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Consider a semiparametric model with a Euclidean parameter and an
infinite-dimensional parameter, to be called a Banach parameter. Assume:

(a) There exists an efficient estimator of the Euclidean parameter.

(b) When the value of the Euclidean parameter is known, there exists
an estimator of the Banach parameter, which depends on this value and is
efficient within this restricted model.

Substituting the efficient estimator of the Euclidean parameter for the value
of this parameter in the estimator of the Banach parameter, one obtains
an efficient estimator of the Banach parameter for the full semiparametric
model with the Euclidean parameter unknown. This hereditary property
of efficiency completes estimation in semiparametric models in which the
Euclidean parameter has been estimated efficiently. Typically, estimation of
both the Euclidean and the Banach parameter is necessary in order to describe
the random phenomenon under study to a sufficient extent. Since efficient
estimators are asymptotically linear, the above substitution method is a
particular case of substituting asymptotically linear estimators of a Euclidean
parameter into estimators that are asymptotically linear themselves and that
depend on this Euclidean parameter. This more general substitution case is
studied for its own sake as well, and a hereditary property for asymptotic
linearity is proved.

1. Introduction. Estimation of a parameter is not a goal in itself. Typically,
the purpose is to determine a reliable picture of future behavior of a random
system. In semiparametric models this means that estimation of just the finite-
dimensional, Euclidean parameters does not finish the job. The values of the
Banach parameters are needed to complete the picture. The situation in classical
parametric models is similar. Consider linear regression under normal errors with
unknown variance. The regression parameters are the parameters of interest, but
the variance of the errors, although of secondary interest, is essential to describe
the behavior of the dependent variable at a particular value of the independent
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variable, as for instance in prediction. In semiparametric linear regression the
error distribution with mean zero is completely unknown. Again, this distribution
is essential in describing the behavior of the dependent variable. Therefore, its
distribution function has to be estimated. This may be done along the following
lines:

1. Estimate the regression parameter vegtefficiently using (by now standard)
semiparametric theory.

2. Given the true value of the parameterthe error distribution functiori; can
be estimated efficiently, since the i.i.d. errors can be reconstructed from the
observations in this case.

3. Using the estimated value 6f construct the residuals and instead of the i.i.d.
errors use these residuals to estimate the Banach parathatehe same way
as in step 2.

The crux of the present paper is that the resulting estimatar of efficient.
In fact, for any semiparametric model, we will prove that this approach, which
is in line with statistical practice, yields an efficient estimator of the Banach
parameter, provided a sample splitting scheme is applied. Since we assume that
efficient estimators of are available, we shall focus on efficient estimation of
the Banach parametéf in the presence of the Euclidean nuisance parangeter
Sample splitting is unnecessary and the direct substitution estimator works if the
conditional estimator of the Banach parameter g@etepends o® in a smooth
way. In order to be able to estimate efficiently according to our approach, it
is essential in nonadaptive cases that in step 1 the Euclidean paranmusterbe
estimated efficiently in the semiparametric sense. The Banach parameter needed
for more complete inference, like the distribution functiGhof the errors in
semiparametric linear regression, typicallyusequal to the Banach parameter
needed in efficient semiparametric estimationégfthis parameter being the
score function—d log(d G (x) /dx) /dx for location in the linear regression model.
In fact, Klaassen (1987) has shown thatan be estimated efficiently if and only if
the efficient influence function for estimatiigcan be estimated consistently and
+/n-unbiasedly, give®, andd can be estimate¢/n-consistently, with: denoting
sample size. Of course, this efficient influence function depends on the Banach
parameter of interest, but typically differs from it.

To give a more explicit and precise statement of our results,Pldbe our
semiparametric model given by

(1.1) P={Pyg:0€®,Ge§}, ® c Rk, g c #,

where ® is an open subset d&* and g is a subset of a Banach or preferably
a Hilbert space#, (-, -) 3). Typically, in a natural parametrizatiot; would be
a distribution function and hence an element of a Banach spacdf a o-finite
measure would dominate the distributionsginthen an obvious parametrization
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would be via the corresponding densitgesf G, which are elements of a Banach
spaceL1. However, via the square roofgg we parametrize by elements of a
Hilbert spacel,. Therefore, we shall assume tlats a subset of a Hilbert space
or can be identified with it. We are interested in estimating a parameter

(1.2) v=v(Py ) =v(G),

wherev:4 — B8 (8 Banach space) is pathwise differentiable; see (4.4) for
details. Estimation has to be based on i.i.d. random variaklesXo, ..., X,
with unknown distributionPy ¢ € # on the sample spadeX, 4). Let $2(0) be

the submodel ofP? where6 is known. Let the submodel estimatdy , be an
efficient estimator ob within $2(0). Suppose that we also have an estimator

of 6 at our disposal within®. Following step 3 above, an obvious candidate
for estimatingv in the full model # would be the substitution estimat@gn,n.

We shall show that a split-sample modification&g}fﬂ is an efficient estimator

of v in # if 6, is an efficient estimator of in . In adaptive cases, far,

to be efficient in# it is sufficient that the estimatdt, be /n-consistent. The
substitution estimatof;  itself is semiparametrically efficient if the submodel
estimatory , depends smoothly of, which is typically the case.

The asymptotic linearity of the efficient estimators involved warrants the
resulting substitution estimator to be asymptotically linear as well. We study
this hereditary property of asymptotic linearity of estimators for its own sake
in Section 2, where we refrain from the efficiency assumptions made above. In
Section 3 we discuss such simple examples as the sample variance and estimators
of the standardized error distribution in linear regression. There we will also
introduce models that we propose to call parametrized linkage models. In Section 4
we will collect some results about efficient influence functions in the various
(sub)models that we consider. Section 5 contains our main results for efficiency. In
Section 6 we will discuss a number of examples.

A general class of semiparametric mod@is={Py ¢ :0 € ®, G € ¢} in which
our results apply is the class of models that can be handled by profile likelihood.
If 1,(6, G) is the appropriately defined likelihood efindependent observations
from &, then a maximum likelihood estimatéy of 6 can be found by maximizing
the profile likelihood

(1.3) pl,(0) = supl, (0, G).

Ge§
This amounts to maximizing the likelihood in two steps. First maximize with
respect tas for a givend. The maximizer of,, (6, G) with respect taG, sayG, (6),
will generally depend o#. Placing the submodel estimat6r, (6) back into the
likelihood, we obtain a function of only, pl,(6) = 1,6, Gn(e)). Murphy and
van der Vaart (2000) show that the profile likelihood can to a large extent be
viewed as an ordinary likelihood. In particular, under some regularity conditions,
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asymptotic efficiency of the maximize}, of (1.3) can be proved. Important in
this construction is the fact that the maximizer of the likelihood with respeGt to
obtained in the first maximization step;,(6), is not yet a complete estimator

of G. This submodel estimator is only an estimatorfor a given value ob,

just as in step 2 of our linear regression example above. Having found an efficient
estimator of, estimation of(9, G) is then completed by considering the obvious
substitution estimato6, = G,(6,). The estimatoiG,, () for givené is already
available as a result of the maximizing step in (1.3). The Banach parafi€étgr

or G itself will not generally be estimable afn-rate, but it may be possible to
estimate real-valued functionats= «(Py.¢) = £ (G) of G at y/n-rate. In cases
where #(G,(0)) is an efficient estimator ok (G) given 0, our results can be
applied to yield a fully efficient estimatd@n(G,, (6,)) of #(G). Numerous examples

fall into this class, some of them treated in some detail in this paper, like the Cox
proportional hazards model for right censored data (Example 6.6) and for current
status data [Huang (1996) and Bolthausen, Perkins and van der Vaart (2002)],
frailty models [Nielsen, Gill, Andersen and Sgrensen (1992)], the proportional
odds model [Murphy, Rossini and van der Vaart (1997)], selection bias models
[Gilbert, Lele and Vardi (1999) and Cosslett (1981)] and random effects models
[Butler and Louis (1992)].

We will consider a number of examples in more detail in Section 6, namely
estimation of the variance with unknown mean, estimation of the error distribution
in parametrized linkage models and in particular in the location problem with
the bootstrap as an application, estimation of a (symmetric) error distribution in
linear regression as an example of the adaptive case, and finally, estimation of the
baseline distribution function in the Cox proportional hazards model.

The framework of the present paper has been presented in Klaassen and Putter
(1997) within the linear regression model with symmetric error distribution and
has been used by Miiller, Schick and Wefelmeyer (2001) in their discussion of
substitution estimators in semiparametric stochastic process models.

There are fundamental theorems of algebra, arithmetic and calculus. Statistics
has its fundamental rule of thumb. It states that “replacing unknown parameters in
statistical procedures by estimators of them yields appropriate procedures.” This
paper describes a large class of estimation problems where this rule of thumb is
indeed aheorem.

2. Heredity of asymptotic linearity of substitution estimators. In this
section we will study the local asymptotic behavior of estimators that are obtained
by combining two asymptotically linear estimators in the way described in
Section 1. We will prove the hereditary property that under certain regularity
conditions the resulting estimators are asymptotically linear as well and we will
describe their influence functions. The main application of this heredity result is
to efficient estimators as described in Section 1. This will be pursued in Section 5,
but we believe the hereditary property is of independent interest as well.
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Although we will apply this hereditary property to semiparametric mocdels
asin (1.1), we will be able to restrict attention in the present section to parametric
models since the phenomenon under study occurs within the natural parametric
submodelsP1(G) = {Py ¢ :0 € ©} of P with G € § fixed.

So, within this section, lef? = {Py:0 € ®}, ® Cc R¥ open, be a parametric
model, and letXq, X», ..., X, be the i.i.d. random variables with distribution
Py € # on the sample spac€X, ) that are used for estimation. Since our
considerations are of the usual local asymptotic type, we introduce an arbitrary
fixed 6p € ® at which the local asymptotics is focused.

For everym € N let ¥,, be the set of all measurable functiofis from
X x © into R™ such thatf v (x;0)dPy(x) =0 and [ |y (x; 0)|?>d Ps(x) < 00
for all 6 € ®, where| - | denotes a Euclidean norm. Fix € N and consider a
differentiable functionc from ® into R™.

