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ON THE POSTERIOR DISTRIBUTION OF THE NUMBER OF
COMPONENTS IN A FINITE MIXTURE

By AGOSTINO NOBILE
University of Glasgow

The posterior distribution of the number of componehts a finite
mixture satisfies a set of inequality constraints. The result holds irrespective
of the parametric form of the mixture components and under assumptions
on the prior distribution weaker than those routinely made in the literature
on Bayesian analysis of finite mixtures. The inequality constraints can be
used to perform an “internal” consistency check of MCMC estimates of
the posterior distribution ok and to provide improved estimates which
are required to satisfy the constrts. Bounds on the pterior probability
of k components are derived using the constraints. Implications on prior
distribution specification and on the adequacy of the posterior distribution
of k as a tool for selecting an adequate number of components in the mixture
are also explored.

1. Introduction. Finite mixture distributions have received much attention in
the last decade, as a tool for modeling population heterogeneity and especially as
a conceptually simple way of relaxing distributional assumptions. Undoubtedly
the development of Markov chain Monte Carlo methods has played an essential
catalytic role. A survey of the theory and applications of finite mixtures pre-
MCMC is provided by Titterington, Smith and Makov (1985), and a more recent
introduction to the topic is Robert (1996). Progress has been patrticularly evident
in the Bayesian approach, where it began with the Gibbs sampling algorithm
of Diebolt and Robert (1994) for estimating the parameters of a mixture with
a fixed number of components. Subsequent work has considered the number of
componentsk as an object of inference, either using tests to select an adequate
number of components or summarizing the uncertainty about it by reporting its
posterior distribution. Carlin and Chib (1995) and Raftery (1996) have proposed
using Bayes factors to testagainstk + 1 components and they have described
MCMC methods to compute the necessary marginal likelihoods. The paper by
Raftery contains a summary of such methods. Mengersen and Robert (1996)
also assume a testing perspective, but use the Kullback—Leibler divergence as a
measure of distance between models witmdk + 1 components. Nobile (1994),
Phillips and Smith (1996), RichardsondGreen (1997), Raer and Wasserman
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(1997) and Stephens (2000) have put a prior distribution on the number of
components and obtained MCMC estimates of the posterior. Besides representing
uncertainty abouk, its posterior distribution can also be used to mix models
with different numbers of components, leading to model mixing predictions of
future observables. Nobile (1994) attempted to estimate the marginal likelihoods
of each model separately and then formed an estimate of the posterior of
using Bayes’ theorem. Roeder and Wasserman (1997) proposed to approximate
the marginal likelihoods using the Schwarz criterion. Although their methods
differ considerably, Phillips and Smith (1996), Richardson and Green (1997) and
Stephens (2000) share a common approach consisting of running an MCMC
sampler on a composite model, with jumps between submodels that allow the
sampler to change the number of components in the mixture. Then the posterior
of k can be estimated by the relative amount of simulation time spent by the
sampler in each submodel.

In this paper | show that, under some conditions on the prior distribution,
the marginal likelihoods of finite mixture models with a different number of
components satisfy a set of inequality constraints. Besides its theoretical interest,
the result provides a means of performing a check of “internal” consistency of
MCMC estimates of the marginal likelihoods, or of the marginal likelihoods
implicit in MCMC estimates of the posterior éf

2. The model. Let x = {x1,...,x,} be a sequence of (possibly vector-
valued) random variables and assume thatifeeare independent and identically
distributed with probability density function (with respect to some underlying
measure) given by

k
(1) Fa) =Y 2jpjx).

j=1
Model (1) is called a “finite mixture distribution.” The mixture weights are the
probabilities that the random variablefollows any ofk alternative distributions,
with densitiesp; (), called the “mixture components.” In this paper attention is
restricted to the case where the number of compongntie weightsi; and
the componentg;(-) are all unknown. It is assumed, however, that the densities
p;(-) belong to some specified parametric family, allowed to vary witfhus
pj(xj) = pj(x;|6;), whered; is the vector of parameters of thgh mixture
component.

