ψθ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0.
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These last two statements yield

√
n

∣∣∣∣∣κ̂n,2 − κ(θn) − 1

n

n∑
i=1

ψκ(Xi; θn)

− 1

n

n∑
i=1

{
n − λn

λn

1[i≤λn] + λn

n − λn

1[i>λn]
}

(2.14)

× (
κ ′(θn) + c(θn)

)
ψθ(Xi; θn)

∣∣∣∣∣
Pθ0→ 0.

In view of (2.7) this shows that̂κn,2 is a locally asymptotically linear estimator
of κ , with influence function given by (2.10). This proves the theorem.�

Note that the expression within braces in (2.14) reveals why (2.7) is crucial to
our sample splitting scheme.

To establish local asymptotic linearity of the direct substitution estimatorκ̂n,1

without sample splitting [cf. (2.4)], we need locally asymptotically uniform
continuity inθ at θ0 of the estimatorŝκθ,n as follows:

For everyδ > 0, ε > 0 andc > 0, there existζ > 0 andn0 ∈ N such that for all
n ≥ n0

Pθ0

(
sup√

n|θ−θ0|≤c,
√

n|θ−θ̃ |≤ζ

√
n|κ̂θ,n − κ̂θ̃ ,n| ≥ ε

)
≤ δ.(2.15)

THEOREM 2.2. Fix θ0 ∈ �. If (2.15) holds in the situation of Theorem 2.1,
then the substitution estimator κ̂n,1 = κ̂

θ̂n,n
is a locally asymptotically linear

estimator of κ with influence function ψ̃ given by (2.10).

PROOF. Fix θ0 ∈ �, δ > 0, ε > 0. Choosec andn0 such that forn ≥ n0

Pθ0

(√
n|θ̂n − θ0| > c

) ≤ δ.(2.16)

Now, chooseζ sufficiently small such that (2.15) holds too (increasen0 if
necessary), and such that the matrix norm ofκ ′(θ0) + c(θ0) satisfies

‖κ ′(θ0) + c(θ0)‖ζ < ε/2.(2.17)

Let θ̂n(ζ ) be the efficient estimator̂θn discretized via a gridGζ of meshwidth
2(kn)−1/2ζ , such that

√
n|θ̂n(ζ ) − θ̂n| ≤ ζ a.s.(2.18)
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It follows by (2.18) and (2.15) that forn ≥ n0 the inequality

Pθ0

(√
n

∣∣∣∣∣κ̂θ̂n,n
− κ(θn)

− 1

n

n∑
i=1

[
ψκ(Xi; θn) + (

κ ′(θn) + c(θn)
)
ψθ(Xi; θn)

]∣∣∣∣∣ ≥ 4ε

)

= Pθ0

(√
n

∣∣∣∣∣(κ̂θ̂n,n
− κ̂

θ̂n(ζ ),n

)

+
{
κ̂
θ̂n(ζ ),n

− κ(θn) − 1

n

n∑
i=1

ψκ(Xi; θn)

− (
κ ′(θn) + c(θn)

)(
θ̂n(ζ ) − θn

)}

+ (
κ ′(θn) + c(θn)

)(
θ̂n(ζ ) − θ̂n

)
(2.19)

+ (
κ ′(θn) + c(θn)

){
θ̂n − θn − 1

n

n∑
i=1

ψθ(Xi; θn)

}∣∣∣∣∣ ≥ 4ε

)

≤ Pθ0

(√
n|θ̂n − θ0| > c

) + δ

+ ∑
θ̃∈Gζ ,

√
n|θ̃−θ0|≤c+ζ

Pθ0

(√
n

∣∣∣∣∣κ̂θ̃ ,n − κ(θn) − 1

n

n∑
i=1

ψκ(Xi; θn)

− (
κ ′(θn) + c(θn)

)
(θ̃ − θn)

∣∣∣∣∣ ≥ ε

)

+ Pθ0

(‖κ ′(θn) + c(θn)‖ζ ≥ ε
)

+ Pθ0

(
‖κ ′(θn) + c(θn)‖√n

∣∣∣∣∣θ̂n − θn − 1

n

n∑
i=1

ψθ(Xi; θn)

∣∣∣∣∣ ≥ ε

)

holds. In view of (2.16), in view of the boundedness of the number of terms in
the sum with all terms converging to zero by (2.12), in view of (2.17) and the
continuity of κ ′ + c, and in view of the linearity of̂θn [see (2.2)], the lim sup as
n → ∞ of the right-hand side of (2.19) equals at most 2δ. Sinceδ may be chosen
arbitrarily small, this proves the asymptotic linearity.�

REMARK 2.1. In some cases, it may happen thatκ ′(·) + c(·) = 0. Then it is
easily seen that the influence function of the substitution estimatorsκ̂n,1 andκ̂n,2

is given byψ̃(·; ·) = ψκ(·; ·), even if θ̂n is not locally asymptotically linear but is
just

√
n-consistent.
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REMARK 2.2. If ψκ(·; θ) is differentiable inθ with derivativeψ̇κ(·; θ), then
Taylor expansion and the law of large numbers suggestc(θ) = Eθψ̇κ(X1; θ).
Furthermore, differentiation ofEθψκ(X1; θ) = 0 with respect toθ hints at

c(θ) = Eθψ̇κ(X1; θ) = −Eθψκ(X1; θ)l̇�(X1; θ),(2.20)

with l̇(x; θ) the score function forθ , namely∂ logp(x; θ)/∂θ .

REMARK 2.3. Theorem 2.2 is related to a result known as the delta method;
see Section 2.5 of Lehmann (1999). Given the functionκ(·), chooseκ̂θ,n = κ(θ).
Then the convergence (2.3) holds trivially withψκ(·; ·) = 0. Furthermore, (2.6)
is valid with c(·) = 0 and (2.15) holds ifκ is continuously differentiable. Now
Theorem 2.2 states that the local asymptotic linearity ofθ̂n in (2.2) implies the
local asymptotic linearity ofκ(θ̂n), that is,

√
n

∣∣∣∣∣κ(θ̂n) − κ(θn) − 1

n

n∑
i=1

κ ′(θn)ψθ (Xi; θn)

∣∣∣∣∣
Pθ0→ 0,

and hence by the central limit theorem the asymptotic normality of
√

n(κ(θ̂n) −
κ(θ0)) underPθ0. Note that the delta method states that asymptotic normality of√

n(θ̂n − θ0) implies asymptotic normality of
√

n(κ(θ̂n) − κ(θ0)).

REMARK 2.4. Under different sets of regularity conditions, the heredity of
asymptotic normality of substitution statistics has been proved by Randles (1982)
and Pierce (1982). Since asymptotic linearity implies asymptotic normality, both
our conditions and our conclusions in proving heredity of asymptotic linearity are
stronger than needed for heredity of asymptotic normality. However, the approach
via differentiability in Section 3 of Randles (1982) comes pretty close to the
assumption of asymptotic linearity. Moreover, our ultimate goal is the study of
efficient estimators, which are bound to be asymptotically linear.

Let us now discuss sufficient conditions for (2.6). The following standard result
will be quite helpful and may be verified by studying first and second moments.

LEMMA 2.1. Fix θ0 ∈ �. If

Eθ0

(|ψκ(X1; θ0 + ε) − ψκ(X1; θ0)|2) → 0 as ε → 0(2.21)

holds and the map ε 
→ Eθ0ψκ(X1; θ0 + ε) is differentiable at 0 with derivative
matrix c(θ0), then (2.6)holds for all sequences {θn} with {√n(θn − θ0)} bounded.

Sometimes (2.6) may be verified by a direct application of the following “law-
of-large-numbers”-type of result.
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LEMMA 2.2. Fix θ0 ∈ �. For Pθ0-almost all x, let ψκ(x; θ) be continuously
differentiable in θ with derivative ψ̇κ(x; θ). If

Eθ0|ψ̇κ(X1; θ)| → Eθ0|ψ̇κ(X1; θ0)| as θ → θ0,(2.22)

then for {√n(θn − θ0)} bounded

1√
n

n∑
i=1

{ψκ(Xi; θn) − ψκ(Xi; θ0)} − √
n(θn − θ0)

�Eθ0ψ̇κ(X1; θ0)
Pθ0→ 0(2.23)

holds.

PROOF. Write the left-hand side of (2.23) as

√
n(θn − θ0)

�
[

1

n

n∑
i=1

{
ψ̇κ(Xi; θ0) − Eθ0ψ̇κ(Xi; θ0)

}

+
∫ 1

0

1

n

n∑
i=1

{
ψ̇κ

(
Xi; θ0 + ζ(θn − θ0)

) − ψ̇κ(Xi; θ0)
}
dζ

]
,

note that the first absolute moment of the last term may be bounded by

√
n|θn − θ0|

∫ 1

0
Eθ0

∣∣ψ̇κ

(
X1; θ0 + ζ(θn − θ0)

) − ψ̇κ(X1; θ0)
∣∣dζ

and apply, for example, Theorem A.7.2 of Bickel, Klaassen, Ritov and Wellner
(1993). �

Condition (2.6) may be also derived via regularity ofP and local asymptotic
normality (LAN) by an argument similar to the one leading to (2.1.15) of
Proposition 2.1.2, pages 16 and 17, of Bickel, Klaassen, Ritov and Wellner (1993).

DEFINITION 2.2. A parametric modelP = {Pθ : θ ∈ �}, � ⊂ R
k open, is

a k-dimensionalregular parametric model if there exists aσ -finite dominating
measureµ such that, withp(θ) = dPθ/dµ, s(θ) = p

1/2
θ :

(i) for all θ ∈ � there exists ak-vectorl̇(θ) of score functions inL2(Pθ ) such
that

s(θ̃) = s(θ) + 1
2(θ̃ − θ)� l̇(θ)s(θ) + O(|θ̃ − θ |)(2.24)

in L2(µ) as|θ̃ − θ | → 0;
(ii) for everyθ ∈ � thek × k Fisher information matrix

∫
l̇(θ)l̇�(θ)p(θ) dµ is

nonsingular;
(iii) the mapθ 
→ l̇(θ)s(θ) is continuous from� to Lk

2(µ).
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A priori, it would have been more general if condition (i) of Definition 2.2
had prescribed Fréchet-differentiability ofs(θ) with derivative ṡ(θ) in Lk

2(µ).
However, it can be shown that all components ofṡ(θ) would vanish then almost
everywhere wheres(θ) vanishes. Consequently,ṡ(θ) may be written aṡl(θ)s(θ)/2
in Lk

2(µ); see Proposition A.5.3.F of Bickel, Klaassen, Ritov and Wellner (1993).
This approach to prove (2.6) through regularity and local asymptotic normality

has been implemented in a preprint of the present paper [Klaassen and Putter
(2000)]. However, a much nicer argument has been noted by Schick (2001).