DEFINITION 2.1. An estimatork, of «(0) is locally asymptotically linear
atoy if there exists af € ¥,, such that

~ f— n PQ
(2.1) Vilkn —k(0) —n™ 1Y (X 6,)| =0
i=1
for all sequenceg6,} with {\/n(6, — 6p)} bounded. We calk; the influence
function of ;.

Suppose we have an estimatyr=1,(X1, ..., X»), tn: X" — Rk, A"-Borel
measurable, that is a locally asymptotically linear estimato® cdt 6o with
influence functionyy € ¥y, that is,

(2.2) vn

Py,
0
—=0

~ 10
On — Op — ;ZW@(XI'; On)
i=1

holds for all sequencgs, } with {,/n(6, —60)} bounded. Suppose furthermore that
there is a proces® , =k, (X1, ..., X,; 0) that is locally asymptotically linear in
Y € ¥, aroundx (0) such that
n P9

Rogn — K (On) =01 Ye(Xi36)| — O
i=1
holds for all sequence®),} with {\/n(6, — 6p)} bounded. Note that we have
extended here the concept of local asymptotic linearity from estimator§oof
as in Definition 2.1, to statistics indexed sy This is quite reasonable since
the gist of the concept is that the relevant statistic behaves as an average locally
asymptotically.

We want to describe the local asymptotic behavior of the substitution estimator

(2.4) fn1=Ry .

(2.3) v
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which replaces the unknowhby its estimato®, in Ko.n-
Heuristically, by (2.3)N/ﬁ(;2§n’n — k(6p)) behaves like

(2.5) N (x(én) —k(00) +n 1Y e (X én>>.

i=1
Now it is natural to assume the existence of a matrix-valued funetien— R <k
that is continuous atp and that is such that for every sequen@g} with
{V/n(6, —6)} bounded,

Py
-0

1 1 &
(2.6) ‘ﬁ;wx(xi, On) — 7 ;W(Xi, f0) — ¢(B0)~/n (6 — 60)

holds. Sincex is differentiable,\/ﬁ(/%én , — k(6o)) would then behave like

v (x/(eoxén —00) + 1Y Y (Xi: 60) + c(60) (6 — 90))

i=1
and hence, by (2.2), like

il Z Vi (Xi3 60) + (1 (Bo) + c(60)) Yo (Xi; 60)).

The estimaton%én , thus inherits its asymptotic linearity from the submodel

estimatorky , and the estimatod,. To study this asymptotic linearity more

carefully, we first describe a sample splitting procedure, for which we can prove

statements under minimal conditions. Fix a sequence of int¢gers ,, such that
A1

2.7 — = —.

(2.7) 5

We split the samplg X7y, ..., X,) into two parts, (X1, ..., X;,) and (X, +1,

., X,). Define

2.8) ~(1) W1 =1, (X1, ..., Xn,), ~(2)9~n2=tn_xn(X;m+1,...,Xn),
Ky 5 =k, (X1,..., X5,:6), R = knay (Xaprs - X3 6)

and

(2.9) fon— ﬁ ® L hee

9112 An n enl n— )\n

The following theorem describes the influence function of this split-sample
substitution estimatot, ».
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THEOREM 2.1. Fix 6g € ©. Suppose that «:® — R™ is continuously
differentiable in a neighborhood of 6 with derivative matrix «’ and suppose that
conditions (2.2), (2.3)and (2.6) hold for some ¢:® — R”** that is continuous
at 6p. Then i, 2 defined by (2.7)(2.9) is locally asymptotically linear for « at 6g
with influence function ¥ given by

(2.10) ¥ (x:0) = Y (x:0) + (k' (0) + c(0)) Yo (x: 6),
that is, for every sequence {6, } with {\/n(6,, — 60)} bounded,

Py
0.

(2.11) Jn

A 18-
en2 =K (On) = =3 U (Xi3 6,)
i=1

PROOF.  Fix 6p € ® and the sequenc®, }. Take another sequen¢e, } such
that {,/n(6, — 6p)} stays bounded. Combining (2.3), with replaced by,
and (2.6), both witt#, and withd, replaced byj,, we obtain, usingXs, ..., X1,

N

- 1 2n _ P
BD, =) = = 3 e (Xis 6a) = c(B0) (B — 6)| 0
ni=1

which by continuous differentiability of () and continuity ofc(-) at6p yields

Py
0.

(212) /nlk

ey —K<9n>——ZwK<Xl,0> (1" (Bn) + (6)) (B — 60)
i=1

11

By the asymptotic linearity of,, we have

(2.13) 1|Op2 — 0, — Z Yo (Xi: 6)]

i=An+1

Hence, by the independence 0X1,...,X,,) and (X, +1,...,X»), (2.12)
and (2.13) together yield

— An

1 An
VgD ) = = 3 e (X )
Vl n n l:l
1 n ’ P@o
- > (k' On) + cOn) Yo (Xi: 6,)| = 0.
m="Arn; 5

Similarly we obtain

Vi

D e (Xis6n)

mi=x,+1

~(2)
Kél”—)»n K (On) — Y

— —Z k' (6,) + c(6, ))W@(Xzs 9n)

"11
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These last two statements yield

R 1
Vilien2 = K 6n) = ~ > e (Xis 6)
i=1
1 (n—A, An
(214) — = { 1y A =+ 1 An
ng S ikl T i ]

Py,
0
—0.

X (k" (On) + c(On)) Yo (Xi; 6n)

In view of (2.7) this shows that, > is a locally asymptotically linear estimator
of k, with influence function given by (2.10). This proves the theorem.

Note that the expression within braces in (2.14) reveals why (2.7) is crucial to
our sample splitting scheme.

To establish local asymptotic linearity of the direct substitution estimatar
without sample splitting [cf. (2.4)], we need locally asymptotically uniform
continuity in6 at6p of the estimatorsy , as follows:

For every$ > 0,¢ > 0 andc > 0, there exist > 0 andng € N such that for all
n=ng

(2.15) Pgo( sup VnlRon — kg | = s) <é.
Jil0—6o|<c.\/nlo—0]<¢ ’

THEOREM 2.2. Fix 6p € ©. If (2.15)holds in the situation of Theorem 2.1,
then the substitution estimator <, 1 = léén , Is a locally asymptotically linear

estimator of « with influence function ¥ given by (2.10).

PROOF Fix6pye ®,§ > 0, ¢ > 0. Choose andng such that fon > ng
(2.16) Poo (/1110 — b0| > ¢) < 6.

Now, choose¢ sufficiently small such that (2.15) holds too (increasg if
necessary), and such that the matrix norm’efp) + c(fo) satisfies

(2.17) I’ (o) + c(B)lI¢ < &/2.

Let én(;) be the efficient estimata#, discretized via a gridg,; of meshwidth
2(kn)~1Y/2¢, such that

(2.18) Vnlb,(e) =6, <¢  as.
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It follows by (2.18) and (2.15) that for > ng the inequality

PQQ (\/ﬁ

K4 = (6n)

> 48)

1 n
- D Wi (Xi: 60) + (k' 6) + c(0) Yo (X3 )]
i=1

:P90<\/E

(&3, = %9,0).n)
1 n
+ {k\é,,(g),n — k() — " ZWK(Xi; On)
i—1

— (k" On) + c(0) (Bn(0) — en)}

+ /9}1 + Qn én _én
(2.19) (k" (Bn) + ¢ () (O (5) — On)

> 48)

o 12
Kgn — K (On) — n Z‘/IK(Xi; On)
i=1

~ 12
+ (K/(en) + C(Qn)){en — 6, — ; Z Yo (X 0}1)}

i=1
< Pay(v/1110, — 0ol > ¢) +8

+ > Py, (ﬁ

0€G.v/nlf—60|<c+¢

— (K" (60) + c(6,)) (0 — 6,)

.

holds. In view of (2.16), in view of the boundedness of the number of terms in
the sum with all terms converging to zero by (2.12), in view of (2.17) and the
continuity ofx” + ¢, and in view of the linearity of), [see (2.2)], the limsup as

n — oo of the right-hand side of (2.19) equals at mo&t inces may be chosen
arbitrarily small, this proves the asymptotic linearity.]

)

+ Poo(Il" (0n) +c (@) 1IE > &)

~ 170
+ P00<||K/(0n) +C(0n)“\/ﬁ 6, — 6, — ;Zd’@(xi; )
i=1

REMARK 2.1. In some cases, it may happen thdt) + c(-) = 0. Then it is
easily seen that the influence function of the substitution estimajarandx;, 2

is given by (-; ) = ¥ (-; -), even ifé, is not locally asymptotically linear but is
just /n-consistent.
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REMARK 2.2. If ¢, (-; 0) is differentiable ind with derivativexﬁ,((_-; 0), then
Taylor expansion and the law of large numbers suggést = Eyr (X1; 0).
Furthermore, differentiation afg v, (X1; 6) = 0 with respect t@ hints at

(2.20) c(0) = EgVre (X1;6) = —Egyrc (X1; 0)I T (X413 6),
with [ (x; 6) the score function fof, namelyd log p(x; 6)/36.

REMARK 2.3. Theorem 2.2 is related to a result known as the delta method;
see Section 2.5 of Lehmann (1999). Given the function, choosecy , = «(9).
Then the convergence (2.3) holds trivially with, (-; -) = 0. Furthermore, (2.6)
is valid with ¢(-) = 0 and (2.15) holds if is continuously differentiable. Now
Theorem 2.2 states that the local asymptotic linearity,oin (2.2) implies the
local asymptotic linearity of (9,), that is,

Vil @) — K (0y) — 1 > k' On) o (Xi; 0n) e 0,
i1

and hence by the central limit theorem the asymptotic normality/ef« 6,) —
Kk (6p)) under Pg,. Note that the delta method states that asymptotic normality of

(6, — 6p) implies asymptotic normality o/ (« (9,) — « (60)).

REMARK 2.4. Under different sets of regularity conditions, the heredity of
asymptotic normality of substitution statistics has been proved by Randles (1982)
and Pierce (1982). Since asymptotic linearity implies asymptotic normality, both
our conditions and our conclusions in proving heredity of asymptotic linearity are
stronger than needed for heredity of asymptotic normality. However, the approach
via differentiability in Section 3 of Randles (1982) comes pretty close to the
assumption of asymptotic linearity. Moreover, our ultimate goal is the study of
efficient estimators, which are bound to be asymptotically linear.