As stated, model (1) is somewhat ambiguous, since the meaning of mixture
weights and mixture components is completely specified only vkhieffixed; for
instance, the expression “the weight of the second component” seems to have a
different meaning whe#k = 2 than it has whelk = 5. In order to make explicit
the dependence aoh of mixture weights and components, rewrite model (1) as
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follows:
k
Filk, a0 =Y Ajppjcilfj),  i=1....n,
j=1
where Ay = A1k, ..., Ak) | and 6 = (Ow, ..., 0) . ON occasiom = (A,

A2,...)" and@ = (61, 62, ...)" will be used. In principle this formulation allows
the parametric family of the component to change wit#ndk.

Conditional onk, let g; be an integer in{1, ..., k} denoting the unknown
component from which théth observationt; proceeds. The unobserved vector
g=(g1,...,g,) " has been called the “membership vector” or “allocation vector”
or “configuration vector” of the mixture. If one conditions gnthe distribution
of x; is simply given by the;;th component in the mixture,

n
flk, g,00) =[] pgik(xil6g )-
i=1
The complete specification of the Bayesian finite mixture model requires

a prior distribution for all the unknown quantities. The prior én denoted
by m(k), has support on (a subset of) the positive integers and may involve
a hyperparameter. Giveh, the weightsi; = (A, ..., )| are assumed to
have the Dita1, ..., o) prior distribution, where the hyperparametesis=
(aw, ..., o) | are positive constants. Although other priors could be used for the
weights, the Dirichlet distribution has become a standard choice. The allocgtions
are conditionally independent giveérandi, with Pi{g; = jlk, Ak] = A j. Givenk,
independent priors are usually assumed for the component paramgters

k
Ok, ¢ = [ 7wk Okl i),

j=1

where ¢, is the set of hyperparameters in the prior distribution6gf and
&x = (P1k, ..., o) |- In general the components’ hyperparametgrscan vary
with &, so that substantive prior information distinguishing the components and
depending on their numbgrcan be accommodated. Similarly, the functional form
of the prior;,(-) may change withj andk, since the component parametric
family may too. Dependence oh is, however, ruled out by the assumptions
introduced in Section 3.

In summary, the joint distribution of the data and all unknowns in the model is

f(x,0,g,A,k)
= 1 (k)7 (Aklk, ) f(glk, L) (Oklk, i) f (x1k, g, Ok).

In the sequel, attention is focused on a model obtained by integrating the
parameters.; and6g; out of model (2). Integrating the weights out of the model

(2)
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yields
F(glk. o) = / F(glk. A ek, o) dng
" (ocor) L
= AT do
/1_[ ]kl_[k 1F(05]k) /1_[1 ik ¢
3) " (cvor) F(ijk +nj) ’

~ T(aoe +n) =1 [ (ajk)
whereag, = Z’;Zla_jk, nj=nj(g)=cardA;} andA; = {i:g = j} is the index
set of the observations allocated to tfth component. One can also, at least in
principle, integrate the component parameters out of the model,

FGulk. g, i) = / Frlk. 8,607 Ok k. o) db

n k
= / 1_[ Paik(Xi10g; k) H ik Okl jx) O
i=1 j=1

k
(4) = 1_[/ [ Pir&il0j0)m kOl jx) dOjx
Jj=17 i€A;

k .

(5) =[] I)0).

where x/ = {x;:i € Aj} comprises the observations that, according to the
membership vectog, are from thejth component and jx(x/|¢ jx) is a short way
of writing the integral in (4), that is, the marginal density of these observations
after the parameté;;, has been integrated out.

In the end the joint distribution of the data and unknowns is given by

(6) fx. 8. klp,a) = f(xlk, g, o) f(glk, ar)m (k),

whereg = (¢1, ¢2,...) " anda = (a1, oo, ...) . Even though the’s anda’s are
fixed constants, | prefer, with a slight abuse of notation, to list them explicitly to
the right of the conditioning bars, as it is important to recall that they enter in the
expressions in (6). The posterior distribution of the number of components is

m(k|x, ¢, a) o< (k) f(xlk, ¢, k).