LEMMA 2.3. Suppose that the model P is regular and fix θ0 ∈ �. If ψκ ∈ �m

satisfies the continuity condition

‖ψκ(·; θ̃ )s(θ̃ ) − ψκ(·; θ)s(θ)‖µ → 0,(2.25)

as θ̃ → θ , then (2.6) is valid with c(θ) given by (2.20).

PROOF. Since the regularity ofP implies Hellinger differentiability atθ0,
Theorem 2.3 of Schick (2001) may be applied and yields (2.6). The continuity
of c(·) is implied by (2.25) and the regularity ofP . �

REMARK 2.5. At the end of his Section 1 on page 17, Schick (2001) refers
to (3.5) of the preprint Klaassen and Putter (2000). This is just (2.6) of the present
version of this paper.

3. Examples for asymptotic linearity of substitution estimators. Although
the results of Section 2 are stated within a parametric model, most of the
applications we have in mind (in particular efficiency as discussed in Section 5)
are in the context of semiparametric models where the interest is in a functional
of the infinite-dimensional parameter only. In the analysis of these applications it
suffices to study parametric submodels where the infinite-dimensional parameter
is fixed. Hence the results of Section 2 are also applicable in this context. In
order to illustrate the heredity of asymptotic linearity of substitution estimators
in the framework of semiparametric models, however, we need to introduce some
notation and conventions specific to semiparametric models.

Let P = {Pθ,G : θ ∈ �,G ∈ G}, � ⊂ R
k open,G ⊂ H , be our semiparametric

model (1.1). The modelP might be parametric in the sense thatG is Euclidean.
We may represent the elements ofP by the square rootss(θ,G) = p1/2(θ,G) of
their densitiesp(θ,G) with respect to aσ -finite dominating measureµ if such a
dominating measure exists on the sample space(X,A).

By keepingG fixed and by varyingθ over � we get a parametric submodel
of P , denoted byP1 = P1(G). OftenP1(G) will be a regular parametric model
in the sense of Definition 2.2. Thek-vector of score functions ofP1(G) will be
denoted bẏl1 then and in particular we will have

s(θ̃ ,G) = s(θ,G) + 1
2(θ̃ − θ)� l̇1(θ,G)s(θ,G) + O(|θ̃ − θ |).(3.1)
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Let X1, . . . ,Xn be an i.i.d. sample fromPθ,G ∈ P and letκ :P → R
m be an

unknown Euclidean parameter of the modelP with

κ(Pθ̃,G) = κ(Pθ,G) = κ̃(G), θ, θ̃ ∈ �,G ∈ G,(3.2)

for someκ̃ :G → R
m. Since interest is mainly in estimating a Banach parameter

ν = ν̃(G) ∈ B as in (1.2), a typical choice ofκ with m = 1 would be
κ(Pθ,G) = b∗ν̃(G) for someb∗ ∈ B∗, the dual ofB; note that such a parameterκ

is independent ofθ in the sense of (3.2). Let̂κn = kn(X1, . . . ,Xn) be an estimator
of κ with kn :Xn → R

m anAn-Borel measurable function. As in Definition 2.1,
the estimator̂κn of κ(Pθ,G) = κ̃(G) is calledlocally asymptotically linear atPθ0,G

if there exists a measurable functionψ(·; ·,G) ∈ �m such that

√
n

∣∣∣∣∣κ̂n − κ̃(G) − 1

n

n∑
i=1

ψ(Xi; θn,G)

∣∣∣∣∣
Pθ0,G→ 0(3.3)

holds for all sequences{θn} with {√n(θn − θ0)} bounded. The functionψ(·; θ,G)

is called theinfluence function of κ̂n at Pθ,G and ψ(·; ·,G) is called influence
function as well.

The results of Section 2 are illustrated in the following examples.

EXAMPLE 3.1 (Sample variance). LetX1, . . . ,Xn be i.i.d. with distribution
function G(· − θ) on R. Here G is an unknown distribution function with
mean zero and finite fourth moment. Givenθ , a good estimator of the variance
κ̃(G) = ∫

x2 dG(x) of G is κ̂θ,n = n−1 ∑n
i=1(Xi − θ)2, which is linear with

influence function

ψκ(x; θ,G) = (x − θ)2 − κ̃(G).(3.4)

Sinceθ can be estimated by the sample meanθ̂n = X̄n, which is linear and hence
asymptotically linear, Theorem 2.2 yields the sample variance

κ̂
θ̂n,n

= S2
n = 1

n

n∑
i=1

(Xi − X̄n)
2(3.5)

as a locally asymptotically linear estimator ofκ̃(G) in caseθ is unknown; note
that (2.15) holds in view of the law of large numbers. The sample variance
is adaptive in the sense that it has the same influence functionψκ as in (3.4)
because (2.6) holds withc(θ) = 0, as may be verified easily.

Of course this estimator is the prototype of a substitution estimator, used
routinely to the extent that typically it is not recognized as a substitution estimator.

EXAMPLE 3.2 (Parametrized linkage models). Observe realizations ofXi ,
i = 1, . . . , n, that are i.i.d. copies ofX. In many statistical models the random
variableX is linked to an error random variableε with distribution functionG.
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This linkage is parametrized byθ ∈ � ⊂ R
k and may be described by a measurable

maptθ :X → R with

tθ (X) = ε.

The prime example is the linear regression model with

tθ (x) = y − θ�z, x = (y, z�)�, y ∈ R, z ∈ R
k,Eε = 0,

yielding the error random variableε and

tθ (x) = (y − ν�z)/σ, θ = (ν�, σ )�, x = (y, z�)�, y ∈ R, z ∈ R
k−1,

with Eε = 0, Eε2 = Et2
θ (X) = 1, generating the standardized random variableε.

Another example is the accelerated failure time model with

tθ (x) = e−θ�zy, x = (y, z�)�, y ∈ [0,∞), z ∈ R
k,

yielding the standardized life time random variableε. Recall that the distribution
of X is denoted byPθ,G. The Euclidean parameter isθ and the error distribution
function or the standardized life time distribution functionν(Pθ,G) = G could be
the Banach parameter of interest. Givenθ , an obvious estimator ofG would be the
empirical distribution function oftθ (Xi), i = 1, . . . , n.

We will study estimation of the one-dimensional parameter

κ(Pθ,G) = κ̃(G) =
∫

hdG,

where h is some known function with
∫

h2 dG < ∞. Taking the empirical
distribution function oftθ (Xi) as an estimator ofG whenθ is known, we obtain

κ̂θ,n = 1

n

n∑
i=1

h
(
tθ (Xi)

)
as an estimator ofκ(Pθ,G). This estimator is linear and hence locally asymptoti-
cally linear in the sense of (2.3) in the influence function

ψκ(x; θ,G) = h
(
tθ (x)

) − κ(Pθ,G), x ∈ X.

If θ̂n is a locally asymptotically linear estimator ofθ with influence function
ψθ(·; θ,G) ∈ �k as in (2.2), an application of Lemma 2.1 yields the validity of
Theorem 2.1 provided

Eθ0,G

(∣∣h(
tθ0+ε(X)

) − h
(
tθ0(X)

)∣∣2) → 0 asε → 0

holds andEθ0,Gh(tθ0+ε(X)) is differentiable inε at 0 with a derivative matrixc(θ0)

that is continuous inθ0. Noting thatκ ′(θ) from (2.10) vanishes here, we see that the
local asymptotic linearity of the split-sample substitution estimatorκ̂n,2 from (2.9)
holds with influence function

ψ̃(x; θ,G) = h
(
tθ (x)

) − κ(Pθ,G) + c(θ)ψθ(x; θ,G).
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Note that the sample variance is a special case withh(x) = x2, tθ (x) = x − θ and
c(θ) = 0.

In Section 6 we shall consider the most important special case of this example,
the linear regression model, in more detail in the context of efficient estimation
of (functionals of the) error distribution. Here we consider the linear regression
model with standardized errors. Substitution of, for example, the least squares
estimators would lead to the empirical distribution of the standardized residuals
as a natural estimator ofG. See, for example, Koul (1992, 2002) or Loynes (1980)
for early studies of the empirical distribution function of regression residuals.
With κ(P ) = κ̃(G) = ∫

hdG = Eh(ε) for appropriate functionsh :R → R,
Theorems 2.1 and 2.2 hold with

ψκ(x; θ,G) = h

(
y − α − βz

σ

)
−

∫
hdG

and

c(θ) = − 1

σ

(
Eh′(ε),Eh′(ε)EZ,Eεh′(ε)

)�
.

For h(ε) = ε3 we obtain an estimator of the skewness of the error distribution,
whose asymptotic normality has been studied by Pierce (1982) under normality
(see also Remark 2.4).

EXAMPLE 3.3 (Distribution function in two-sample location model).X1, . . . ,

Xn are i.i.d. copies ofX = (Y,Z), whereY andZ − θ are i.i.d. with densityg,∫
y2g(y) dy < ∞. The Banach parameter of interest is the distribution function

G(·) = ∫ ·
−∞ g(y) dy. Given the shift parameterθ , it can be estimated by the linear

estimator

Ĝθ,n(y) = 1

2n

n∑
i=1

(
1[Yi≤y] + 1[Zi−θ≤y]

)
, y ∈ R.(3.6)

Sinceθ̂n = Z̄n − Ȳn is a linear estimator ofθ , the substitution estimator̂G
θ̂n,n

(·)
is locally asymptotically linear by Theorem 2.2. A structure similar to the one in
Example 3.2 may be described by the maptθ :X → R

2 with tθ (x) = (y, z − θ)�,
y, z ∈ R.