Let us now discuss sufficient conditions for (2.6). The following standard result
will be quite helpful and may be verified by studying first and second moments.

LEMMA 2.1. Fix6pe ®.If
(2.21) Ego (1% (X1; 60+ 8) — ¥ (X1;600)°) = 0 ase—0

holds and the map ¢ — Eg, ¥ (X1; 00 + ¢) is differentiable at O with derivative
matrix c(6p), then (2.6) holds for all sequences {6,,} with {\/n(6,, — 6p)} bounded.

Sometimes (2.6) may be verified by a direct application of the following “law-
of-large-numbers”-type of result.
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LEMMA 2.2. Fixfp € ©. For.Peo-aImost al x, let ¥, (x; 8) be continuously
differentiable in 6 with derivative ¥, (x; 6). If

(2.22) Egol¥e (X1;0)| — Egolre(X1;60)]  asé — 6o,
then for {\/n(6, — 6p)} bounded

1 . P
(223 —= > (e (Xi: 6n) — Ve (Xi3 60)) — /16 — 00) " Egyc(X1: 60) = 0
i=1
holds.

PROOF Write the left-hand side of (2.23) as

n

1 . .
(6, — 90)T[; > ¥ (Xi: 60) — Egp¥re (Xi: 60))

i=1
11, .
+/O . Z{W(Xi; 60 + ¢ (O — 60)) — Ve (X5 90)}61{},
i=1
note that the first absolute moment of the last term may be bounded by

1 ) )
116 — 6ol fo Ego |V (X1: 60 + £ (6 — 60)) — v (X1: 60)| dt

and apply, for example, Theorem A.7.2 of Bickel, Klaassen, Ritov and Wellner
(1993). O

Condition (2.6) may be also derived via regularity®fand local asymptotic
normality (LAN) by an argument similar to the one leading to (2.1.15) of
Proposition 2.1.2, pages 16 and 17, of Bickel, Klaassen, Ritov and Wellner (1993).

DEFINITION 2.2. A parametric model® = {Py:6 € ©}, ® C RF open, is
a k-dimensionalregular parametric model if there exists as-finite dominating

measureu such that, withp(0) =d Py /du, s(0) = p;/z:

(i) forall 6 € © there exists &-vectori(9) of score functions irL.»(Py) such
that

(2.24) s@) =s@)+ 10 -6)T10)s©0) + 016 - 6])

in Lo(w) as|é — 6| — 0;

(i) for everyd e © thek x k Fisher information matrix [(0)I" (6) p(9) du is
nonsingular;

(iii) the mapé — [(0)s(6) is continuous fron® to Li(n).
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A priori, it would have been more general if condition (i) of Definition 2.2
had prescribed Fréchet-differentiability of9) with derivative s(6) in L’g(u).
However, it can be shown that all components @) would vanish then almost
everywhere where(9) vanishes. Consequentiyf) may be written a#(9)s(6)/2
in L’g(u); see Proposition A.5.3.F of Bickel, Klaassen, Ritov and Wellner (1993).

This approach to prove (2.6) through regularity and local asymptotic normality
has been implemented in a preprint of the present paper [Klaassen and Putter
(2000)]. However, a much nicer argument has been noted by Schick (2001).

LEMMA 2.3. Supposethat the model & isregular and fix 6p € ©. If ¥, € W,
satisfies the continuity condition

(2.25) Wi (3 0)s(0) — Wie (3 0)s(O) | . — O,
asf — 6, then (2.6)is valid with c(6) given by (2.20).

ProoOF Since the regularity of? implies Hellinger differentiability avg,
Theorem 2.3 of Schick (2001) may be applied and yields (2.6). The continuity
of c(-) is implied by (2.25) and the regularity . [

REMARK 2.5. At the end of his Section 1 on page 17, Schick (2001) refers
to (3.5) of the preprint Klaassen and Putter (2000). This is just (2.6) of the present
version of this paper.

3. Examplesfor asymptotic linearity of substitution estimators. Although
the results of Section 2 are stated within a parametric model, most of the
applications we have in mind (in particular efficiency as discussed in Section 5)
are in the context of semiparametric models where the interest is in a functional
of the infinite-dimensional parameter only. In the analysis of these applications it
suffices to study parametric submodels where the infinite-dimensional parameter
is fixed. Hence the results of Section 2 are also applicable in this context. In
order to illustrate the heredity of asymptotic linearity of substitution estimators
in the framework of semiparametric models, however, we need to introduce some
notation and conventions specific to semiparametric models.

Let P ={Py.c:60 € ®,G €4}, ® C RF open,§ C #, be our semiparametric
model (1.1). The modef might be parametric in the sense ti§ais Euclidean.
We may represent the elements®fby the square roots(d, G) = p/2(0, G) of
their densitiesp (0, G) with respect to a -finite dominating measurg if such a
dominating measure exists on the sample spaces).

By keepingG fixed and by varyingd over ® we get a parametric submodel
of &, denoted byP, = £1(G). Often P1(G) will be a regular parametric model
in the sense of Definition 2.2. ThHevector of score functions of’1(G) will be
denoted by then and in particular we will have

Bl  s50,6)=s50,6)+30-6)"10,G)s(0,G) +0(ld —0)).
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Let X1,..., X, be an i.i.d. sample fronPy ¢ € # and letk : » — R™ be an
unknown Euclidean parameter of the modeivith

(3.2) k(P ) =k(Py.c) =k(G), 0,0c®,Geg,

for somek : § — R™. Since interest is mainly in estimating a Banach parameter
v =v(G) € B as in (1.2), a typical choice ok with m = 1 would be
k(Py,g) = b*V(G) for someb* € B*, the dual of8B; note that such a parameter

is independent of in the sense of (3.2). L&}, =, (X1, ..., X,;) be an estimator

of k with k,, : X" — R™ an A"-Borel measurable function. As in Definition 2.1,
the estimatok, of k (Ps,g) = K (G) is calledlocally asymptotically linear at Py, ¢

if there exists a measurable functigr; -, G) € ¥,, such that

12 Pog,
(3.3) Vil —R(G) = = 3 ¥(Xi:6,.G)| 20
i1
holds for all sequencd®, } with {\/n(6,, — 6p)} bounded. The functiow (-; 6, G)
is called theinfluence function of «, at Py.c and ¢ (-; -, G) is called influence
function as well.
The results of Section 2 are illustrated in the following examples.

EXAMPLE 3.1 (Sample variance). Lé{1,..., X, be i.i.d. with distribution
function G(- — 6) on R. Here G is an unknown distribution function with
mean zero and finite fourth moment. Givéna good estimator of the variance
©(G)=[x2dG(x) of G is kg, =n~ 1Y (X; — 6)?, which is linear with
influence function

(3.4) Ve (x;6,G) = (x — )2 —k(G).

Sinced can be estimated by the sample méae= X,,, which is linear and hence
asymptotically linear, Theorem 2.2 yields the sample variance
~ ,_1¢ v 12
(3.5) Ko o ="5Sn= - > (X — Xn)
i=1

as a locally asymptotically linear estimator ©fG) in casef is unknown; note
that (2.15) holds in view of the law of large numbers. The sample variance
is adaptive in the sense that it has the same influence fungtioas in (3.4)
because (2.6) holds wiid(9) = 0, as may be verified easily.

Of course this estimator is the prototype of a substitution estimator, used
routinely to the extent that typically it is not recognized as a substitution estimator.

ExamMPLE 3.2 (Parametrized linkage models). Observe realization¥;of
i=1,...,n, that are i.i.d. copies oK. In many statistical models the random
variable X is linked to an error random variabéewith distribution functionG.
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This linkage is parametrized Bye ® c R* and may be described by a measurable
mapty : X5 — R with

t9(X) =e.
The prime example is the linear regression model with
to(x)=y—0"z, x=0,z) ,yeR,zeRF Ee =0,
yielding the error random variabkeand
to(x)=(y — sz)/a, 0=0w",0) ,x= (v, zDHT, veR, z€ R,

with Ee =0, E€? = E12(X) = 1, generating the standardized random variable
Another example is the accelerated failure time model with

Tz

th(x)=e? %y,  x=(@,z")",yel0,00), zeR,

yielding the standardized life time random variableRecall that the distribution
of X is denoted byPy . The Euclidean parameterésand the error distribution
function or the standardized life time distribution functio(P ¢) = G could be
the Banach parameter of interest. Giveran obvious estimator af would be the
empirical distribution function ofy(X;),i =1, ..., n.

We will study estimation of the one-dimensional parameter

€(Po.c) =#(G) = [ hdG,

where i is some known function with/ h?dG < oco. Taking the empirical
distribution function ofty (X;) as an estimator aff wheno is known, we obtain

N 1
Rom==> h(tg(Xi)
n°:
i=1
as an estimator of (Py ). This estimator is linear and hence locally asymptoti-
cally linear in the sense of (2.3) in the influence function

Ve (x;0,G) =h(tg(x)) —k(Po.g),  x€X.

If 6, is a locally asymptotically linear estimator 6f with influence function
Yo (-;0,G) € W as in (2.2), an application of Lemma 2.1 yields the validity of
Theorem 2.1 provided

Ego,6(|n(tag4 (X)) — h(1g(X))[?) >0 ase -0

holds andEqg,, g (tg,+: (X)) is differentiable ire at O with a derivative matrix(6o)
that is continuous iflg. Noting that«’(6) from (2.10) vanishes here, we see that the
local asymptotic linearity of the split-sample substitution estim@gterfrom (2.9)
holds with influence function

Y (x; 0, G) = h(to(x)) — k(Py,G) +c(O)Yo(x; 0, G).
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Note that the sample variance is a special case ith = x2, 7 (x) = x — 6 and
c(®)=0

In Section 6 we shall consider the most important special case of this example,
the linear regression model, in more detail in the context of efficient estimation
of (functionals of the) error distribution. Here we consider the linear regression
model with standardized errors. Substitution of, for example, the least squares
estimators would lead to the empirical distribution of the standardized residuals
as a natural estimator ¢of. See, for example, Koul (1992, 2002) or Loynes (1980)
for early studies of the empirical distribution function of regression residuals.
With «(P) = k(G) = [hdG = Eh(e) for appropriate functiong::R — R,
Theorems 2.1 and 2.2 hold with

wK<x;0,G>=h(%_ﬁZ)—/hda

and
1 / / / T
c(h) = ——(Eh (), EW(e)EZ, Ech (e)) .
o

For h(e) = €3 we obtain an estimator of the skewness of the error distribution,
whose asymptotic normality has been studied by Pierce (1982) under normality
(see also Remark 2.4).