The marginal likelihoodsf (x|k, ¢, ax), which will also be denoted ag. for
short, are given by

(7)  fi=f&lk groan) =) f(xlk, g ¢0) f(glk, o), k=1,2,...,

8E€Gk
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where the sum extends over the lattige={g:g; € {1,...,k},i =1,...,n}, the

set of membership vectors with components at moRepresentation (7) demon-
strates the great advantage of working with model (6) rather than model (2).
Using (7) it becomes possible to compare the contributions ofsdh®& mem-
bership vectorg to different f;’s. This leads to linking together the marginal
likelihoods and deriving a set of linear inequalities satisfied by them.

3. Linking the marginal likelihoods. In this section it is shown that, under
certain conditions on the prior distribution, the marginal likelihog@sin (7)
satisfy a set of constraints. Intuitively, the approach will consist of breaking up
the sum oveg, in (7) into many terms and then showing that some of them can
be rewritten as sums ov@gy with r < k. The following assumptions will be made
throughout.

ASSUMPTIONA.1. The Dirichlet hyperparameter of any mixture weight does
not change with the number of components:

O(]k=O(]], ]=1,,k—1,k=2,3,

ASSUMPTION A.2. The properties of any mixture component (parametric
family and parameter prior distribution) do not change with the number of
components:

PikCl) = pj;iCl), Tik(l) =mj;i (), djk=djj,
j=1... k—1k=23 ...

The assumptions impose a coherency requirement. Not onljtihsomponent
“remains the same” whether there areor k¥’ < k components in the mixture
(Assumption A.2), but the probability distribution of the ratio between the weight
of the jth component and the sum of the weights of the fifstomponents also
remains unchanged (Assumption A.1). Because of Assumptions A.1 and A.2,
when referring to a certain component one can do so without specifying the
number of components in the mixture.

Begin by noticing that the space of membership vecysin (7) can be
partitioned as follows:

k
(8) =g gingi=2.  1#s

=1

wheregy is the set of membership vectors that assigns at least one observation to
therth component and none to higher compone§fs= {g € §,:3i s.t.g; =1t}.
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DEFINITION 3.1. Let f* be the portion off; that accounts for the member-
ship vectorsg that allocate at least one observation to componemrtd none to
higher components (components lower thanay be empty),

9) = fxlt g ) f(glt, ).

8€§7
Clearly f1 = f1.

In the sequel use will be made of the following conditions.

ConpITION C.1. Forallg € g7 witht <k,
f(x|k’g’¢k) :f(x|t’g’¢t)'

ConbpITION C.2. Forallg € gy witht <k,

f(glk, o)
f(gltv al‘)

LEMMA 3.1. Under AssumptionsA.1 and A.2, the model of Section 2 satisfies
Conditions C.1and C.2with

=ay constant

(o) T(ao +n)
Do +n) T(eo)

(10) Akt =

PrRooOF To verify Condition C.1, recall (5)f (x|k, g, ¢r) = H’;Zlqjk(xf k).
All g € 7, t <k, allocate no observations to components larger thamtthene:
= @, j > t. Therefore the product in (5) extends from 1rtonly. Moreover,
Assumption A.2 implies that, foj € {1, ..., 1}, ¢jx(:|) = q;;(-|-) and¢x = ¢ ;.
Hence f (x|k, g, ¢x) = [1j_1qj:(x’ 1) = f(x|t, 8, #:). As for Condition C.2,
from (3) one has

f(glk,o)  T(ook) F(a1k+n/)/ I'(aor) F(Ot,z+n,)
fglt, o) F(Oé0k+n) I'(ajik) F(Oé0z+n) Claj)
Again, for allgegt andj >, A; = @ so that:; = 0. Hence the last — 1 terms

in the product in the numerator are 1. Also, from Assumption Ak, = o,
j=1,...,t. Therefore C.2 holds with;; given by (10). O

The following result may be considered as an appetizer.