In fact, θ can be estimated adaptively in Example 3.3, that is, efficiently
within this semiparametric model; see van Eeden (1970) for an early construction
valid for the class of strongly unimodal densitiesg and Beran (1974) and Stone
(1975) for the most general situation. If we apply such an asymptotically efficient
estimatorθ̂n, then the resulting estimator̂G

θ̂n,n
(·) is asymptotically efficient too,

since (3.6) is efficient givenθ . This hereditary property of asymptotic efficiency
for substitution estimators follows from the heredity for linearity, which will be
shown in Section 5 and is the main result of the present paper. As preparation we
study efficient influence functions in the next section.
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4. Efficient influence functions. Let H be a Hilbert space. A one-dimen-
sional subset{hη ∈ H :−1 < η < 1} of H is called apath if the mapη 
→ hη

is continuously Fréchet differentiable with nonvanishing derivative, implying, for
example, the existence of anḣ ∈ H , ḣ �= 0, with

hη = h0 + ηḣ + O(η) in H(4.1)

asη → 0.
Let P be a statistical model, that is, a collection of probability distributions, and

fix P ∈ P . A subsetPP = {Pη :−1< η < 1} of P is called a path throughP if P0
equalsP andPP is a regular one-dimensional parametric submodel in the sense of
Definition 2.2. This implies the existence of a so-called tangentt ∈ L2(P ), t �= 0,
such that withsη = √

dPη/dµ for some dominatingσ -finite measureµ, and with
s = s0,

sη = s + 1
2ηts + O(η)(4.2)

holds inL2(µ). Note that, in contrast to the definition in Bickel, Klaassen, Ritov
and Wellner (1993), the dominating measureµ may depend on the particular path
and that hence we do not have to assume that our modelP is dominated. Taking
squares in (4.2) and integrating with respect toµ we obtain

∫
t dP = 0, which we

denote byt ∈ L0
2(P ).

Let CP be a collection of pathsPP in P throughP . By the tangent setṖ 0

we denote the set of all tangentst generated by paths inCP . The closed linear
span [Ṗ 0] of Ṗ 0 is called the tangent space inP at P generated by the
collectionCP of pathsPP . This tangent space is denoted byṖ ⊂ L0

2(P ).
Let B be a Banach space with norm‖ · ‖B and consider a mapν from P

to B. We shall callν :P → B pathwise differentiable atP with respect toCP

if there exists a continuous, linear mapν̇ : Ṗ → B such that for every path
PP = {Pη : |η| < 1} in CP passing throughP with tangentt ,

‖ν(Pη) − ν(P ) − ην̇(t)‖B = O(η).(4.3)

Following Section 2 of van der Vaart (1991) and Section 5.2 of Bickel, Klaassen,
Ritov and Wellner (1993), we define the efficient influence functionsν̇b∗ of ν as
follows: for b∗ in the dual spaceB∗ of B (the space of all bounded linear functions
from B to R), the mapb∗ � ν̇ : Ṗ → R is linear and bounded. Hence, by the Riesz
representation theorem there exists a unique elementν̇b∗ ∈ Ṗ such that for every
t ∈ Ṗ ,

b∗ � ν̇(t) = 〈ν̇b∗, t〉 = Eν̇b∗ t.

Here 〈·, ·〉 denotes the inner product inL0
2(P ) and E denotes expectation with

respect toP . Note that this definition of efficient influence function depends onṖ
and hence on the choice ofCP .

From now on we takeP to be a semiparametric modelP = {Pθ,G : θ ∈ �,

G ∈ G}, as in (1.1), with� ⊂ R
k open, andG ⊂ H , whereH is a Hilbert space.
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Fix G ∈ G and letCG be a collection of paths inG ⊂ H throughG. By Ġ we
denote the tangent space inG at G generated byCG, that is, the closed linear
span of tangents atG along a path inCG. We focus on estimation of Banach-
valued parameters of the formν = ν(Pθ,G) = ν̃(G), whereν̃ :G → B is pathwise
differentiable; that is, there exists a bounded linear operator˙̃ν : Ġ → B such that
for all paths{Gη : |η| < 1} ∈ CG with tangentĠ [cf. (4.1)],

‖ν̃(Gη) − ν̃(G) − η ˙̃ν(Ġ)‖B = O(η).(4.4)

Again, for everyb∗ ∈ B∗, the mapb∗ � ˙̃ν : Ġ → R is linear and continuous and
hence there exists a unique˙̃νb∗ ∈ Ġ such that for everẏG ∈ Ġ

b∗ � ˙̃ν(Ġ) = 〈˙̃νb∗, Ġ〉H .(4.5)

The elementṡ̃νb∗ for b∗ ∈ B∗ are called the gradients ofν̃; they are similar to the
efficient influence functions ofν, described earlier.

If the parametric submodelP1 = P1(G) of our semiparametric modelP is
regular in the sense of Definition 2.2, its tangent spaceṖ1 is defined to be the
closed linear span[l̇1] of thek-vector of score functionṡl1 = l̇1(θ,G). This agrees
with the definition of tangent spaces in arbitrary statistical models [cf. (4.2)]
by several choices of a collectionCθ of paths, for example,Cθ = {{Pθ+ηei ,G ∈
P1(G) :−1< η < 1} : i = 1, . . . , k} with ei , i = 1, . . . , k, unit vectors.

By keepingθ fixed and by varyingG we get another submodelP2 = P2(θ).
Given a collectionCG of paths withinP2(θ), the tangent spacėP2 at Pθ,G is
defined as the closed linear span inL0

2(Pθ,G) of all functionsτ ∈ L0
2(Pθ,G) such

that

s(θ,Gη) = s(θ,G) + 1
2ητs(θ,G) + O(η),(4.6)

in L2(µ), for some path{Gη : |η| < 1} ∈ CG. Note again thatṖ2 depends on
the choice ofCG. We assume thatCG is chosen in such a way that for every
path {Pη = Pθ+ηζ,Gη : |η| < 1} with {Gη : |η| < 1} ∈ CG, there exists a tangent
ρ ∈ L0

2(Pθ,G) satisfying

s(θ + ηζ,Gη) = s(θ,G) + 1
2ηρs(θ,G) + O(η),(4.7)

in L2(µ). The tangent spacėP atPθ,G is the closed linear span inL0
2(Pθ,G) of all

these tangentsρ ∈ L0
2(Pθ,G). Typically, we haveṖ = [l̇1] + Ṗ2.

In fact, we will assume that the tangents from (4.7) have a special but frequently
occurring structure, namely that of Hellinger differentiability.

DEFINITION 4.1. For everyθ ∈ � and G ∈ G, the modelP is Hellinger
differentiable at Pθ,G if there exists a bounded linear operatorl̇ :Rk × Ġ →
L0

2(Pθ,G) such that for everyζ ∈ R
k and every path{Gη : |η| < 1} ∈ CG with

tangentĠ ∈ Ġ,

s(θ + ηζ,Gη) = s(θ,G) + 1
2η

(
l̇(ζ, Ġ)

)
s(θ,G) + O(η),(4.8)

in L2(µ).
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The operatoṙl is called the score operator. It may be expressed in terms of the
score functioṅl1 for θ in P1(G) and the so-called score operatorl̇2 for G in P2(θ)

as follows. Forζ ∈ R
k andĠ ∈ Ġ, we have

l̇(ζ, Ġ) = l̇�1 ζ + l̇2(Ġ).(4.9)

Note that (4.8) and (4.9) reduce to (3.1) in the case where{Gη : |η| < 1} = {G} is
a singleton, and to (4.6) in caseζ = 0.

In the following proposition we collect some fundamental results on the efficient
influence functions for estimatingθ in P and for estimatingν(Pθ,G) = ν̃(G), both
in the submodelP2(θ) and in the full modelP . The efficient influence function
for estimatingθ in P1(G) is not of immediate interest for our purposes and hence
is not discussed here. Define the efficient score functionl∗1 for estimatingθ in the
full modelP by

l∗1 = l̇1 − �( l̇1|Ṗ2).(4.10)

The efficient information matrix atPθ,G for estimatingθ in P is defined as

I∗(θ) = E(l∗1l∗T
1 ).(4.11)

Define the information operator asl̇�2 l̇2 : Ġ → Ġ and let(l̇�2 l̇2)
−α be a solution

h ∈ Ġ of l̇�2 l̇2h = α, for α ∈ Ġ. Let N(A) andR(A) denote the null space and the
range of an operatorA.

PROPOSITION 4.1. Consider a map ν :P → B given by ν(Pθ,G) = ν̃(G).
Fix θ , G and CG, let P1(G) be a regular parametric model as in Definition 2.2,
and let P be Hellinger differentiable as in Definition 4.1.If:

(i) Ġ0 is a closed and linear subspace of H , that is, Ġ = ĠG = Ġ0,
(ii) ν̃ :G → B is pathwise differentiable at G, as in (4.4),
(iii) I∗(θ) from (4.11)is nonsingular,

then

A. The efficient influence function at Pθ,G for estimating θ in P is given by

l̃1 = I−1∗ (θ)l∗1.(4.12)

B. The map ν :P2(θ) → B is pathwise differentiable at Pθ,G if and only if

˙̃νb∗ ∈ R(l̇�2 ) ∀b∗ ∈ B∗.(4.13)

The efficient influence functions of ν are related to the gradients of ν̃ by
˙̃νb∗ = l̇�2 ν̇b∗, ν̇b∗ ∈ Ṗ2, ˙̃νb∗ ∈ Ġ.(4.14)

If also
˙̃νb∗ ∈ R(l̇�2 l̇2) for all b∗ ∈ B∗,(4.15)

then the unique solution of (4.14)is given by

ν̇b∗ = l̇2(l̇
�
2 l̇2)

− ˙̃νb∗ .(4.16)
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C. The map ν :P → B is pathwise differentiable at Pθ,G if and only if (4.13)
holds. The efficient influence functions of ν are related to the gradients of ν̃ by

0 = 〈l̇1, ν̇b∗〉θ ,
(4.17) ˙̃νb∗ = l̇�2 ν̇b∗ .