ExamMpLE 3.3 (Distribution function in two-sample location model)Xy, ...,
X, are i.i.d. copies ofX = (Y, Z), whereY andZ — 6 are i.i.d. with densityg,
[y?g(y)dy < oo. The Banach parameter of interest is the distribution function
G() = [ . g(y)dy. Given the shift parametér, it can be estimated by the linear
estimator

n

o 1
(3.6) Gon(y)= o D (yi<y + Lizi—o<y): y€R.
i=1

Sinced, = Z,, — Y, is a linear estimator of, the substitution estlmatc@ .0

is locally asymptotically linear by Theorem 2.2. A structure similar to the one in
Example 3.2 may be described by the mapX — R? with 75 (x) = (v,z —0) T,

v,z €eR.

In fact, 6 can be estimated adaptively in Example 3.3, that is, efficiently
within this semiparametric model; see van Eeden (1970) for an early construction
valid for the class of strongly unimodal densitigsand Beran (1974) and Stone
(1975) for the most general situation. If we apply such an asymptotically efficient
estimatord,, then the resulting estlmat«ﬂ ,(-) is asymptotically efficient too,
since (3.6) is efficient giveA. This heredltary property of asymptotic efficiency
for substitution estimators follows from the heredity for linearity, which will be
shown in Section 5 and is the main result of the present paper. As preparation we
study efficient influence functions in the next section.
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4. Efficient influence functions. Let # be a Hilbert space. A one-dimen-
sional subseth, € #:—1 < n < 1} of # is called apath if the mapn — h,
is continuously Fréchet differentiable with nonvanishing derivative, implying, for
example, the existence of &re #, h # 0, with

(4.1) hy=ho+nh+o()  inH

asn — 0.

Let & be a statistical model, that is, a collection of probability distributions, and
fix P € . AsubsetPp = {P,: -1 < n < 1} of £ is called a path througR if Py
equalsP and#p is a regular one-dimensional parametric submodel in the sense of
Definition 2.2. This implies the existence of a so-called tangenL>(P), ¢t # 0,
such that withs,, = ,/d P, /d . for some dominating -finite measurg:, and with
s = S0,

4.2 Sy =25+ %nts +0(n)

holds inL>(w). Note that, in contrast to the definition in Bickel, Klaassen, Ritov
and Wellner (1993), the dominating measprenay depend on the particular path
and that hence we do not have to assume that our m@dsldominated. Taking
squares in (4.2) and integrating with respecttave obtain/ ¢ d P = 0, which we
denote by € LY(P).

Let Cp be a collection of pathp in & through P. By the tangent sef°
we denote the set of all tangentgenerated by paths i@p. The closed linear
span [£°] of £0 is called the tangent space if# at P generated by the
collectionCp of pathsp. This tangent space is denoted Byc LS(P).

Let 8 be a Banach space with norfin ||g and consider a map from »
to 8. We shall callv: 2 — B pathwise differentiable aP with respect toCp
if there exists a continuous, linear map » — B such that for every path
Pp ={P,:|n| <1} in Cp passing througtP with tangentr,

(4.3) v(Py) —v(P) —nv@®)]lg = o).

Following Section 2 of van der Vaart (1991) and Section 5.2 of Bickel, Klaassen,
Ritov and Wellner (1993), we define the efficient influence functigasof v as
follows: for b* in the dual space™* of 8 (the space of all bounded linear functions
from B toR), the maph* o v: $ — Ris linear and bounded. Hence, by the Riesz
representation theorem there exists a unique elemert % such that for every

te P,

b*o V(1) = (Vpx, t) = EDpst.

Here (-, -) denotes the inner product ihg(P) and E denotes expectation with
respect taP. Note that this definition of efficient influence function dependsfon
and hence on the choice 6.

From now on we takeP to be a semiparametric modét = {Py c:0 € O,
G € g}, asin (1.1), with® c R* open, andg C #, where# is a Hilbert space.
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Fix G € § and letCg be a collection of paths ig c # throughG. By § we
denote the tangent space gnat G generated byCg, that is, the closed linear
span of tangents af along a path inCs. We focus on estimation of Banach-
valued parameters of the form=v(Py ) = V(G), wherev: § — B is pathwise
differentiable; that is, there exists a bounded linear opefiatgr— B such that
for all paths{G,, : || < 1} € Cc with tangentG [cf. (4.1)],

(4.4) 19(Gy) = D(G) — v (G) |l g = o).

Again, for everyb* € B*, the maph* o oF :6 — R is linear and continuous and
hence there exists a unlqugk € ¢ such that for everyg; € §

(4.5) o V(G) = (s, G) .

The elements - for b* € B8* are called the gradients &f they are similar to the
efficient influence functions aof, described earlier.

If the parametric submodeP; = £1(G) of our semiparametric modeP is
regular in the sense of Definition 2.2, its tangent s_pﬂ'@a's defined to be the
closed linear spafi;] of thek-vector of score functiong = [1(0, G). This agrees
with the definition of tangent spaces in arbitrary statistical models [cf. (4.2)]
by several choices of a collectia®y of paths, for example®®s = {{Po1ye;.6 €
P1(G):—1l<n<1}:i=1,..., k}withe;,i =1,...,k, unit vectors.

By keeping# fixed and by varyingG we get another submodét, = ,(9).
Given a collectionCg of paths within(6), the tangent space, at Py is
defined as the closed linear spanljg\(Pg,G) of all functionst € Lg(Pg,G) such
that

(4.6) (0, Gy) =5(0,G) + 3nTs(0, G) + 0 (),

in La(w), for some path{G, :|n| < 1} € Cs. Note again that?> depends on
the choice ofCs. We assume thafs is chosen in such a way that for every
path {P, = Pyinc.G,:Inl < 1} with {G,:[n| < 1} € Cg, there exists a tangent

p € LY(Py, ) satisfying
(4.7) s(0+n¢, Gy) =50, G) + 3nps (@, G) + o(n),

in Lo(u). The tangent spacg at Py ¢ is the closed linear span EQ(PQ c) of all

these tangents LZ(Pg ). Typically, we have? = [i1] + £
In fact, we will assume that the tangents from (4.7) have a special but frequently
occurring structure, namely that of Hellinger differentiability.

DEFINITION 4.1. For everyd € ® and G € §, the model# is Hellinger
differentiable at Py ¢ if there exists a bounded linear operaiolR* x § —
Lg(Pg,G). suqh that for every € R and every pathG,:|n| < 1} € Cg with
tangentG € 4,

(4.8) 5O +nt,Gy) =56,6G) +3n(l, G)s6, G) + o),
in La(w).
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The operato¥ is called the score operator. It may be expressed in terms of the
score functioriy for 6 in £1(G) and the so-called score operai@for G in $2(9)
as follows. Forz € RF andG € §, we have
(4.9) i(¢,6)=1I1¢ +12(G).
Note that (4.8) and (4.9) reduce to (3.1) in the case wh6tg [n| < 1} = {G} is
a singleton, and to (4.6) in cage=0.
In the following proposition we collect some fundamental results on the efficient
influence functions for estimatirggin # and for estimating (Py.¢) = v(G), both
in the submodelP, () and in the full modelP. The efficient influence function
for estimating in #1(G) is not of immediate interest for our purposes and hence

is not discussed here. Define the efficient score fundtidor estimating in the
full model » by

(4.10) I§ =i1 — T([1| ).
The efficient information matrix aPy ¢ for estimatingd in & is defined as
(4.11) 1,(0) = E(15T).

Define the information operator d$/>: 4 — § and let(/] )"« be a solution

he§ofi)ih=a,forae§. Let N(A) andR(A) denote the null space and the
range of an operatot.

PrROPOSITION4.1. Consider a map v: P — B given by v(Py ) = v(G).
Fix 6, G and Cg, let P1(4) be a regular parametric model as in Definition 2.2,
and let  be Hellinger differentiable asin Definition 4.1.1f:

(i) 6%isaclosed and linear subspace of #, thatis, § = ¢ = §°,
(i) v:9 — B ispathwise differentiable at G, asin (4.4),
(iii) I.(0) from(4.11)is nonsingular,

then
A. Theefficient influence function at Py ¢ for estimating 6 in & is given by
(4.12) Ih=1-YO)L.
B. Themap v: $2(0) — B ispathwise differentiable at Py ¢ if and only if
(4.13) bpr€R(I))  Vb*eB*.
The efficient influence functions of v are related to the gradients of v by
(4.14) Do =13 Dpe,  Dpr € Po, e € G
If also
(4.15) by € R(JI)  for all b* € B*,

then the unique solution of (4.14)is given by
(4.16) Vpx = lz(l;—lz)_ﬁh*
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C. Themapv: P — B ispathwise differentiableat Py ¢ if and only if (4.13)
holds. The efficient influence functions of v are related to the gradients of v by

0= (i1, U)o,
(4.17) . )
Dy =13 V.
If also v+ € R(I ), for all b* € B8*, then the unique solution of (4.17)isgiven
by
(4.18) D = la(ly 1) "V — (l2(i3 1) "V, In) g 175

Parts B and C of this proposition are due to van der Vaart (1991); see his
Theorem 3.1, formula (3.10) and Corollary 6.2. The gist of formula (4.18) is
already contained in Begun, Hall, Huang and Wellner (1983), (4.4) and (3.1).
Proofs of the proposition may be found also in Bickel, Klaassen, Ritov and Wellner
(1993); see their Corollary 3.4.1, Theorem 5.4.1 and Corollaries 5.4.2 and 5.5.2.

Note however, that they need the conditigRs= R(i2) and # = R(i). This is
caused by their definition of tangent spaees the closed linear spanlrg(Pg,G)
of all possible tangentp € LY(Py.¢) that may be obtained visome path
{P,:Inl <1, P, € £}. Inany particular model, the goal is construction of efficient
estimators. The convolution theorem implies that if efficient estimators exist, they
are asymptotically linear in the efficient influence functions; see Theorem 2.1 of
van der Vaart (1991) and Theorems 3.3.2, 5.2.1 and 5.2.2 of Bickel, Klaassen,
Ritov and Wellner (1993). In principle, the variances of the efficient influence
functions corresponding to Bickel, Klaassen, Ritov and Wellner (1993) equal at
least those corresponding to van der Vaart (1991), and should they differ, efficient
estimators in the sense of van der Vaart (1991) do not exist. However, in practice
estimators can be constructed that are efficient in this sense for appropriate choices
of ¢, which implies that they have to be efficient in the sense of Bickel, Klaassen,
Ritov and Wellner (1993) as well. Of course, the advantage of the present approach
is that the extra conditions mentioned above need not be verified now.