THEOREM3.1. Let f; and f;* beasin (7) and (9) and assumethat Conditions
C.land C.2hold. Then

k
(11) fe=) an fr.

t=1
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Moreover,

(12) Je = akk—1fe—1+ f§-

PrROOF Equation (7) can be rewritten g% = Zle > eegr [ (xlk, g, i) x
f(glk, ax) because of the partition & in (8). Now use Conditions C.1 and C.2
and the definition off;* in (9) to obtain (11). A little more algebra yields (12):

k k-1 ko1,
fk=Zaszt Tt +Z sz(g| _— l)f

fglk =1, ar-1)
f(glk, ax) -
= + aj_
=F Z Gk~ La—p !
k-1
= fl+ack-1)_ ak-1.1f; = arp-1fi-1+ f7. -
=1

Theorem 3.1 provides two representationsfgfin (11) it is given as a linear
combination of the “no empty last component” portions of the marginal likelihoods
of models with 12, ..., k components. In (12) it is written as the “no empty last
component” portion of the marginal likelihood of tikecomponents model plus
a fraction of the marginal likelihood of the model with one fewer component.
Much of the remainder of this section is devoted to deriving a result stronger
than Theorem 3.1. This is achieved by exploiting additional symmetry left as
yet untapped; some mixture components may have identical characteristics. The
first step consists in grouping the mixture components into classes of “alike”
components.

DEFINITION 3.2. Say that two mixture componenfsand k are alike or
equivalent ifer;; = axr, pj; 1) = prk 1), 7 C|)) = mr (-]-) ande; = .

The above definition induces a partition of the components into classes of
equivalence, with two components being in the same class if they are alike. It
may help intuition to regard the observations as balls being placed in a sequence
of colored boxes, with boxes of the same color being equivalentCl(et) be
themth equivalence class and let/ be the index of théth smallest component
in @(m). The classes are ordered so tldin) precede(r) if m.1 < r.1. Each
class contains either a finite number of components, possibly one, or countably
many components, possibly all. Lat(r) be the number of equivalence classes
formed by components 1 throughAlso, leti(r) be the index of the equivalence
class to which componenbelongs, so tha® (i (7)) is the class of components that
are equivalent to componentFinally, letc(m, r) be the number of components
in C(m) that are no larger thanand letc(m) be its total number of components:
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c(m) = sup c(m, t). One extreme case often considered in the literature is that
of just one equivalence class: there is no prior information distinguishing the
components. Inthiscage(r) =1,C(1)=1{1,2,...},Lh=h,it)=1,c(L,1) =t
andc(1) = co. The other extreme case arises when each class contains only one
componentN(t) =t, C(m) ={m}, m1=m,i(t) =t, c(m,t) = I(m < t) and

c(m) =1, with I(-) the indicator function.

DEFINITION 3.3. For any membership vecty € 47, define its class
occupancy pattern as the vectoe (hy, ..., hN(,))T, whereh,, is the number
of nonempty components in cla€sm).

Let H,:6* — {0,1,2,...}¥® pe the mapping which associates to each
g € 47 its class occupancy pattetn Since the domain off; is §;, component
is nonempty, hencg;, > 1; also, the number of nonempty components cannot
exceed the number of observations. Therefore, the range of the magpirg,
H;(§}), consists of theV (r)-dimensional vectora satisfying
N(1t) . .
{1,2,...,c(m, 1)}, if m=i(@),
(13) Z hm =1, hm € { {0,1,...,c(m, 1)}, otherwise.

m=1

If ZZQ h,, <t, some mixture componentsid, ..., ¢} are empty. This suggests

that it may be possible to accommodate the class occupancy patising fewer
thanrs components.

DEFINITION 3.4. For any class occupanay let s = s(h) be the smallest
integer such that the mixture components from lst@omprise at leask,,
componentsir€(m), m =1, ..., cardh),

(14) s=sth)y=min{r:c(m,r)>h,,m=1,... cardh)},

where car¢h) is the number of elements éf If 1 € #;, then cardh) = N(¢) and
s<t.

The symbok will be exclusively used to denote the function defined in (14). For
anyh € #;, s is the smallest number of components needed to accommadate
so thath € #; too, under the convention that trailing O’s inare dropped. For
instance, suppose that 6, C(1) D {1, 2, 3, 6}, C(2) D {4}, C(3) D {5}, so that
N(@6)=3.If h=(2,1,0)" then only three components are nonempty ard4.
Dropping the trailing 0 imh, h = (2, 1) T € Ha.

DEFINITION 3.5. LetJ#! ={h € ¥, :r =s(h)} be the (possibly empty) sub-
set of class occupancigg, which can be accommodated with< + components.