If also ˙̃νb∗ ∈ R(l̇�2 l̇2), for all b∗ ∈ B∗, then the unique solution of (4.17)is given
by

ν̇b∗ = l̇2(l̇
�
2 l̇2)

− ˙̃νb∗ − 〈l̇2(l̇�2 l̇2)
− ˙̃νb∗, l̇1〉�θ I−1∗ l∗1.(4.18)

Parts B and C of this proposition are due to van der Vaart (1991); see his
Theorem 3.1, formula (3.10) and Corollary 6.2. The gist of formula (4.18) is
already contained in Begun, Hall, Huang and Wellner (1983), (4.4) and (3.1).
Proofs of the proposition may be found also in Bickel, Klaassen, Ritov and Wellner
(1993); see their Corollary 3.4.1, Theorem 5.4.1 and Corollaries 5.4.2 and 5.5.2.
Note however, that they need the conditionsṖ2 = R(l̇2) and Ṗ = R(l̇). This is
caused by their definition of tangent spaceṖ as the closed linear span inL0

2(Pθ,G)

of all possible tangentsρ ∈ L0
2(Pθ,G) that may be obtained viasome path

{Pη : |η| < 1,Pη ∈ P }. In any particular model, the goal is construction of efficient
estimators. The convolution theorem implies that if efficient estimators exist, they
are asymptotically linear in the efficient influence functions; see Theorem 2.1 of
van der Vaart (1991) and Theorems 3.3.2, 5.2.1 and 5.2.2 of Bickel, Klaassen,
Ritov and Wellner (1993). In principle, the variances of the efficient influence
functions corresponding to Bickel, Klaassen, Ritov and Wellner (1993) equal at
least those corresponding to van der Vaart (1991), and should they differ, efficient
estimators in the sense of van der Vaart (1991) do not exist. However, in practice
estimators can be constructed that are efficient in this sense for appropriate choices
of C, which implies that they have to be efficient in the sense of Bickel, Klaassen,
Ritov and Wellner (1993) as well. Of course, the advantage of the present approach
is that the extra conditions mentioned above need not be verified now.

If also N(l̇2) = {0} and R(l̇2) is closed, theṅl�2 l̇2 is one-to-one and onto,
so (l̇�2 l̇2)

− may be replaced by(l̇�2 l̇2)
−1. In this case all parametersν(P )

expressible as pathwise differentiable functions ofG are pathwise differentiable;
see Corollary 3.3 of van der Vaart (1991).

5. Efficient estimation of Banach parameters. Let X1, . . . ,Xn be an i.i.d.
sample fromPθ,G ∈ P , a semiparametric model as in (1.1). In this section
we shall construct an efficient estimator ofν(Pθ,G) = ν̃(G) ∈ B based on
X1, . . . ,Xn within the modelP , using the constructions and the heredity of
asymptotic linearity as studied in Section 2. As described in Section 1, we
start with an efficient estimator of̃ν(G) within the submodelP2(θ), where
θ is fixed and known andG varies in G. An estimator ofν(Pθ,G) = ν̃(G)
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within P2(θ) is of course allowed to depend onθ . Let ν̂θ,n be such a submodel
estimator. In view of part B of Proposition 4.1 this estimator is efficient within
the submodelP2(θ) with respect to the chosen collectionCG of paths if it is
asymptotically linear in the efficient influence function given in (4.16) with the
score operatoṙl2 = l̇2(θ,G) : Ġ → L2(Pθ,G) at(θ,G) depending onθ andG. Note
that l̇2 depends onCG sinceĠ does. We shall need this asymptotic linearity locally
uniformly in θ , in the same way as in (3.3).

DEFINITION 5.1. Fix a subsetB∗
0 of B∗, the dual space of the Banach

spaceB. The submodel estimator̂νθ,n is called B∗
0-weakly locally submodel

efficient atPθ0,G if for every sequence{θn} with {√n(θn −θ0)} bounded, and every
b∗ ∈ B∗

0,

√
n

∣∣∣∣∣b∗(
ν̂θn,n − ν̃(G)

) − 1

n

n∑
i=1

ψ(Xi; θn,G;b∗)
∣∣∣∣∣
Pθ0,G→ 0(5.1)

holds with

ψ(x; θ,G;b∗) = [
l̇2(θ,G)

(
l̇�2 (θ,G)l̇2(θ,G)

)− ˙̃νb∗
]
(x).(5.2)

The main result of our paper states that, under regularity conditions, ifθ̂n =
tn(X1, . . . ,Xn) is an efficient estimator ofθ in P and if ν̂θ,n = un(X1, . . . ,Xn; θ)

is a weakly locally submodel efficient estimator ofν(Pθ,G) = ν̃(G) at θ0, then the
substitution estimator̂ν

θ̂n,n
is an efficient estimator ofν atθ0 in the semiparametric

modelP ; see the discussion in Section 4 after Proposition 4.1. Ifν̂θ,n is sufficiently
smooth inθ , this substitution estimator itself may be proved to be efficient; see
Theorem 5.2 below. Without this extra condition we have to resort to a split-sample
version of the substitution estimator, as in Section 2. Fix a sequence of integers
{λn}∞n=1 such that (2.7) holds, and defineθ̃n1 and θ̃n2 as in (2.8). Analogously to
(2.8) and (2.9), write

ν̃
(1)
θ,λn

= uλn

(
X1, . . . ,Xλn; θ

)
, ν̃

(2)
θ,n−λn

= un−λn

(
Xλn+1, . . . ,Xn; θ)

(5.3)

and

ν̂n = λn

n
ν̃

(1)

θ̃n2,λn
+ n − λn

n
ν̃

(2)

θ̃n1,n−λn
.(5.4)

To prove efficiency of this estimator atθ0 ∈ � we will need the following
smoothness condition, which is similar to (2.6). For everyh ∈ Ġ and every
sequence{θn} with {√n(θn − θ0)} bounded,∣∣∣∣∣ 1√

n

n∑
i=1

ψh(Xi; θn,G)

(5.5)

− 1√
n

n∑
i=1

ψh(Xi; θ0,G) − ch(θ0)
√

n(θn − θ0)

∣∣∣∣∣
Pθ0,G→ 0
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and

ch(θn) → ch(θ0)(5.6)

hold with

ψh(x; θ,G) = l̇2(θ,G)
(
l̇�2 (θ,G)l̇2(θ,G)

)−
h(x)(5.7)

and

ch(θ) = −Eθ

(
ψh(X1; θ,G)l̇�1 (θ)(X1)

)
.(5.8)

Furthermore, we write [cf. (5.2)]

c(θ,G;b∗) = −Eθ

(
ψ(X1; θ,G;b∗)l̇�1 (θ)(X1)

)
.(5.9)

Lemmas 2.1 and 2.2 might be useful in checking conditions (5.5) and (5.6). Our
main result is efficiency of̂νn as follows.

THEOREM 5.1. Fix θ0 ∈ � and B∗
0 ⊂ B∗. Suppose that (5.5), (5.6)and the

conditions of Proposition 4.1are satisfied in model (1.1) for appropriately chosen
collections CG of paths. Suppose that the submodel estimator ν̂θ,n is B∗

0-weakly
locally submodel efficient as in (5.1) and that (4.15) holds at Pθ,G. If efficient
estimation of θ is possible within P and if θ̂n is an efficient estimator of θ in P ,
then ν̂n defined by (2.7), (2.8), (5.3)and (5.4) is a B∗

0-weakly efficient estimator of
ν from (1.2)within the full model P at Pθ0,G; that is, for every sequence {θn} with
{√n(θn − θ0)} bounded and every b∗ ∈ B∗

0 [cf. (2.10), (4.18), (5.2)and (5.9)],

√
n

∣∣∣∣∣b∗(
ν̂n − ν

(
Pθn,G

))
(5.10)

− 1

n

n∑
i=1

[ψ(Xi; θn,G;b∗) + c(θn,G;b∗)I−1∗ (θn)l
∗
1(θn)(Xi)]

∣∣∣∣∣
Pθ0,G→ 0.

PROOF. For everyb∗ ∈ B∗
0, Theorem 2.1 may be applied and the local

asymptotic linearity in (5.10) may be seen to yield efficiency via Proposition 4.1.C,
(5.2) and (5.9). �

A closer look at the proofs of Theorems 5.1 and 2.1 withκ ′(θ) = 0 reveals that
if the orthogonality

[l̇1(θ0)] ⊥ Ṗ2(θ0)(5.11)

holds, thenc(θ0,G;b∗) and the last term at the left-hand sides of (2.12) and (2.14)
vanish, as does the second term at the right-hand side of (4.18). Hence it suffices
for θ̂n to be

√
n-consistent atθ0 and we do not need (5.6) and (2.7), but instead

0< lim inf
n→∞

λn

n
≤ lim sup

n→∞
λn

n
< 1.(5.12)

We formulate this special case as a corollary.
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COROLLARY 5.1 (Adaptive case). Fix θ0 ∈ � and B∗
0 ⊂ B∗. Suppose that

the conditions of Proposition 4.1 are satisfied in model (1.1) for appropriately
chosen collections CG of paths and that for all sequences {θn} with {√n(θn − θ0)}
bounded, ∣∣∣∣∣ 1√

n

n∑
i=1

ψh(Xi; θn,G) − 1√
n

n∑
i=1

ψh(Xi; θ0,G)

∣∣∣∣∣
Pθ0,G→ 0.(5.13)

Suppose furthermore that ν̂θ,n is B∗
0-weakly locally submodel efficient as in (5.1)

and that (4.15) holds at Pθ0,G. If θ̂n is a
√

n-consistent estimator at θ0 and if
the orthogonality (5.11) holds, then ν̂n defined by (5.4) and (5.12) is a weakly
efficient estimator of ν from (1.2) within the full model P at Pθ0,G; that is, for
every sequence {θn} with {√n(θn − θ0)} bounded and every b∗ ∈ B∗

0,

√
n

∣∣∣∣∣b∗(
ν̂n − ν

(
Pθn,G

)) − 1

n

n∑
i=1

ψ(Xi; θn,G;b∗)
∣∣∣∣∣
Pθ0,G→ 0.(5.14)

REMARK 5.1. Our main result, Theorem 5.1, states that, assuming sufficient
regularity of a semiparametric modelP , two conditions, namely efficiency of
an estimatorθ̂n of the finite-dimensional parameter in the full modelP , and
submodel efficiency of an estimatorν̂θ,n of a functional of the infinite-dimensional
parameterν in the submodelP2(θ) with θ fixed, are sufficient to guarantee
efficiency of the combined estimatorν̂n = ν̂

θ̂n,n
in P . The result derives from

general expressions for the influence functions of substitution estimators of
Section 2. These expressions can be used to pinpoint what is needed in terms of
efficiency or what is allowed in terms of deviations from efficiency of the separate
estimatorsθ̂n and ν̂θ,n to achieve efficiency of the substitution estimatorν̂n.
Here we will derive conditions heuristically. Let̂θn and ν̂θ,n be asymptotically
linear estimators with influence functionsψ1 andψ2, respectively. Without loss
of generality, they may be written asψ1 = l̃1 + �1 andψ2 = I−1