If also N(l2) = {0} and R(l») is closed, then] i» is one-to-one and onto,
so (5 )~ may be replaced byi,iz)~!. In this case all parameters(P)
expressible as pathwise differentiable functionsGoére pathwise differentiable;
see Corollary 3.3 of van der Vaart (1991).

5. Efficient estimation of Banach parameters. Let X1,..., X, be an i.i.d.
sample fromPy ¢ € #, a semiparametric model as in (1.1). In this section
we shall construct an efficient estimator ofPy ) = V(G) € B based on
X1,..., X, within the model %, using the constructions and the heredity of
asymptotic linearity as studied in Section 2. As described in Section 1, we
start with an efficient estimator of(G) within the submodel$,(6), where
0 is fixed and known ands varies in §. An estimator ofv(Py ) = V(G)
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within #2(0) is of course allowed to depend @n Let iy , be such a submodel
estimator. In view of part B of Proposition 4.1 this estimator is efficient within
the submodel?,(6) with respect to the chosen collecti@y of paths if it is
asymptotically linear in the efficient influence function given in (4.16) with the
score operatdp = i»(0, G): g — La(Py ) at(6, G) depending o andG. Note
that/» depends o®¢ sinced does. We shall need this asymptotic linearity locally
uniformly in 6, in the same way as in (3.3).

DEFINITION 5.1. Fix a subsetB; of 8%, the dual space of the Banach
spaceB. The submodel estimataly , is called B;-weakly locally submodel
efficient at Py, ¢ if for every sequencé, } with {/n(6, — o)} bounded, and every
b* € B,

®D Vb (34, = D(G)) — & Y (X120, G 5| 570
i

holds with

(5-2) ¥ (x:6. G b*) = [12(6, G)(I] (6. G0, G)) D] ().

The main result of our paper states that, under regularity conditioms,=if
th(X1, ..., X,) is an efficient estimator of in » and if by ,, = un (X1, ..., Xn; 6)
is a weakly locally submodel efficient estimatongiPy ) = v(G) atfp, then the
substitution estimatcfrén,n is an efficient estimator af atfp in the semiparametric
model#; see the discussion in Section 4 after Proposition 414, |fis sufficiently
smooth ing, this substitution estimator itself may be proved to be efficient; see
Theorem 5.2 below. Without this extra condition we have to resort to a split-sample
version of the substitution estimator, as in Section 2. Fix a sequence of integers
{An}52 1 such that (2.7) holds, and defifig; andé,» as in (2.8). Analogously to
(2.8) and (2.9), write

1 ~(2
(5.3) vé){ —M)L,I(Xl,...,X)Ln;G), é; . —Mn—k,l(XAn+l,~~~aXn§9)
and
N An 5D n= s
(54) Vn = 9112 An + n enl n— )Ln

To prove efficiency of thIS estimator @ € ® we will need the following
smoothness condition, which is similar to (2.6). For evérg 4§ and every
sequencgd, } with {\/n(6, — 6p)} bounded,

1 n
Jn > Yn(Xi: 6. G)
(5.5) =t

1 2 P,
- 3" (Xi: 60, G) — e (00) /1 (6, — 60)| = 0
i=1



EFFICIENCY FOR BANACH PARAMETERS 327

and

(5.6) cn () — ¢ (60)

hold with

(5.7) Yi(x;0,G) =120, G)(i3 6, G)i2(6, G)) h(x)
and

(5.8) cn(0) = —Eg (Y1 (X1: 0, G)if (0)(X1)).
Furthermore, we write [cf. (5.2)]

(5.9) c(®, G; b*) = —Ep(¥(X1; 0, G; b)I] ()(X)).

Lemmas 2.1 and 2.2 might be useful in checking conditions (5.5) and (5.6). Our
main result is efficiency of, as follows.

THEOREMS5.1. Fix e ® and B; C 8*. Suppose that (5.5), (5.6)and the
conditions of Proposition 4.1 are satisfied in model (1.1)for appropriately chosen
collections C¢ of paths. Suppose that the submode! estimator by, is B;-weakly
locally submodel efficient as in (5.1) and that (4.15) holds at Py ¢. If efficient
estimation of 6 is possible within & and if én is an efficient estimator of 6 in &,
then b, defined by (2.7), (2.8), (5.3pnd (5.4)isa B;-weakly efficient estimator of
v from (1.2) within the full model & at Py, ¢; that is, for every sequence {6, } with
{/n(6, — o)} bounded and every b* € B} [cf. (2.10), (4.18), (5.2and (5.9)],

Vn|b* (b, — v(P,.G))
(5.10)

1 “ * *y 7—1 * PgO’G
- ;Z[W(Xi;Gn,G;b )+ O, G; ) ~(02)11(0n)(X)]| — 0.
i=1

PrROOF. For everyb* € B3, Theorem 2.1 may be applied and the local
asymptotic linearity in (5.10) may be seen to yield efficiency via Proposition 4.1.C,
(5.2) and (5.9). O

A closer look at the proofs of Theorems 5.1 and 2.1 witt®#) = O reveals that
if the orthogonality

(5.11) [11(80)] L $2(6o)

holds, therc(6o, G; b*) and the last term at the left-hand sides of (2.12) and (2.14)
vanish, as does the second term at the right-hand side of (4.18). Hence it suffices
for 6, to be,/n-consistent afip and we do not need (5.6) and (2.7), but instead

L A . A
(5.12) 0 < liminf =2 <limsup== < 1.
n—oo n n—oco N

We formulate this special case as a corollary.
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COROLLARY 5.1 (Adaptive case). Fix 6p € ® and 85 C B8*. Suppose that
the conditions of Proposition 4.1 are satisfied in model (1.1) for appropriately
chosen collections Cg of paths and that for all sequences {6,,} with {\/n(6,, — 60)}
bounded,

513 Xi;0,,G Xi; 00, G
(5.13) ‘IZW( )IZW( 0.6)|

Suppose furthermore that 1y ,, is B;-weakly locally submode! efficient asin (5.1)
and that (4.15) holds at Py, . If 0, is a J/n-consistent estimator at 6 and if
the orthogonality (5.11) holds, then b, defined by (5.4) and (5.12) is a weakly
efficient estimator of v from (1.2) within the full model & at Py, ¢; that is, for
every sequence {6,,} with {\/n(6, — 60)} bounded and every b* € B,
% 0.

(5.14) Vu|b* (D, —v(Py,.G)) — ~ Zl[/(xl, 6, G; b*)

i=1

REMARK 5.1. Our main result, Theorem 5.1, states that, assuming sufficient
regularity of a semiparametric modét, two conditions, namely efficiency of
an estimatord, of the finite-dimensional parameter in the full model and
submodel efficiency of an estimaty,, of a functional of the infinite-dimensional
parameterv in the submodelP;(0) with 6 flxed are sufficient to guarantee
efficiency of the combined estimatdy, = Vé,,,n . The result derives from
general expressions for the influence functions of substitution estimators of
Section 2. These expressions can be used to pinpoint what is needed in terms of
efficiency or what is allowed in terms of deviations from efficiency of the separate
estimatorsd, and Vg, to achieve efficiency of the substitution estimaigr.
Here we will derive conditions heuristically. L&}, and 05, be asymptotically
linear estimators with influence functions and vy, respectlvely Without loss
of generallty, they may be written as = I1 + A1 andyp = 122 I> + Ao, with
A1 L [i1,l2] and Ay L Io; see Proposition 3.3.1 of Bickel, Klaassen, Ritov and
Wellner (1993). Then by Theorem 2.1 and (2.20) and (2.10) the influence function
of the substitution estimator is given by

Y2+ ey = Iy l2 + Ao — (E((Uzz2 + AT )) (1 + A1)
= I3lo — Iy Il + A — Iy I A1 — (E(A2l])) (L + Av),
which equals the efficient influence functién= ;' — I, I»1/1 if and only if
(5.15) A2 = Iy I1A1 + (E(A2I])) (1 + A1)

holds. Ifd, is efficient, that is, ifA1 = 0, (5.15) shows that we neetb = b'ly; so
deviations from efficiency ofy , are permitted, provided they are|[ifi], that is,
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provided these deviations are matrix multiplesépf— 6. An example of this
phenomenon is given in (6.26) in Example 6.404f, is efficient, that is, ifAz
vanishes, (5.15) reduces 19_21121A1 = 0. This means that in the adaptive case
(11 = 0), 6, need not be efficient (see Corollary 5.1) and that in the nonadaptive
cased, has to be efficient in order to obtain efficiency of. Of course, also
combinations of estimators are possible where neither of them is efficient, but in
this case only a lucky shot might yield an efficient combined estimgtor

REMARK 5.2. The first occurrences of the terminology “adaptive estimators”
are in Beran (1974) and Stone (1975). In Pfanzagl and Wefelmeyer [(1982),
pages 14 and 15], it is argued that this terminology is rather unfortunate since
“adaptiveness” is a property of the model, namely (5.11) holds, and not of the
estimators, which are just semiparametrically efficient. van Eeden (1970), who
was the first to construct partially adaptive estimators of location in the one- and
two-sample problem, calls her estimators efficiency-robust. Since the terminology
of adaptiveness is quite common nowadays, we will stick to it, although Pfanzag|
and Wefelmeyer (1982) are right, and we will cajl of Corollary 5.1 an adaptive
estimator of the Banach paramet&®).

REMARK 5.3. Inthe adaptive situation of the corollary the direct substitution
estimatorﬁén , can also be shown to be efficient in the sense of (5.18})tiéikes its
values in a grid ofR* with meshwidth of the orde® (n=1/2). This is the classical

discretization technique of Le Cam (1956), which has also been used in our proof
of Theorem 2.2.