2052 A. NOBILE

The set of class occupancies of the membership vectgsaan be partitioned
as follows:

t
(15) Jf,:UIJ(’,’, H N H, =2, r#gq.

If h e 3!, thens(h) = r so thath € #, too, and hencé € #/ . This shows that
(16) HC A, r<t.

DEFINITION 3.6. Letg) with r > s(h) be the subset of; consisting of
membership vectors with class occupancy patter§), = Hfl(h).

Clearly,{g},. h € #,} is a partition ofg}:
(17) gr=U %  9iNG,=9, h#v

hE]{f

Consider next the mappind; : §;, — $» which removes any gap in the sequence
of nonempty components within each equivalence class. More precisely, given
g €4, let ju1 < -+ < jm,n, be the corresponding nonempty components in
Cm), m=1,...,N(@). The mappingM, changes, for all, the components
Jmls vy jm.n, iNto m.1, ... m.h,, respectively. Denote the range o1, by

&n = M (§},), noting that from the definition of}, it is immediate thad/, (§)) =

M, (4;,) foranyt,r > s(h). The mappingV/; does not affect the class occupancy

of a membership vector; thug; (&,) = {h}, although in generat, is a subset of
Hs‘l(h) = §;. Because of the equivalence of components within each class, the
mappingM; leaves unchangefl(x, g|t, ¢;, o),

(18) f(xlt,g.00) f(glt,ar) = f(xl|t, g, &) f(8lt, 1), g€ 9’27 g=M;(g).
DEFINITION 3.7. Lety; be defined as follows:

hi lﬁ)<c(m,t)) he 3t
(19) vi=1 cli(),1) b ) "

m=1

0, h ¢ F;.

LEMMA 3.2. Any element of &, is the image under M; of y;, membership
vectorsin §,.

Lemma 3.2 says thaj}) consists ofy/ subsets alike t&;, except for which
h,, components in each claégm) are nonempty. Coupled with (18), Lemma 3.2
gives

(20) S f(xlt g ¢ f@lta)=yh > fxlt, g, ) f(glt, ).

8<4), g€
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DEFINITION 3.8. Letf}:r be the portion off;, s = s(h), that accounts for the
membership vectors ig;

(21) W= fQils.g o) f(gls,as),  s=sh).

8€G
The following lemma is instrumental in proving the main result, Theorem 3.2.

LEMMA 3.3. Thefunction f;* defined in (9) can be rewritten as follows:

t t
* Y
(22) ED DI
r=1  heyr Vh
THEOREM 3.2. Supposethat Conditions C.1and C.2are verified. Then
k
(23) fe=Yaw Y vksl
r=1 hedtr
where f;! is definedin (21),
1
(24) Vi = ) v
Y t=r

and y; isgivenin (19). Moreover,

k k
Y
(25) fi=aki-1fi-1+ Y aw Y gt

r=1  hexr 'h

It is worthwhile to consider explicitly the cases where all components are
equivalent and where no two components are equivalent.

PROPOSITION3.1. Suppose that Conditions C.1 and C.2 are satisfied and
that all mixture components are equivalent. Then

kAn

k T
(26) Jie= akh f
k };(h) kh [y
kAn
(27) =ari-1fi-1+ ) (z : 1)akhth-
h=1

PrRoOOE Recall that if all the components are equivalent théf) = 1,
c(1,t) =t andi(r) = 1. Therefore the class occuparnicys a scalar, the number
of nonempty components in the unique equivalence class. From formula (13) the
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range ofh is #; = {1,...,t A n}, with t A n = min(¢, n). From Definition 3.4

the smallest number of components needed to accommbdsig/) = 4. Hence
={r},r <t An,andH! =&, r >t An. Here the range a¥/, is &, = % the

subset of;;, consisting of membership vectors that allocate at least one observation

to each component, while (21) gives the part of the marginal likelihgpd

corresponding to no empty components,

(28) =3 i, g, o) f(glh, an).
gegh

In this case expression (23) becomgs= Z];ZMiathh th. From (19) one has

yi = (173) so thaty,”* = >, ("_7) = (}) and (26) follows. Equation (27) can

be derived from (25) after making substitutions similar to the ones performed to
obtain (26). O

Formula (26) provides a representation of the marginal likelihoodk of
components as a linear combination of the portions of marginal likelihoods
corresponding to no empty components.