22 l̇2 + �2, with
�1 ⊥ [l̇1, l̇2] and�2 ⊥ l̇2; see Proposition 3.3.1 of Bickel, Klaassen, Ritov and
Wellner (1993). Then by Theorem 2.1 and (2.20) and (2.10) the influence function
of the substitution estimator is given by

ψ2 + cψ1 = I−1
22 l̇2 + �2 − (

E
(
(I−1

22 l̇2 + �2)l̇
�
1

))
(l̃1 + �1)

= I−1
22 l̇2 − I−1

22 I21l̃1 + �2 − I−1
22 I21�1 − (

E(�2l̇
�
1 )

)
(l̃1 + �1),

which equals the efficient influence functionl̃2 = I−1
22 l̇2 − I−1

22 I21l̃1 if and only if

�2 = I−1
22 I21�1 + (

E(�2l̇
�
1 )

)
(l̃1 + �1)(5.15)

holds. If θ̂n is efficient, that is, if�1 = 0, (5.15) shows that we need�2 = b� l̃1; so
deviations from efficiency of̂νθ,n are permitted, provided they are in[l̃1], that is,
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provided these deviations are matrix multiples ofθ̂n − θ . An example of this
phenomenon is given in (6.26) in Example 6.4. Ifν̂θ,n is efficient, that is, if�2

vanishes, (5.15) reduces toI−1
22 I21�1 = 0. This means that in the adaptive case

(I21 = 0), θ̂n need not be efficient (see Corollary 5.1) and that in the nonadaptive
caseθ̂n has to be efficient in order to obtain efficiency ofν̂n. Of course, also
combinations of estimators are possible where neither of them is efficient, but in
this case only a lucky shot might yield an efficient combined estimatorν̂n.

REMARK 5.2. The first occurrences of the terminology “adaptive estimators”
are in Beran (1974) and Stone (1975). In Pfanzagl and Wefelmeyer [(1982),
pages 14 and 15], it is argued that this terminology is rather unfortunate since
“adaptiveness” is a property of the model, namely (5.11) holds, and not of the
estimators, which are just semiparametrically efficient. van Eeden (1970), who
was the first to construct partially adaptive estimators of location in the one- and
two-sample problem, calls her estimators efficiency-robust. Since the terminology
of adaptiveness is quite common nowadays, we will stick to it, although Pfanzagl
and Wefelmeyer (1982) are right, and we will callν̂n of Corollary 5.1 an adaptive
estimator of the Banach parameterν(P ).

REMARK 5.3. In the adaptive situation of the corollary the direct substitution
estimator̂ν

θ̂n,n
can also be shown to be efficient in the sense of (5.14) ifθ̂n takes its

values in a grid onRk with meshwidth of the orderO(n−1/2). This is the classical
discretization technique of Le Cam (1956), which has also been used in our proof
of Theorem 2.2.

The next theorem states that the direct substitution estimatorν̂
θ̂n,n

is efficient in
the general semiparametric model, ifν̂θ,n is sufficiently smooth inθ .

THEOREM 5.2. Under the conditions of Theorem 5.1,let θ̂n be an efficient es-
timator of θ ; in the adaptive situation of (5.11)it suffices that θ̂n be

√
n-consistent.

Fix b∗ ∈ B∗
0. If for all δ > 0, ε > 0 and c > 0, there exist ζ > 0 and n0 ∈ N such

that for all n ≥ n0,

Pθ0,G

(
sup√

n|θ−θ0|≤c,
√

n|θ−θ̃ |≤ζ

√
n|b∗(ν̂θ,n − ν̂θ̃ ,n)| ≥ ε

)
≤ δ(5.16)

holds, then the substitution estimator b∗ν̂
θ̂n,n

is an efficient estimator of b∗ν with ν

from (1.2)within the full model P at Pθ0,G; that is, it satisfies (5.10).

PROOF. Note that (5.16) is a translation of (2.15) and apply Theorem 2.2.�

REMARK 5.4. In the special case whereG may be identified with a subset of
Euclidean space, Theorem 5.1, Corollary 5.1 and Theorem 5.2 also apply. Here
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we give a heuristic argument why these results might be true in the Euclidean and
hence the general case. Let� ⊂ R

k andH ⊂ R
l and let

P = {Pθ,η : θ ∈ �,η ∈ H}
be a regular(k + l)-dimensional parametric model in the sense of Definition 2.2.
We have identifiedG with H and hence we havėG = R

l , provided the classC of
allowed paths is large enough. Define

l̇1(θ, η) = ∂

∂θ
logp(x; θ, η) and l̇2(θ, η) = ∂

∂η
logp(x; θ, η)

as the score functions forθ andη, respectively, and the Fisher information matrix
by

I (θ, η) =
(

I11(θ, η) I12(θ, η)

I21(θ, η) I22(θ, η)

)

with Iij (θ, η) = El̇i l̇
�
j (θ, η). Regularity ofP implies thatI22(θ, η) and I (θ, η)

are nonsingular. The efficient score function for estimatingθ is given by

l∗1(θ, η) = l̇1(θ, η) − I12I
−1
22 l̇2(θ, η),

and with

I∗(θ, η) = El∗1l∗�
1 (θ, η),

the efficient influence function for estimatingθ is given by (cf. Proposition 4.1.A)

l̃1(θ, η) = I−1∗ (θ, η)l∗1(θ, η).

We are interested in estimation ofν(θ, η) = ν̃(η) within P . Let ν̃ :Rl → R
m

be differentiable with(m × l) partial derivative matriẋ̃ν. Now ˙̃ν(η)I−1
22 l̇2(θ, η)

is the efficient influence function for estimating̃ν(η) in the submodelP2(θ).
This coincides with formula (4.16) of Proposition 4.1.B. Note that the operator
l̇2 :Rl → L0

2(Pθ,η) is represented by the columnl-vectorl̇2 via

l̇2(a) = a� l̇2, a ∈ R
l ,(5.17)

that the operator(l̇�2 l̇2)
− :Rl → R

l is represented by the nonsingular(l × l)-
matrix I−1

22 (θ, η), and that

˙̃νb∗ = ˙̃ν�
(η)b∗ ∈ R

l , b∗ ∈ R
m.(5.18)
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According to formula (4.18) of Proposition 4.1.C the efficient influence functionl̃ν
for estimatingν̃(η) in the full modelP is given by

l̃ν(θ, η) = ˙̃ν(η)I−1
22

(
l̇2(θ, η) − I21l̃1(θ, η)

)
.(5.19)

Fix θ0 and suppose that̂νθ,n is a (weakly) locally submodel efficient estimator
of ν̃(η) within P2(θ0), that is,

√
n

∣∣∣∣∣ν̂θn,n − ν − 1

n

n∑
i=1

˙̃ν(η)I−1
22 l̇2(θn, η)(Xi)

∣∣∣∣∣
Pθ0,η→ 0.(5.20)

Substituting an estimator̂θn of θ for θn with influence functionψ underθ0 and
using Taylor’s expansion and the weak law of large numbers, we can formally
argue as follows:

√
n
(
ν̂
θ̂n,n

− ν
)

∼ 1√
n

n∑
i=1

˙̃ν(η)I−1
22 l̇2(θ̂n, η)(Xi)

∼ 1√
n

n∑
i=1

[
˙̃ν(η)I−1

22 l̇2(θ0, η)(Xi) + ˙̃ν(η)
∂

∂θ
I−1
22 l̇2(θ0, η)(Xi)(θ̂n − θ0)

]

∼ 1√
n

n∑
i=1

˙̃ν(η)I−1
22 l̇2(θ0, η)(Xi)

+ 1

n

n∑
i=1

˙̃ν(η)
∂

∂θ
I−1
22 l̇2(θ0, η)(Xi)

√
n(θ̂n − θ0)

∼ 1√
n

n∑
i=1

˙̃ν(η)I−1
22 l̇2(θ0, η)(Xi)

+ ˙̃ν(η)Eθ0

∂

∂θ
I−1
22 l̇2(θ0, η)(X1)

1√
n

n∑
i=1

ψ�(Xi).

By partial integration we have, under regularity conditions,

Eθ0

(
∂

∂θ
I−1
22 l̇2(θ0, η)(X1)

)

=
∫ (

∂

∂θ
I−1
22 l̇2(θ0, η)

)
p(θ0, η) dµ

= ∂

∂θ

∫
I−1
22 l̇2(θ0, η)p(θ0, η) dµ −

∫
I−1
22 l̇2(θ0, η)

∂

∂θ
p(θ0, η) dµ

= −
∫

I−1
22 l̇2l̇

�
1 p(θ0, η) dµ = −I−1

22 I21(θ0, η).
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This means that the influence function ofν̂
θ̂n,n

equals

˙̃ν(η)I−1
22

(
l̇2(θ0, η) − I21(θ0, η)ψ

)
,(5.21)

which corresponds tõlν(θ0, η) from (5.19) ifψ = l̃1, that is, if θ̂n is efficient inP .
The regularity ofP and in particular continuity and nonsingularity ofI22(θ, η)

imply (2.25), and hence Lemma 2.3 yields (5.5). Consequently, by Theorem 5.1
a split-sample modification of̂ν

θ̂n,n
is an efficient estimator ofν, if (5.20) is valid.

By arguments as in Gong and Samaniego (1981) and under their extra regularity
conditions it may be verified that the submodel maximum likelihood estimatorν̂θ,n

given θ satisfies both (5.20) and (5.16). Then Theorem 5.2 shows thatν̂
θ̂n,n

is

efficient if θ̂n is. Gong and Samaniego (1981) prove this directly and they callν̂
θ̂n,n

a pseudo maximum likelihood estimator.

6. Examples. In this section we shall present a number of examples that
illustrate our main results, namely Theorem 5.1, Corollary 5.1 and Theorem 5.2.
The first example expands on Example 3.1. The next examples are important
semiparametric test-cases well known from textbooks; our results should in any
case be applicable for those examples. Example 6.2 treats linear regression, which
was used in Section 1 for motivation, for the particular case of a symmetric
error distribution. For a possibly asymmetric error distribution we study the
location problem in Example 6.4. These statistical models are parametrized
linkage models, which are discussed in Example 6.3. A recurring theme in these
examples is the idea that estimators based on residuals are actually estimators
based on the unobservable errors, with the unknown parameter needed to construct
these errors replaced by suitable estimators; see also Example 3.2. Example 6.5
considers the bootstrap, and we conclude in Example 6.6 with another well-known
semiparametric model: the Cox proportional hazards model.