The next theorem states that the direct substitution estinﬁgﬂtgris efficient in
the general semiparametric modelp4f, is sufficiently smooth ird.

THEOREM5.2. Under the conditions of Theorem 5.1, let 4, be an efficient es-
timator of 6; in the adaptive situation of (5.11)it sufficesthat 6,, be /n-consistent.
Fix b* € 8. If for all § >0,e >0and ¢ > 0, there exist ¢ > 0 and ng € N such
that for all n > ng,

616 Poc( s b (en 0, ze) <8
Vnl0—6o|<c,\/n|0—0|<¢

holds, then the substitution estimator b*f)é,,,n is an efficient estimator of b*v with v
from (1.2) within the full model & at Py, ¢; that is, it satisfies (5.10).

PrROOF Note that (5.16) is a translation of (2.15) and apply Theorem Z.2.

REMARK 5.4. In the special case whegemay be identified with a subset of
Euclidean space, Theorem 5.1, Corollary 5.1 and Theorem 5.2 also apply. Here
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we give a heuristic argument why these results might be true in the Euclidean and
hence the general case. l@tc R and# c R! and let

P ={Py,:0c0O,ne i}

be a regulaKk + 1)-dimensional parametric moplel in the sense of Definition 2.2.
We have identified; with # and hence we havg = R/, provided the clas€ of
allowed paths is large enough. Define

. 9 . 9
11(9,77):%'0919(96;9,77) and 12(9,77)=%|09p(m9,n)

as the score functions férandn, respectively, and the Fisher information matrix
by

10 = (111(9, n) 11200, 77))
’ D10, n) I20,n)

with 7;;(0, 1) = El',-l'jT(e, n). Regularity of 2 implies thatl>2(6, n) and I (6, n)
are nonsingular. The efficient score function for estimafing given by

110, m) =116, m) — I2l55 126, m),
and with
—_—
1.(0,n)=El{l] 6,n),
the efficient influence function for estimatifigs given by (cf. Proposition 4.1.A)

10, n) = 1.6, )36, n).

We are interested in estimation of9, n) = v(n) Wlthln P. Let 7R — R™
be differentiable with(m x I) partial derivative matrixi. Now v(n)l22 I2(6, 1)
is the efficient influence function for estimatingn) in the submodel?,(6).
This coincides with formula (4.16) of Proposition 4.1.B. Note that the operator
I:R! — LY(Py ) is represented by the coluntsvector via

(5.17) Io(a) =a'ly, acR,

that the operato(izTig)— ‘R — R! is represented by the nonsinguldrx [)-
matrix I, (6, 1), and that

(5.18) Spe=v (b eR!,  b*eR™.
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According to formula (4.18) of Proposition 4.1.C the efficient influence fundtion
for estimatingv(n) in the full model# is given by

(5.19) 1,0, m) = v L5 (1200, ) — Ial1 (6, n)).

Fix 6o and suppose thdl , is a (weakly) locally submodel efficient estimator
of v(n) within $»(6p), that is,

(5.20) | Dg, = v — = Z () L35 12(0n, 1) (X )

i=1

Substituting an estimatd, of @ for 6, with influence functiony, underggy and
using Taylor's expansion and the weak law of large numbers, we can formally
argue as follows:

V(b , —v)

1
~ T Z 1)(77)122 ZZ(Gn’ m(X;)

i=1

1
~ 7 Z[u(n)lzz 60, (X0) + 500) - Lo, 1Y (X1) By — 90)}
i=1

v Zv(n)lzz [(60, m)(X:)

1 2 8 —1; A
+ - Z V) 55135 1200, 1) (Xi) V/n(6, — 60)
v ) Zv(n)lzg [2(60. n) (X))

0 2 07 1
O 9 22 \/’ =

By partial integration we have, under regularity conditions,
d 4.
EQO _122 [2(60, n)(X1)
a0
= [ (551222060, ) p(G0. ) dn
4 oy 9
ﬁflzzllz(éo, n) p(6o, n) du—/lzzllz(éo, n)ﬁp(%, mdu

=— / Iz_zll.zl.irp(eo, ndu= —12_21121(907 m-
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This means that the influence functionﬁg’f , equals

(5.21) D) Izt (E2(00, 1) — 12160, M),

which corresponds th, (6o, n) from (5.19) ify = [y, that is, ifd, is efficient in.

The regularity of and in particular continuity and nonsingularity Bb(6, )
imply (2.25), and hence Lemma 2.3 yields (5.5). Consequently, by Theorem 5.1
a split-sample modification af;  is an efficient estimator of, if (5.20) is valid.
By arguments as in Gong an& Samaniego (1981) and under their extra regularity
conditions it may be verified that the submodel maximum likelihood estindggpr
given ¢ satisfies both (5.20) and (5.16). Then Theorem 5.2 showsithatis

efficient if 6, is. Gong and Samaniego (1981) prove this directly and theng:aJI
a pseudo maximum likelihood estimator.

6. Examples. In this section we shall present a number of examples that
illustrate our main results, namely Theorem 5.1, Corollary 5.1 and Theorem 5.2.
The first example expands on Example 3.1. The next examples are important
semiparametric test-cases well known from textbooks; our results should in any
case be applicable for those examples. Example 6.2 treats linear regression, which
was used in Section 1 for motivation, for the particular case of a symmetric
error distribution. For a possibly asymmetric error distribution we study the
location problem in Example 6.4. These statistical models are parametrized
linkage models, which are discussed in Example 6.3. A recurring theme in these
examples is the idea that estimators based on residuals are actually estimators
based on the unobservable errors, with the unknown parameter needed to construct
these errors replaced by suitable estimators; see also Example 3.2. Example 6.5
considers the bootstrap, and we conclude in Example 6.6 with another well-known
semiparametric model: the Cox proportional hazards model.

ExAmMPLE 6.1 (Efficiency of sample variance). In Example 3.1 we have
shown the local asymptotic linearity of the sample variance in the class of all
distributions with finite fourth moment At any poi®tof this model® the tangent
space is maximal and equal® = L9 5(P), provided the collectior®p of paths
in # is chosen sufficiently large; see Example 3.2.1 of Bickel, Klaassen, Ritov
and Wellner (1993) for an explicit construction, which is also valid in our more
general framework. Consequently, any locally asymptotically linear estimator of
the variance is efficient; see Theorem 3.3.1 of Bickel, Klaassen, Ritov and Wellner
(1993). In particular, the sample variance is efficient. Of course, this conclusion
can also be drawn from Theorem 5.2, simcé Y-7_, (X; — 6)? is efficient within
P»(9) and X,, within & for the same reasons of linearity and maximal tangent
spaces. This line of argument may be used to show efficiency of all sample central
moments and, more generally still, for all functignsvith n =1 Y"7_; h(X; — X,,)
estimatingv(G) = [hdG within an appropriately broad class of distribution
functionsG.
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EXAMPLE 6.2 (Symmetric error distribution in linear regression). Suppose

we observe realizations df; = (Y;, Z;), i = 1, ...,n, which are i.i.d. copies of
X = (Y, Z). The randonk-vectorZ and the random variable are related by
(6.1) Y=0"Z+e,

wheree is independent of and symmetrically distributed about 0 with unknown
distribution functionG and densityg with respect to Lebesgue measureFor
deriving lower bounds we assume tifahas known distributio and thatE ZZ T

is nonsingular. Note that the unknown Euclidean paranteteR* is identifiable
via

(6.2) 0=(EZZ")1E(Zm(Y|2)),

where m(Y|Z) denotes the median of the conditional symmetric distribution
of Y given Z. We are interested in estimating the symmetric error distribution
v(Py.c) =v(G)=G.

The density ofX with respect to. x F is given by

(6.3) p(x:0,G)=p(y,2,0,G)=g(y — 0 2).

We assume thag has finite Fisher informatioh(G) = [(g'/g)?g d for location,
and hence we have

/

(6.4) i10)(X) = I(X;0,G) :—Z%(Y—@TZ) - —Zgg(e)
and
(6.5) = {G €Loo(h):g>0, fgdk —1, g(—)=g(), I(G) < oo}.

We embed§ into # = Ly(1) by taking square roots of densities. The Fisher
information 7 (-) for location is lower semicontinuous gh. Therefore, we will
restrict C¢ to those paths on whicli(-) is continuous. Such paths may be
constructed in the same way as at the end of Example 3.2.1 of Bickel, Klaassen,
Ritov and Wellner (1993). Then we have, embeddjnigto LS(G),

66) 60=(h e LYG):h(—) =h(-),h € LYG)},
' G={heLd(G): h(—)=h()).

Note thati>() is the embedding of. into L3(Ps, ) given by
(6.7) hi>h(Y —0'2),

whence2(0)(§) = $». The finiteness and positivity of the Fisher informa-
tion 1(G), the nonsingularity o ZZ T, the choice ofCs, the L,-continuity the-
orem for translations and (6.7) ensure regularity and Hellinger differentiability as
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described in Definitions 2.2 and 4.1, respectively. Furthermore, the symmetry of
h € g and antisymmetry afi(0) imply

(6.8) [1(0) L I2(0)h.

Thus we are in an adaptive situation here.

The mapv:¢ — B, the cadlag functions ofi—oco, co] with sup-norm, is
pathwise differentiable af; € ¢ with derivative [cf. Example 5.3.3, page 193,
of Bickel, Klaassen, Ritov and Wellner (1993)]

(6.9) ()= / (3 (L0 () + Lo (=) — G(D)h(x) dG (x).

Note that (6.6), (6.8) and (6.9) imply that the conditions of Proposition 4.1 are
satisfied. Furthermore, thix-continuity theorem for translations implies (2.25).
Consequently, Lemma 2.3 shows the validity of (5.13). Finally, note that (4.15)
holds sinceR (i5 (0)[2()) = § andv,+ € § by definition.