PROPOSITION 3.2. Suppose that Conditions C.1 and C.2 hold and that no
two mixture components are equivalent. Then

k
(29) fi= awf}
=1
(30) =apr-1fi—1+ f7-

The proof is left as an exercise for the interested reader.

Note that the conclusion of Proposition 3.2 coincides with that of Theorem 3.1,
if no two components are equivalent there is no additional symmetry to be
exploited beyond what is assumed by Theorem 3.1. The following corollary
summarizes some special cases.

CoROLLARY 3.1. Forthemodel of Section 2, under AssumptionsA.1and A.2,
one has the following:
(i) representations(23)and (25) hold with ax, asgivenin (10);
(i) in the special case where all mixture components are equivalent with the
Dirichlet prior on the mixture weights having hyperparameter « j; = «, one has

kAn
B k\ Ta) T(ha+n) 4
(31) fk_}ZXZ;(h)F(ka—l—n) T (ha) I

n a—1+z kam ik —1\ T(ka) T(ha+n)
(32) 1]< )t th(h—l) Fatm T
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(i) incase (ii) abovewith « =1 one has

kan k! k=1 (h—1+n)! 4+
_ k—1 kAn (k— 1! k=1 (h—1+n)! ;
—mﬁ“”;(h‘lﬂ(k—hﬂ(k—1+n)z D A

The representations of the marginal likelihoods provided in Theorems
3.1 and 3.2 and its corollaries lead to a set of linear constraints oryitke
Solving the triangular system (11) for tifg’s in terms of thef;’s, one obtains (12)
I = fx —arx—1fi—1- As the f's are, from equation (9), sums of strictly positive
terms, this implies that

(33) S > ak k-1 fe-1.
The constraints (33) hold no matter howetmixture components partition into
classes of equivalence. In the case of no equivalent components treated in
Proposition 3.2, the constraints (33) cannot be made any stronger, since by how
much f; exceedsy r—1fk—1, that is, f*, depends on vectors which allocate at
least one observation to componéntAt the opposite extreme of all equivalent
components, dealt with in Proposition 3.1, stronger constraints are obtained by
solving the triangular system (26) for tlfé’s in terms of thef;’s, and then setting
the solution to be positive. These constraints, explicitly derived in formula (36),
are stronger than (33) because, of all pf,f& in the sumZ’,‘lQ’i in (27), onlyf,:r
involves vectors allocating observations to #te component. As a very special
case, consider equation (26) with> n. Then f; is a linear combination of
fi. ..., fF. However, £, ..., T can be obtained by solving (26) with= 1,
...,n. Therefore, f; with k > n is completely determined by the marginal
likelihoods f1, ..., fu; this is a much stronger result than is obtainable when no
components are equivalent. The general case where only some components are
equivalent is covered by Theorem 3.2. As usual the constraints (33) hold, but,
contrary to the case of all equivalent components, one cannot solve system (23)
for the f,'s. Nevertheless, there might be a function of ]ﬁe;, finer thanf}* is,
such that system (23) can be solved for it.

The remainder of this section deals exclusively with the case where all mixture
components are equivalent. The triangular system (26) avithl, ..., n can be
rewritten as

k—1
(34) fi= fi+ Y buf!.  k=n,

=1
with by; = (l;)ak,. Denote byB, the matrix of coefficients of system (34). In this

case one can provide a simple explicit expression for the elemersbfThe
following lemma is needed.
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LEMMA 3.4. Consider the g-dimensional unit lower triangular matrix B =
{br:} with by, = (];)ak; and a; as in Condition C.2. Let C be the unit lower

triangular matrix with generic element ¢, = (—1)**'by;. Then B~1 = C.

PROPOSITION 3.3. Suppose that Conditions C.1 and C.2 are satisfied and
that all mixture components are equivalent. Then

k-1 k
(35) =54 0 (F )ausi k=n
t=1

PrROOF The matrix B, of the coefficients of system (34) is unit lower
triangular with generic elemeidt,; = (];)akt. From Lemma 3.4, the invers&n—1

has generic element’ = (—1)k+ (’;)ak,, k > t, and the result follows. O

The following corollary follows immediately from Proposition 3.3 and summa-
rizes some special cases.