EXAMPLE 6.1 (Efficiency of sample variance). In Example 3.1 we have
shown the local asymptotic linearity of the sample variance in the class of all
distributions with finite fourth moment. At any pointP of this modelP the tangent
space is maximal and equalṡP = L0

2(P ), provided the collectionCP of paths
in P is chosen sufficiently large; see Example 3.2.1 of Bickel, Klaassen, Ritov
and Wellner (1993) for an explicit construction, which is also valid in our more
general framework. Consequently, any locally asymptotically linear estimator of
the variance is efficient; see Theorem 3.3.1 of Bickel, Klaassen, Ritov and Wellner
(1993). In particular, the sample variance is efficient. Of course, this conclusion
can also be drawn from Theorem 5.2, sincen−1 ∑n

i=1(Xi − θ)2 is efficient within
P2(θ) and X̄n within P for the same reasons of linearity and maximal tangent
spaces. This line of argument may be used to show efficiency of all sample central
moments and, more generally still, for all functionsh with n−1 ∑n

i=1 h(Xi − X̄n)

estimating ν̃(G) = ∫
hdG within an appropriately broad class of distribution

functionsG.
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EXAMPLE 6.2 (Symmetric error distribution in linear regression). Suppose
we observe realizations ofXi = (Yi,Zi), i = 1, . . . , n, which are i.i.d. copies of
X = (Y,Z). The randomk-vectorZ and the random variableY are related by

Y = θ�Z + ε,(6.1)

whereε is independent ofZ and symmetrically distributed about 0 with unknown
distribution functionG and densityg with respect to Lebesgue measureλ. For
deriving lower bounds we assume thatZ has known distributionF and thatEZZ�
is nonsingular. Note that the unknown Euclidean parameterθ ∈ R

k is identifiable
via

θ = (EZZ�)−1E
(
Zm(Y |Z)

)
,(6.2)

where m(Y |Z) denotes the median of the conditional symmetric distribution
of Y given Z. We are interested in estimating the symmetric error distribution
ν(Pθ,G) = ν̃(G) = G.

The density ofX with respect toλ × F is given by

p(x; θ,G) = p(y, z; θ,G) = g(y − θ�z).(6.3)

We assume thatG has finite Fisher informationI (G) = ∫
(g′/g)2g dλ for location,

and hence we have

l̇1(θ)(X) = l̇1(X; θ,G) = −Z
g′

g
(Y − θ�Z) = −Z

g′

g
(ε)(6.4)

and

G =
{
G ∈ L∞(λ) :g ≥ 0,

∫
g dλ = 1, g(−·) = g(·), I (G) < ∞

}
.(6.5)

We embedG into H = L2(λ) by taking square roots of densities. The Fisher
information I (·) for location is lower semicontinuous onG. Therefore, we will
restrict CG to those paths on whichI (·) is continuous. Such paths may be
constructed in the same way as at the end of Example 3.2.1 of Bickel, Klaassen,
Ritov and Wellner (1993). Then we have, embeddingĠ into L0

2(G),

Ġ0 = {h ∈ L0
2(G) :h(−·) = h(·), h′ ∈ L0

2(G)},
(6.6)

Ġ = {h ∈ L0
2(G) : h(−·) = h(·)}.

Note thatl̇2(θ) is the embedding oḟG into L0
2(Pθ,G) given by

h 
→ h(Y − θ�Z),(6.7)

whence l̇2(θ)(Ġ) = Ṗ2. The finiteness and positivity of the Fisher informa-
tion I (G), the nonsingularity ofEZZ�, the choice ofCG, theL2-continuity the-
orem for translations and (6.7) ensure regularity and Hellinger differentiability as
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described in Definitions 2.2 and 4.1, respectively. Furthermore, the symmetry of
h ∈ Ġ and antisymmetry oḟl1(θ) imply

l̇1(θ) ⊥ l̇2(θ)h.(6.8)

Thus we are in an adaptive situation here.
The map ν̃ :G → B, the cadlag functions on[−∞,∞] with sup-norm, is

pathwise differentiable atG ∈ G with derivative [cf. Example 5.3.3, page 193,
of Bickel, Klaassen, Ritov and Wellner (1993)]

˙̃ν(h)(t) =
∫ (1

2

(
1(−∞,t](x) + 1(−∞,t](−x)

) − G(t)
)
h(x) dG(x).(6.9)

Note that (6.6), (6.8) and (6.9) imply that the conditions of Proposition 4.1 are
satisfied. Furthermore, theL2-continuity theorem for translations implies (2.25).
Consequently, Lemma 2.3 shows the validity of (5.13). Finally, note that (4.15)
holds sinceR(l̇�2 (θ)l̇2(θ)) = Ġ and ˙̃νb∗ ∈ Ġ by definition.

With θ known, an efficient estimator ofG is the symmetrized empirical
distribution function ofε1, . . . , εn, given by

Ĝθ,n(x) = 1
2

(
Gθ,n(x) + Ḡθ,n(x)

)
,(6.10)

where

Gθ,n(x) = n−1
n∑

i=1

1[εi≤x] = n−1
n∑

i=1

1[Yi−θ�Zi≤x](6.11)

and

Ḡθ,n(x) = 1− lim
y↘x

Gθ,n(−y)(6.12)

[cf. Example 5.3.3, pages 193–195 of Bickel, Klaassen, Ritov and Wellner (1993)].
We note thatĜθ,n is weakly locally submodel efficient, since it is exactly linear
in the efficient influence function; see just above (5.3.10), page 194 of Bickel,
Klaassen, Ritov and Wellner (1993). Finally, by a method of Scholz (1971) we
know that the maximum likelihood estimator ofθ corresponding to the logistic
density exists under any density within our model. Furthermore, this pseudo
maximum likelihood estimator is

√
n-consistent [cf. Example 7.8.2, page 401, of

Bickel, Klaassen, Ritov and Wellner (1993)]. In fact, efficient and hence adaptive
estimators of the regression parameterθ have been constructed, for example, by
Dionne (1981), Bickel (1982) and Koul and Susarla (1983).

Consequently, by Corollary 5.1 the split-sample estimator defined by (5.4),
(6.10)–(6.12) and (5.12) is efficient. Note that this efficient estimator does not use
any knowledge about the distribution ofZ and hence is also adaptive with respect
to the distribution ofZ.

Clearly, in practice one would not apply sample splitting, but useĜ
θ̂n,n

itself,
which is the symmetrized empirical distribution function based on the residuals
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ε̂i = Yi − θ̂�
n Zi . This yields an efficient estimator ofG if θ̂n is discretized as

described in Remark 5.3. Without discretizationĜ
θ̂n,n

is weakly efficient in the
sense of Theorem 5.2 for mostb∗ ∈ B∗, including the evaluation maps. To see this
it suffices to verify (5.16) for empirical distributions of regression residuals, as is
done in the following lemma.

LEMMA 6.1. In the regression model (6.1) let the error have bounded
density g (not necessarily symmetric) and let E|Z| be finite. Let b∗ ∈ B∗ be such
that there exists a finite signed measure µ with b∗(b) = ∫

b(x) dµ(x) and ‖b∗‖ =
|µ|([−∞,∞]) < ∞. For such b∗, the smoothness condition (5.16)holds for

ν̂θ,n = 1

n

n∑
i=1

1[Yi−θ�Zi,∞)(·).(6.13)

PROOF. Let b∗ be given and letµ be the corresponding signed measure with
‖b∗‖ = C. Let the densityg of εi be bounded byB and assumeE|Z| = A. For
η̃ ∈ R

k andλn → ∞, λn/
√

n → 0, Markov’s inequality yields (noteez − 1 < 2z

for 0< z sufficiently small)

P

(∫ 1√
n

n∑
i=1

1[|εi+η̃�Zi−x|≤2ζ |Zi |/√n ] d|µ|(x) ≥ ε

)

≤ E exp

(
λn

{
1√
n

n∑
i=1

∫
1[|εi+η̃�Zi−x|≤2ζ |Zi |/√n ] d|µ|(x) − ε

})

= exp
{
n log

(
1+ E

(
exp

(
λn√
n

×
∫

1[|ε1+η̃�Z1−x|≤2ζ |Z1|/√n ] d|µ|(x)

)
− 1

))
(6.14)

− ελn

}

≤ exp
{

2λn

√
n

∫
P

(
|ε1 + η̃�Z1 − x| ≤ 2ζ |Z1|√

n

)
d|µ|(x) − ελn

}

≤ exp{(8ABCζ − ε)λn} asn → ∞.

SinceY − θ�Z ≤ x < Y − θ̃�Z implies|Y − θ�Z −x| ≤ |θ − θ̃ ||Z|, we obtain

sup√
n|θ−θ0|≤c,

√
n|θ−θ̃ |≤ζ

∣∣∣∣∣
∫ 1√

n

n∑
i=1

(
1[Yi−θ�Zi≤x] − 1[Yi−θ̃�Zi≤x]

)
d|µ|(x)

∣∣∣∣∣
(6.15)

≤ sup√
n|η|≤c

∫ 1√
n

n∑
i=1

1[|εi+η�Zi−x|≤ζ |Zi |/√n ] d|µ|(x).
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Consider the gridGζ with meshwidth 2(kn)−1/2ζ with k the dimension ofθ . By
(6.15) and (6.14) the probability in (5.16) may be bounded by

Pθ0,G

(
sup√

n|η̃|≤c+ζ,η̃∈Gζ

∫ 1√
n

n∑
i=1

1[|εi+η̃�Zi−x|≤2ζ |Zi |/√n ] d|µ|(x) ≥ ε

)

≤ ∑
√

n|η̃|≤c+ζ,η̃∈Gζ

exp{(8ABCζ − ε)λn}(6.16)

≤
(

c

ζ
+ 1

)k

exp{(8ABCζ − ε)λn},
which converges to 0 if 8ABCζ < ε holds. �

We have proved the following result.