With 6 known, an efficient estimator of; is the symmetrized empirical
distribution function okq, ..., €,, given by

(6.10) Gon(x) = 2(Gon(x) + Gou(x)),
where
n n
(6.11) Go.n(x) :n_lzl[eisx] =n_121[)/i_9'l'zi§x]
i=1 i=1
and
(6.12) Gon(x)=1—1lim Gg_,(—y)
Y\

[cf. Example 5.3.3, pages 193-195 of Bickel, Klaassen, Ritov and Wellner (1993)].
We note thatGy , is weakly locally submodel efficient, since it is exactly linear

in the efficient influence function; see just above (5.3.10), page 194 of Bickel,
Klaassen, Ritov and Wellner (1993). Finally, by a method of Scholz (1971) we
know that the maximum likelihood estimator @éfcorresponding to the logistic
density exists under any density within our model. Furthermore, this pseudo
maximum likelihood estimator ig/n-consistent [cf. Example 7.8.2, page 401, of
Bickel, Klaassen, Ritov and Wellner (1993)]. In fact, efficient and hence adaptive
estimators of the regression parametdrave been constructed, for example, by
Dionne (1981), Bickel (1982) and Koul and Susarla (1983).

Consequently, by Corollary 5.1 the split-sample estimator defined by (5.4),
(6.10)—(6.12) and (5.12) is efficient. Note that this efficient estimator does not use
any knowledge about the distribution #fand hence is also adaptive with respect
to the distribution ofZ.

Clearly, in practice one would not apply sample splitting, but Gge itself,
which is the symmetrized empirical distribution function based on the residuals
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& =Y, — 017 This yields an efficient estimator af if 6, is discretized as
described in Remark 5.3. Without dlscretlzathg is weakly efficient in the
sense of Theorem 5.2 for mdst e 8*, including the evaluatlon maps. To see this

it suffices to verify (5.16) for empirical distributions of regression residuals, as is
done in the following lemma.

LEMMA 6.1. In the regression model (6.1) let the error have bounded
density g (not necessarily symmetric) and let E|Z| befinite. Let b* € 8* be such
that there exists a finite signed measure . with b*(b) = [ b(x) du(x) and ||b*| =
|| ([—o0, 00]) < oo. For such b*, the smoothness condition (5.16) holds for

(6.13) Dgn = — Zl[y, 0T Zi,00) (*)-
i=1

PROOF Letd* be given and lel: be the corresponding signed measure with
Ib*|| = C. Let the densityg of ¢; be bounded byB and assumé|Z| = A. For
i € RF and, — oo, A,/+/n — 0, Markov’s inequality yields (note? — 1 < 2z
for 0 < z sufficiently small)

(f le[\el+nTZ —x|<2¢|2: 11 Al (x) >8>
1 n
= Eexp<k”{ﬁ2/l[l€i+ﬁ-r2i—x§2§|Z,-/ﬁ]d|ﬂ|(x) —e})
i=1

= exp{n Iog(l + E<exp<%
(6.14) x f1[|e1+ﬁTzl—x|52¢|zl|/ﬁ]d|ﬂ|(x)> - 1))
- ekn}

<exp{2x i [ P (|€1+77Tzl xl< ‘i'/ﬁl')dmux)—exn}

<exp{(BABCt¢ — e)A,} asn — oo.
SinceY —0TZ <x <Y —0'Zimplies|Y —0"Z —x| < |60 —6||Z|, we obtain

sup
Jnl0—to|<c,/nlo—0|<¢

/[Zl{Y —07Zi=x] ™~ 1[Y,-—5TZ,~5x])d|M|(X)

(6.15)
< sup fle[le,+nTZ, —x|=t1Zil/ a1 A1 ().
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Consider the grid, with meshwidth 2kn)~1/2¢ with k the dimension of. By
(6.15) and (6.14) the probability in (5.16) may be bounded by

PQO’G< Sup f Zln 4T Z—x1=2¢1 231/ A1) >8)
Jalilzereiege ) g
(6.16) < > exp{(8ABC — &)A,}

Valiil<e4¢.1€9¢

k
< <§ + 1) expl(BABCE — &)},
which convergesto 0 if 8BC¢ < ¢ holds. [
We have proved the following result.

PROPOSITION 6.1. Consider the linear regression model (6.1) with the
covariate vector Z and the error e independent, both with unknown distributions.
The matrix EZZ" is nonsingular and the error distribution G is assumed to
be symmetric about zero with finite Fisher information for location. There exist
J/n-consistent and even adaptive estimators of 6. For any such estimator, any
estimator of G defined by (5.4), (6.10H6.12)and (5.12)is weakly efficient in the
sense of (5.14),that is, asymptotically linear in the efficient influence function
given in (6.9). Furthermore, the direct substitution estimator (A}én’n is weakly
efficient for all b* € 8* asin Lemma 6.1.

REMARK 6.1. Note that witht = 1 andZ degenerate at 1, this proposition
yields an efficient estimator of the error distribution in the classical symmetric
location problem. The ordinary location problem will be treated in Example 6.4.

REMARK 6.2. The idea of using the residuals to assess the error distribution
is quite standard and has been around for a long time, for instance in testing for
normality.

REMARK 6.3. Interest might be in the standardized symmetric error distribu-
tion, that is, inG standardized to have unit variance, as in Example 3.2. This leads
to a nonadaptive situation in which approaches as in the next example should lead
to efficient estimators.

EXAMPLE 6.3 (Parametrized linkage models). Asin Example 3.2 we consider
the statistical model of i.i.d. copies of a random variablg that is linked to an
error variables with distribution functionG via

tg(X) =€,
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with 75: X% — R measurable and € ® c R¥. Let 6 be given. The empirical

distribution function of#(X;), i = 1,...,n, is (asymptotically) linear in the
influence function
(617) X = 1[t9(x)§-] — G()

This influence function and hence the empirical distribution function itself are
efficient in estimating the distribution functias if G and§ are unrestricted.

Typically, however,G is constrained to be symmetric (as in the preceding
example) or to have, for example, mean 0. In general, if the constraints can be
described by

/de:O

for some fixed measurable function:R — R/, then the efficient influence
function in estimatingG may be obtained from (6.17) by projection [cf.,
e.g., (6.2.6) of Bickel, Klaassen, Ritov and Wellner (1993)] and equals

(6.18) x> Lpyy<] — GO — E(Le<qy T @)EY @)y T ()} Ly (ta(x)).

Under appropriate regularity conditions,

A 12
Gon(t) = " Z Ly xp<n
i=1

1 n
(6.19) - (;Zl[mx,»)sz])/T(fe(Xi)))
i=1

n -1 n
X {} Zy(fa(xi)))/T(le(Xi))} 1 > v((X)
iz o
is an efficient estimator af (1), t € R, within this restricted clas§ of constrained
distribution functions, giver®. Subsequently, a weakly efficient estimator®f
within the semiparametric model with unknown may be obtained via the
theorems of Section 5.
We will present the details of this approach for the particular case-6fl,
Z =1 a.s., that s, for the location model, in the next example.

EXAMPLE 6.4 (Error distribution in location problem). LeXq,..., X, be
i.i.d. random variables, which are copies of a random variablgith unknown
distribution P € # and distribution functionF on R. It is well known that
the empirical distribution functior?, is efficient in estimatingF, when F is
completely unknown. Let us assume now that fiehave finite variance and
mear¥. Itis well known also that the sample me&p is efficient in estimating.
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With #(X) = X — 0 = ¢, the error distribution functior; € g, the class of all
distribution functions with mean zero, satisfies

Gt)=Ft+0), teR.

Given ﬁn and X, a natural estimator of the unknown error distribut@nwhich
has mean zero, would be

(6.20) Gn(t) = F,(t + X,), reR.

In fact, G, is an asymptotically efficient estimator of the error distribution
function G, as may be shown by computation of the efficient influence function
along the lines of Example 5.3.8 of Bickel, Klaassen, Ritov and Wellner (1993).
Let ¥ be a collection of bounded functions: R — R with bounded uniformly
continuous derivativg:’ and letv map4 into the Banach spa¢é® (V) of bounded
functions on¥ with the supremum norm such that

(6.21) v(Po,c)W) =0 (W) =CGW) = / Y () dG (1), vew.

Thus,G is identified viab (G) provided the clas¥ is rich enough. Indeed5,,
from (6.20) is efficient, that is,

A 10
ﬁ(Gn(W)_G(W)_;Zl(Xi)(W)) =op(l), vev,
i=1

holds with the efficient influence functidrequal to [cf. (6.18)]
)W) =y (x—0)— Ep, V(X —0) — Ep, c¥'(X —0)(x —0),
Yew.

If we apply the approach of Section 5, we need an efficient estimatar fufr

the case wheré is known. As explained via the parametrized linkage models of
Examples 3.2 and 6.3, the naive empirical distributionXpf—6,i=1,...,n,

is not efficient, but an explicit weighted empirical of the — 0,i =1,...,n, as
given in the following proposition, is asymptotically efficient.

(6.22)

PROPOSITIONG6.2 (Location known). Let X1, ..., X, bei.i.d. random vari-
ables with known mean 0 and distribution function G(- — 6), where G is unknown
with finite variance. The estimator

i 1, Xi—0)(X,—6)
(6.23) Gou(t) = ;g{l S2(0)

}1(oo,t](Xi —0), t eR,

with S2(0) = n= 1Y 1 (X; — 6)2, is weakly efficient in estimating the error
distribution function G with G identifiedviav:§ — 8 =I*(L2(G)), v(G) (V) =
[ dG for ¢ € Lo(G).
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PrROOF Without loss of generality we may také = 0. For ¢ square
integrable with respect t¢ we have

Gon(¥) — G(¥)

1 1 2
(6.24) Zzi;{lﬁ(xi)—/de—W;W(Xj)xjxi}
1 u N _COVG(i//(X),X) A i
—;i:Zl{wxl) [vac -2 X,}+(9P(ﬁ),

where the last equality is implied by the law of large numbers. Consequently,
Go,, is asymptotically linear in the efficient influence function as given in
Example 6.2.1 of Bickel, Klaassen, Ritov and Wellner (1993); see (6.18).

REMARK 6.4. Note thatGg, from (6.23) is jUStégyn from (6.19) for
t9(x) = x — 0, written appropriatelyGy , is a signed measure; in its far tails it
need not be monotone.

Plugging in6 = X,, we obtain
. 10 - A - A
(625) G)_(n’n(t) = ; Z 1(—oo,z](Xi - Xn) = Fn(t + Xn) = Gn(t)a
i=1

the estimator ofG from (6.20) which has been proved efficient above for
B =1°(¥) with a smaller se than L»(G) as in Proposition 6.2. The sample
splitting and substitution technique of Theorem 5.1 yields a different though
similar efficient estimator of the error distributiai. Applying Lemma 6.1 and
Theorem 5.2, we obtain the weak efficiency(®f for another8 and 8*.