PROPOSITION 6.1. Consider the linear regression model (6.1) with the
covariate vector Z and the error ε independent, both with unknown distributions.
The matrix EZZ� is nonsingular and the error distribution G is assumed to
be symmetric about zero with finite Fisher information for location. There exist√

n-consistent and even adaptive estimators of θ . For any such estimator, any
estimator of G defined by (5.4), (6.10)–(6.12)and (5.12)is weakly efficient in the
sense of (5.14), that is, asymptotically linear in the efficient influence function
given in (6.9). Furthermore, the direct substitution estimator Ĝ

θ̂n,n
is weakly

efficient for all b∗ ∈ B∗ as in Lemma 6.1.

REMARK 6.1. Note that withk = 1 andZ degenerate at 1, this proposition
yields an efficient estimator of the error distribution in the classical symmetric
location problem. The ordinary location problem will be treated in Example 6.4.

REMARK 6.2. The idea of using the residuals to assess the error distribution
is quite standard and has been around for a long time, for instance in testing for
normality.

REMARK 6.3. Interest might be in the standardized symmetric error distribu-
tion, that is, inG standardized to have unit variance, as in Example 3.2. This leads
to a nonadaptive situation in which approaches as in the next example should lead
to efficient estimators.

EXAMPLE 6.3 (Parametrized linkage models). As in Example 3.2 we consider
the statistical model ofn i.i.d. copies of a random variableX that is linked to an
error variableε with distribution functionG via

tθ (X) = ε,
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with tθ :X → R measurable andθ ∈ � ⊂ R
k . Let θ be given. The empirical

distribution function of tθ (Xi), i = 1, . . . , n, is (asymptotically) linear in the
influence function

x 
→ 1[tθ (x)≤·] − G(·).(6.17)

This influence function and hence the empirical distribution function itself are
efficient in estimating the distribution functionG if G andG are unrestricted.

Typically, however,G is constrained to be symmetric (as in the preceding
example) or to have, for example, mean 0. In general, if the constraints can be
described by ∫

γ dG = 0

for some fixed measurable functionγ :R → R
l , then the efficient influence

function in estimatingG may be obtained from (6.17) by projection [cf.,
e.g., (6.2.6) of Bickel, Klaassen, Ritov and Wellner (1993)] and equals

x 
→ 1[tθ (x)≤·] − G(·) − E
(
1[ε≤·]γ �(ε)

){Eγ (ε)γ �(ε)}−1γ
(
tθ (x)

)
.(6.18)

Under appropriate regularity conditions,

Ĝθ,n(t) = 1

n

n∑
i=1

1[tθ (Xi)≤t]

−
(

1

n

n∑
i=1

1[tθ (Xi)≤t]γ �(
tθ (Xi)

))
(6.19)

×
{

1

n

n∑
i=1

γ
(
tθ (Xi)

)
γ �(

tθ (Xi)
)}−1

1

n

n∑
i=1

γ
(
tθ (Xi)

)

is an efficient estimator ofG(t), t ∈ R, within this restricted classG of constrained
distribution functions, givenθ . Subsequently, a weakly efficient estimator ofG

within the semiparametric model withθ unknown may be obtained via the
theorems of Section 5.

We will present the details of this approach for the particular case ofk = 1,
Z = 1 a.s., that is, for the location model, in the next example.

EXAMPLE 6.4 (Error distribution in location problem). LetX1, . . . ,Xn be
i.i.d. random variables, which are copies of a random variableX with unknown
distribution P ∈ P and distribution functionF on R. It is well known that
the empirical distribution functionF̂n is efficient in estimatingF , when F is
completely unknown. Let us assume now that theXi have finite variance and
meanθ . It is well known also that the sample meanX̄n is efficient in estimatingθ .
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With tθ (X) = X − θ = ε, the error distribution functionG ∈ G, the class of all
distribution functions with mean zero, satisfies

G(t) = F(t + θ), t ∈ R.

Given F̂n andX̄n, a natural estimator of the unknown error distributionG, which
has mean zero, would be

Ĝn(t) = F̂n(t + X̄n), t ∈ R.(6.20)

In fact, Ĝn is an asymptotically efficient estimator of the error distribution
function G, as may be shown by computation of the efficient influence function
along the lines of Example 5.3.8 of Bickel, Klaassen, Ritov and Wellner (1993).
Let � be a collection of bounded functionsψ :R → R with bounded uniformly
continuous derivativeψ ′ and letν mapP into the Banach spacel∞(�) of bounded
functions on� with the supremum norm such that

ν(Pθ,G)(ψ) = ν̃(G)(ψ) = G(ψ) =
∫

ψ(t) dG(t), ψ ∈ �.(6.21)

Thus,G is identified viaν̃(G) provided the class� is rich enough. Indeed,̂Gn

from (6.20) is efficient, that is,

√
n

(
Ĝn(ψ) − G(ψ) − 1

n

n∑
i=1

l̃(Xi)(ψ)

)
= OP (1), ψ ∈ �,

holds with the efficient influence functioñl equal to [cf. (6.18)]

l̃(x)(ψ) = ψ(x − θ) − EPθ,G
ψ(X − θ) − EPθ,G

ψ ′(X − θ)(x − θ),
(6.22)

ψ ∈ �.

If we apply the approach of Section 5, we need an efficient estimator ofG for
the case whereθ is known. As explained via the parametrized linkage models of
Examples 3.2 and 6.3, the naive empirical distribution ofXi − θ , i = 1, . . . , n,
is not efficient, but an explicit weighted empirical of theXi − θ , i = 1, . . . , n, as
given in the following proposition, is asymptotically efficient.

PROPOSITION6.2 (Location known). Let X1, . . . ,Xn be i.i.d. random vari-
ables with known mean θ and distribution function G(· − θ), where G is unknown
with finite variance. The estimator

G̃θ,n(t) = 1

n

n∑
i=1

{
1− (Xi − θ)(X̄n − θ)

S2
n(θ)

}
1(−∞,t](Xi − θ), t ∈ R,(6.23)

with S2
n(θ) = n−1 ∑n

i=1(Xi − θ)2, is weakly efficient in estimating the error
distribution function G with G identified via ν :G → B = l∞(L2(G)), ν(G)(ψ) =∫

ψ dG for ψ ∈ L2(G).
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PROOF. Without loss of generality we may takeθ = 0. For ψ square
integrable with respect toG we have

G̃0,n(ψ) − G(ψ)

= 1

n

n∑
i=1

{
ψ(Xi) −

∫
ψ dG − 1

nS2
n(0)

n∑
j=1

ψ(Xj)XjXi

}
(6.24)

= 1

n

n∑
i=1

{
ψ(Xi) −

∫
ψ dG − covG(ψ(X),X)

varG X
Xi

}
+ OP

(
1√
n

)
,

where the last equality is implied by the law of large numbers. Consequently,
G̃0,n is asymptotically linear in the efficient influence function as given in
Example 6.2.1 of Bickel, Klaassen, Ritov and Wellner (1993); see (6.18).�

REMARK 6.4. Note thatG̃θ,n from (6.23) is justĜθ,n from (6.19) for
tθ (x) = x − θ , written appropriately.G̃θ,n is a signed measure; in its far tails it
need not be monotone.

Plugging inθ = X̄n we obtain

G̃X̄n,n(t) = 1

n

n∑
i=1

1(−∞,t](Xi − X̄n) = F̂n(t + X̄n) = Ĝn(t),(6.25)

the estimator ofG from (6.20) which has been proved efficient above for
B = l∞(�) with a smaller set� thanL2(G) as in Proposition 6.2. The sample
splitting and substitution technique of Theorem 5.1 yields a different though
similar efficient estimator of the error distributionG. Applying Lemma 6.1 and
Theorem 5.2, we obtain the weak efficiency ofĜn for anotherB andB∗.

Note that plugging inX̄n for θ into the empirical distribution function
F̂θ,n(t) = 1

n

∑n
i=1 1(−∞,t](Xi − θ) of theXi − θ yields the same estimator̂Gn(t)

of G(t). Although, as noted before,̂Fθ,n(t) is not an efficient estimator forθ
known, the combined estimator is. From Remark 5.1 we know that the sub-
stitution estimatorν̂

θ̂n,n
can be efficient even if̂νθ,n is not efficient, as long

as the influence function of̂νθ,n satisfies (5.15). In this case, this translates to
F̂θ,n(t) = G̃θ,n(t) + b(X̄n − θ) + OP (1), for everyt ∈ R and someb ∈ R. This is
indeed the case, since by (6.23)

F̂θ,n(t) − G̃θ,n(t) = X̄n − θ

S2
n(θ)

· 1

n

n∑
i=1

(Xi − θ)1(−∞,t](Xi − θ)

(6.26)

= X̄n − θ

σ 2 · (
E(X − θ)1(−∞,t](X − θ) + OP (1)

)
,

because of the law of large numbers.
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The empirical likelihood approach of Owen (1991) has been applied by Qin
and Lawless (1994) in their Example 3 (continued), page 314, to obtain another
implicitly defined efficient estimatorG∗

θ,n of G. G∗
θ,n is a proper distribution

function and substitution ofθ by X̄n in G∗
θ,n yieldsĜn as well.

EXAMPLE 6.5 (Bootstrap). When constructing confidence intervals for the
meanθ using the sample mean̄Xn = n−1 ∑n

i=1 Xi , one needs the distribution of√
n(X̄n −θ). It can be simulated once the distribution ofX−θ = X1−θ is known.

By the fundamental rule of thumb of statistics this distribution ofX − θ should
be estimated when unknown. According to Example 6.4 an efficient estimator of
this distribution isG̃X̄n,n = F̂n(· + X̄n) from (6.25) and (6.20). In this way the
distribution ofX − θ underF is estimated by the distribution ofX∗, say, under
F̂n(· + X̄n), which equals the distribution ofX∗ − X̄n underF̂n. Via this approach
we see why in the bootstrap world the distribution ofX − θ underF should be
replaced by the distribution ofX∗ − X̄n underF̂n.

EXAMPLE 6.6 (Baseline survival distribution in Cox’s proportional hazards
model). We observe i.i.d. copies ofX = (Z,T ), where the hazard function of
an individual with covariateZ = z ∈ R is given by

λ(t |z) = eθzλ(t),

whereθ ∈ R and λ is the so-called baseline hazard function, corresponding to
covariatez = 0, and related to the Banach parameterG as follows:

λ = g

1− G
= g

Ḡ
.(6.27)

Hereg is the density corresponding to the distribution functionG on [0,∞) of T ,
given Z = 0. Fix T0 > 0 and defineG to be all distribution functionsG with
G(T0) < 1. We assume that the distribution ofZ is known and has distribution
functionF . Furthermore, we denote Lebesgue measure on(0,∞) by µ and note
that identification ofG with

√
g yields G ⊂ L2(µ). Then the density of(Z,T )

with respect toµ × F is

p(z, t; θ,G) = eθzg(t)
(
1− G(t)

)(exp(θz)−1)
.(6.28)

As in Example 3.4.2 of Bickel, Klaassen, Ritov and Wellner (1993), it is not
difficult to see that

l̇1(z, t; θ) = z
(
1− eθz�(t)

)
(6.29)

with

�(t) =
∫ t

0
λ(s) ds =

∫ t

0

g(s)

1− G(s)
ds = − log

(
1− G(t)

)
.
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RepresentinġG in L2(G), we getĠ = Ġ0 = L0
2(G), andl̇2 : Ġ → L2(Pθ,g) is given

by

(
l̇2(θ)a

)
(z, t) = a(t) + (eθz − 1)

∫ ∞
t a(s) dG(s)

1− G(t)
.(6.30)

It is well known [cf. Tsiatis (1981)] that ifEZ2 exp(2θZ) is bounded uniformly
in a neighborhood ofθ0, then the Cox (1972) partial likelihood estimatorθ̂n

is (locally) regular and asymptotically linear in the efficient influence function
‖l∗1‖−2l∗1, wherel∗1 of (4.10) is given by

l∗1(z, t; θ) = l̇1(z, t; θ) −
(

S1,θ

S0,θ

(t) − eθz
∫ t

0

S1,θ

S0,θ

d�

)
,(6.31)

with

Si,θ (t) = EθZ
ieθZ1[t,∞)(T ), i = 0,1.(6.32)

A complete proof of efficiency in a strong sense is given in Klaassen (1989) under
nondegeneracy and boundedness ofZ.

We are interested in estimating the baseline distribution functionν̃(G) = G on
an interval[0, T0] with PG(T > T0) > 0. In view of this bounded window we will
restrictCG to all paths atG in G with tangenth vanishing outside[0, T0], yielding

Ġ = {
h ∈ L0

2(G) :h = h1[0,T0]
}
.(6.33)

Furthermore, we will assume that|Z| is bounded a.s. byC < ∞. With the notation

S̃i,θ (t) = EθZ
ie2θZ1[t,∞)(T ), i = 0,1,(6.34)

we have

Ṡ0,θ (t) = ∂

∂θ
S0,θ (t) = S1,θ (t) − S̃1,θ (t)�(t).(6.35)

To verify (5.5) we note that forh ∈ Ġ [cf. Example 6.7.1.A of Bickel, Klaassen,
Ritov and Wellner (1993)]

ψh(X; θ) = l̇2(θ)
(
l̇�2 (θ)l̇2(θ)

)−1
h(Z,T )

=
(
Ḡh(T ) −

∫ ∞
T

hdG

)/
S0,θ (T )(6.36)

−
∫ T

0
eθZ

(
Ḡh(s) −

∫ ∞
s

h dG

)/
S0,θ (s) d�(s)

holds. It follows from Example 3.5 in Schick (2001) that (2.25) holds forψκ = ψh

from (6.36) whereh is associated with ab∗ corresponding to a signed measureq

on [0, T0] as in (6.40). Indeed,h = ˙̃νb∗(x) = q([x,T0]) − ∫
Gdµ holds, and

Ḡ(t)h(t) −
∫ ∞
t

h(s) dG(s)

= Ḡ(t)q([t, T0]) −
∫ ∞
t

µ([s, T0]) dG(s) = 0, t > T0.



342 C. A. J. KLAASSEN AND H. PUTTER

This yields (5.5) and (5.6) withch(θ) = Eθ(l̇1(X,T ; θ)ψh(X,T ; θ)).
Given the regression parameterθ , the nonparametric maximum likelihood

estimatorĜθ,n of the baseline distribution functionG may be derived from the
nonparametric maximum likelihood estimator of the baseline cumulative hazard
function�, as described in Section 1 of Johansen (1983), and it equals

Ĝθ,n(s) = 1− exp

{
−

n∑
i=1

1[0,s](Ti)

(
n∑

j=1

1[Tj≥Ti ]eθZj

)−1}
, s > 0.(6.37)

Breslow [(1974), (7), page 93] proposed the Kaplan–Meier-type estimator

G̃θ,n(s) = 1−
n∏

i=1

{
1− 1[0,s](Ti)

(
n∑

j=1

1[Tj≥Ti ]eθZj

)−1}
.(6.38)

Both these estimators are asymptotically linear in the efficient influence function

ψ1[0,s]−G(s)(z, t; θ) = l̇2(θ)
(
l̇�2 (θ)l̇2(θ)

)−1(1[0,s](·) − G(s)
)
(z, t)

= Ḡ(s)

{
1

S0,θ (t)
1[0,s](t) − eθz

∫ s∧t

0

1

S0,θ

d�

}
,(6.39)

uniformly in s ∈ [0, T0]; see Section 4 of Tsiatis (1981) and Example 6.7.1.A
of Bickel, Klaassen, Ritov and Wellner (1993). They are even weakly locally
submodel efficient under the assumption of boundedness ofZ for B the cadlag
functions on[0, T0] with supremum norm andb∗ ∈ B∗

0 of the type

b∗(b) =
∫
[0,T0]

b(s) dµ(s)(6.40)

for some finite signed measureµ. To verify this and for future use we need the
following result.

LEMMA 6.2. If T1, . . . , Tn are random variables with empirical distribution
function F̂n, then the statistic

Vn(s) =
n∑

i=1

1[Ti≤s]
(

n∑
j=1

1[Tj≥Ti ]
)−1

(6.41)

satisfies

Vn(s) ≤ − log
(
1− F̂n(s)

)
.(6.42)

PROOF. With T(1) ≤ T(2) ≤ · · · ≤ T(n) the order statistics we have

Vn(s) =
n∑

i=1

1[T(i)≤s]
1

n − i + 1
=

nF̂n(s)∑
i=1

1

n − i + 1

≤
∫ nF̂n(s)+1

1

1

n + 1− x
dx = − log

(
1− F̂n(s)

)
. �
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We also need the following convergence result.

LEMMA 6.3. Denote

Wn(t; θ) = 1

n

n∑
j=1

1[Tj≥t]Zje
θZj

(
1

n

n∑
j=1

1[Tj≥t]eθZj

)−2

.(6.43)

In the Cox proportional hazards model of (6.28) with |Z| bounded we have for
0≤ s ≤ T0,

1

n

n∑
i=1

1[Ti≤s]Wn(Ti; θ)
Pθ,G→

∫ s

0

S1,θ

S0,θ

(t) d�(t).(6.44)

PROOF. Conditionally, givenTi = t ≤ s, the statisticWn(t; θ) converges in
probability to S1,θS

−2
0,θ (t) where bothWn(t; θ) and its limit are bounded a.s.

Consequently, givenTi ≤ s the difference|Wn(Ti; θ) − S1,θS
−2
0,θ (Ti)| converges

in mean to 0 and hence the lemma holds.�

Combining these lemmata, we see that the nonparametric maximum likelihood
estimatorĜθ,n(s) satisfies

√
n
(
Ĝθn,n(s) − Ĝθ,n(s)

) + √
n(θn − θ)Ḡ(s)

∫ s

0

S1,θ

S0,θ

d�

= √
n

∫ θn

θ

{(
Ĝη,n(s) − 1

)1

n

n∑
i=1

1[Ti≤s]Wn(Ti;η)

+ Ḡ(s)

∫ s

0

S1,θ

S0,θ

d�

}
dη(6.45)

= OP

(√
n

∫ θn

θ

1

n

n∑
i=1

1[Ti≤s]|Wn(Ti;η) − Wn(Ti; θ)|dη

)
+ OP (1)

= OP

(√
n

∫ θn

θ
(η − θ)Vn(s) dη

)
+ OP (1) = OP (1)

underθ , uniformly in s ∈ [0, T0]. Note that by (6.27), (6.30) and Lemma 2.2,

1√
n

n∑
i=1

{
ψ1[0,s]−G(s)(Zi, Ti; θn) − ψ1[0,s]−G(s)(Zi, Ti; θ)

}
(6.46)

+ √
n(θn − θ)Ḡ(s)

∫ s

0

S1,θ

S0,θ

d�
Pθ,G→ 0

holds uniformly in s ∈ [0, T0]. The asymptotic linearity ofĜθ,n(s), (6.45)
and (6.46) together imply that̂Gθ,n(·) is weakly locally submodel efficient
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on [0, T0] in the sense of (5.1) withb∗ as in (6.40). Finally, note [cf. (6.45)]

√
n|Ĝ

θ̂,n
(s) − Ĝθ̃,n(s)| ≤ √

n

∣∣∣∣∣
∫ θ̂

θ̃

1

n

n∑
i=1

1[Ti≤s]Wn(Ti;η)dη

∣∣∣∣∣
(6.47)

≤ √
n

∣∣∣∣
∫ θ̂

θ̃
Ce3|η|C dη

∣∣∣∣Vn(s).

By Lemma 6.2 this yields (5.16) withb∗ ∈ B∗
0 as in (6.40), since

Pθ

(∫
[0,T0]

Vn(s)d|µ|(s) ≥ c0ε/ζ

)
(6.48)

≤ Pθ

(
F̂n(T0) ≥ 1− e−(c0ε)/(|µ|([0,T0])ζ ))

is arbitrarily small forζ sufficiently small. We have proved that Theorem 5.2 may
be applied and that the full nonparametric maximum likelihood estimatorĜ

θ̂n,n
(s)

of the baseline distribution functionG is efficient if θ̂n is efficient. By similar
arguments this may be shown also for Breslow’s estimatorG̃

θ̂n,n
(s).

PROPOSITION6.3. Consider the Cox proportional hazards model of (6.28)
with the covariate Z bounded a.s. in absolute value. If θ̂n is an efficient estimator
of the regression parameter θ , then both Ĝ

θ̂n,n
(s) and G̃

θ̂n,n
(s) are weakly efficient

in estimating G(s) in the sense of (5.10)with b∗ ∈ B∗
0 as in (6.40).
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