Note that plugging inX, for 6 into the empirical distribution function
Fon(t) = 231 1 1 oon(X; — ) of the X; — 6 yields the same estimat6t, ()
of G(¢). Although, as noted before%,n(t) is not an efficient estimator fof
known, the combined estimator is. From Remark 5.1 we know that the sub-
stitution estimatorﬁémn can be efficient even ify, is not efficient, as long
as the influence function af, , satisfies (5.15). In this case, this translates to
ﬁ@yn(l) = Geyn(l‘) +b(X, —60)+0p(1), for everyt € R and some € R. This is
indeed the case, since by (6.23)

A ~ X,—60 1&
Fon(t) — Gon(t) = % T ;(Xi —0)L(—co,n(Xi —0)
(6.26) B
X,—0
=57 (E(X —0)L—o. (X —0)+0p(D),

because of the law of large numbers.
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The empirical likelihood approach of Owen (1991) has been applied by Qin
and Lawless (1994) in their Example 3 (continued), page 314, to obtain another
implicitly defined efficient estimatoG; , of G. Gg , is a proper distribution

function and substitution @f by X, in G;,n yields Gn as well.

EXAMPLE 6.5 (Bootstrap). When constructing confidence intervals for the
meand using the sample meaki, = n—1 >.7_1 Xi, one needs the distribution of
Vn(X, —0). It can be simulated once the distribution)of- 6 = X1 — @ is known.

By the fundamental rule of thumb of statistics this distributionXof- 6 should

be estimated when unknown. According to Example 6.4 an efficient estimator of
this distribution isGg , = F,(- + X,,) from (6.25) and (6.20). In this way the
distribution of X — 6 under F is estimated by the distribution af*, say, under

E,(- + X,), which equals the distribution of* — X, underF,,. Via this approach

we see why in the bootstrap world the distributionof- 6 under F should be
replaced by the distribution of* — X,, under£,.

EXAMPLE 6.6 (Baseline survival distribution in Cox’s proportional hazards
model). We observe i.i.d. copies &f = (Z, T'), where the hazard function of
an individual with covariat& = z € R is given by

A(t]z) = ePA(r),

wheref € R and 1 is the so-called baseline hazard function, corresponding to
covariatez = 0, and related to the Banach parameteas follows:

1-G G
Hereg is the density corresponding to the distribution functioion [0, co) of T,
given Z = 0. Fix Tp > 0 and defineg to be all distribution functionss with
G(Tp) < 1. We assume that the distribution @fis known and has distribution
function F. Furthermore, we denote Lebesgue measur@oto) by 1 and note
that identification ofG with /g yields § C L2(n). Then the density ofZ, T')
with respect tqu x F is

(6.27)

(6.28) p(z,1:0,G) = eezg(t)(l _ G(t))(eXP(GZ)—l)‘

As in Example 3.4.2 of Bickel, Klaassen, Ritov and Wellner (1993), it is not
difficult to see that

(6.29) I1(z,1;0) = z(1— P* A(1))
with

rogls)

0 1_—(;(s)ds = — |Og(1— G(t))

A(t) = /(;t Als)ds =



EFFICIENCY FOR BANACH PARAMETERS 341

Representing in L2(G), we getg = ¢° = LI(G), andiz: § — La(Py,) is given
by
[a(s)dG(s)
1-G@)
It is well known [cf. Tsiatis (1981)] that i£ Z? exp(20 Z) is bounded uniformly

in a neighborhood ofly, then the Cox (1972) partial likelihood estimatéy
is (locally) regular and asymptotically linear in the efficient influence function
1311 =21%, wherel; of (4.10) is given by

(6.30) (®)a)z. ) =a(t) + (" - 1)

. S s

(6.31) Bz, 1:0) =i1(z2.1:0) — (ﬂ(t) —e"Z/ ﬂdA),
So,6 0 Soe

with

(6.32) Sio(t)=EeZ %1 00)(T),  i=0,1

A complete proof of efficiency in a strong sense is given in Klaassen (1989) under
nondegeneracy and boundednesg of

We are interested in estimating the baseline distribution funétiéh = G on
an interval[0, Tg] with P5(T > Tp) > 0. In view of this bounded window we will
restrictCq to all paths aG in ¢ with tangent: vanishing outsid€0, To], yielding

(6.33) 6=1[helLYG):h=hlom)
Furthermore, we will assume thig| is bounded a.s. b§ < co. With the notation
(6.34) Sio(t)=EeZ'e®%1; 00(T),  i=0,1,
we have
X d .
(6.35) So,0(t) = a—gSo,e(t) =S10() — S1,0@)A@).

To verify (5.5) we note that foh € § [cf. Example 6.7.1.A of Bickel, Klaassen,
Ritov and Wellner (1993)]

Y (X; 0) = 120) (I3 (0)i2(6)) *h(Z, T)
(6.36) — <Gh(T) —/T th)/So,e(T)

_ /OT Iz (c‘;h(s) _ Koo h dG)/So,e(S) dA(s)

holds. It follows from Example 3.5 in Schick (2001) that (2.25) holdsfpr= v,
from (6.36) where is associated with &* corresponding to a signed measyre
on [0, Tp] as in (6.40). Indeed; = vy« (x) = ¢([x, To]) — / G du holds, and

G(Hh() —/t h(s)dG(s)

— G(0)q(lt. Tol) — f w(s, To)dG(s) =0, > To.
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This yields (5.5) and (5.6) withy, (9) = Ey(I1(X, T; )y (X, T; 0)).

Given the regression parameter the nonparametric maximum likelihood
estimatorGy , of the baseline distribution functio& may be derived from the
nonparametric maximum likelihood estimator of the baseline cumulative hazard
function A, as described in Section 1 of Johansen (1983), and it equals

n n -1
(6.37) Gon(s)=1— exp{— > 1[o,s](T,-)<Z 1[szme92f) ] s> 0.
i=1 j=1

Breslow [(1974), (7), page 93] proposed the Kaplan—Meier-type estimator

n n -1
(6.39 ée,nm:l—n{1_1[0,S](T,.>(Z1[szmeezj) }

i=1 j=1
Both these estimators are asymptotically linear in the efficient influence function

Vi0,—-Gs (2 150) = B0 (13 0)2(0)) " (Lio.51() — G(9))(z, 1)

1 0z SAt 1
0.5](t) —e f —_— dA},
Soe(t) 1 o Sog

uniformly in s € [0, Tp]; see Section 4 of Tsiatis (1981) and Example 6.7.1.A
of Bickel, Klaassen, Ritov and Wellner (1993). They are even weakly locally
submodel efficient under the assumption of boundednegsfor B the cadlag
functions on[0Q, Tp] with supremum norm anb* € B; of the type

(6.40) b*(b) = f[o . b(s)d(s)
, L0

for some finite signed measure To verify this and for future use we need the
following result.

(6.39) = (';(s){

LEMMA 6.2. If T,..., T, are random variables with empirical distribution
function F,,, then the statistic

-1
n n
(6.41) Va($) =) U< (Z 1[T,-2Ti])
i=1 j=1
satisfies
(6.42) Vo(s) < —log(1— Fp(s)).
PROOF  With T(y) < Tp) <--- < T, the order statistics we have

1 nﬁn(s) 1

n
n(s) l:Z; O e | l:Z; n—i+1

nky(s)+1 1 | R
< —dx=—log(1— F,(s)). U
_/1 n+1—x * o )
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We also need the following convergence result.

LEMMA 6.3. Denote

-2
18 ,
(6.43) W, (t;0) = Z 1[T >l]Z e (l’l Z 1[szt]eng> .
j=1

j 1

In the Cox proportional hazards model of (6.28)with |Z| bounded we have for
0<s <To,

172 Pog [* Slﬁ
(6.44) S e Wa M) [ ano.
i3 0 S0

PrRooF Conditionally, givenT; = ¢ < s, the statisticW, (¢; 6) converges in
probability to Sl,gsag(l‘) where bothW, (z;6) and its limit are bounded a.s.

Consequently, giverf; < s the difference|W,(T;; 0) — SLQSO_,g(Tm converges
in mean to 0 and hence the lemma holdsl

Combining these lemmata, we see that the nonparametric maximum likelihood
estimatorGy , (s) satisfies

1(Go,n(s) — Gon(s)) + (00 — )G (s )f dn

—f/{ Gynl(s) —1) Zl[T,<s]W(Tl777)

i=1

(6.45) +Go(s )/ —dA}
O 1 N
=(9P<x/ﬁ/ —Zl[T,-gs]an(Ti;n)—Wn(Ti;9)|d77>+(9P(1)
o N3

On
=0, (Vi [ 0= 0)Va)dn) + 0p () = 0p (D
undereé, uniformly ins € [0, To]. Note that by (6.27), (6.30) and Lemma 2.2,

(6.46) Z V10.—G(s) (Zis Tis 0n) — Y106 s)(Zi, Ti: 0))

N2

Py G

+/n6, —Q)G()/ —dA 0

holds uniformly ins € [0, To]. The asymptotic linearity ofég,n(s), (6.45)
and (6.46) together imply thaﬁg,n(-) is weakly locally submodel efficient
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on [0, To] in the sense of (5.1) with* as in (6.40). Finally, note [cf. (6.45)]

VG () = Gy, () < V/n

b1
=3 g Wa (T dn
21

(6.47)

3¢ dn‘Vn(s).

By Lemma 6.2 this yields (5.16) with* € B; as in (6.40), since

P9</ vn<s)d|u|<s>2coe/;)
[0,To]

(6.48) ) |
< Py(Fy(To) > 1 — e~ (©09)/(1I(10.ToDe)y

is arbitrarily small for¢ sufficiently small. We have proved that Theorem 5.2 may
be applied and that the full nonparametric maximum likelihood estin(a(;nqlrl(s)

of the baseline distribution functio& is efficient if 6, is efficient. By similar
arguments this may be shown also for Breslow’s estimétégrn (5).

PrROPOSITIONG6.3. Consider the Cox proportional hazards model of (6.28)
with the covariate Z bounded a.s. in absol ute value. If én is an efficient estimator
of the regression parameter 6, then both G ,(s)and G ,(s) areweakly efficient
in estimating G (s) in the sense of (5. 10)W|th b* € 83 asm (6.40).
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