COROLLARY 3.2. Forthemodel of Section 2, under AssumptionsA.1andA.2,
one has the following:

(i) if all components are equivalent with Dirichlet prior on the weights having
hyper parameter «, then

k
t_ _nk+t k I(ka) T(ta+n) |

(i) incase(i) abovewitha =1,

k K e=DY ¢—1+n)!

T _ _ \k+t
fk_t;( b k-0 (k—1+n)! (—1)!

fts k <n.

Briefly returning to the topic of the inequality constraints on fhis, from (35)
one has

k—1 k
(36) fim Y p (]
t=1

)akl‘ftv kSn

The following section discusses possible uses of these constraints; the present
one concludes by addressing the problem of expresgingvith & > n in
Proposition 3.1 in terms ofy, ..., f,.

PROPOSITION 3.4. Suppose that Conditions C.1 and C.2 are satisfied and
that all mixture components are equivalent. Then

(37) fi= é(—l)"—f (5) (5wt k=n

n
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4. Applications. This section explores some uses of the representations of the
marginal likelihoods derived in Section 3.

1. When all mixture components are equivalent, a proper prior on the number of
components is necessary in order to have a proper posterior.

2. Bounds on the pogtier probability of ¢ mixture components can be derived
that hold for any sample of given size and for any family of component
distributions.

3. An “internal” consistency check of Markov chain Monte Carlo estimates of the
marginal likelihoodsf (x|k) can be performed by verifying that they satisfy
the constraints. Estimates that fail the check can seemingly be improved by
modifying them so that the constraints are satisfied.

4. Expressions can be obtained for the prior and posterior distributions of the
number of nonempty components in the mixture, that is, the number of
components to which observations are allocated.

Throughout this section attention is focused on the case where all mixture
components are equivalent, for a variety of reasons: it is important in practice,
it is amenable to a notationally simpler treatment and it leads to stronger results.
In order to lighten the notation, the explicit indication of the hyperparameters is
abandoned in most of this section, so, for instance, | will wrife|x) and f (x|k)
in place ofr (k|x, ¢, @) and f (x|k, ¢, ax). Fortran and S-PLUS programs used
for the computations in this section are available from the author upon request.

4.1. Proper posterior of k. From Bayes’ theorem, the posterior distribution of
the number of components is
rflk) RS Gan fy
() f(x1)) DI Dajnfi
where the representation of the marginal likelihoods given in (26) was used. Since

the series in the denominator of (38) is of positive terms, one can change the order
of summation to obtain

(38) 7 (k|x) =

YA AET(ST AT
Sy A, m () ()ajn)

A proper prior distributions (k) ensures that the posterior is also a proper
probability distribution. The following theorem shows that, when all mixture
components are equivalent, this condition is not only sufficient but also necessary.

(39) (k|x) =

THEOREM 4.1. Consider the model of Section 2, under Assumptions
A.1 and A.2, and suppose that all mixture components are equivalent. Then the
posterior  (k|x) of the number of componentsis a proper distribution if and only
if the prior 7 (k) is proper.
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PrROOF The posteriotr (k|x) is proper if and only if the series in braces in
the denominator of (39) converges. Using formula (10)fgrthe series become

o0

I'(on +1) ) J! I (a0;)
Flaon)h! = (j =) T'(eo; + 1)

7(j), h=1,...,n.

Clearly, if the above series converges whieg: n, it also converges foh < n.
Thusm (k|x) is proper if and only if the following series converges:

Jj j—1 j—n+1 |
40 7(j).
(40) Za0j+n—lao,'+n—2 oo, )

j=n

Since all components are equivalend; = ja for somea > 0. Lettingc; denote
the generic term of series (40), it is easy to see that

7(j) 7(j)
—— <Cj < ——.
(na+n—21)" ol

To prove the right-hand sidegéqualitynote that each of the terms in the product

in (40) is smaller than . For the left-hand side inequality, note that each of
those terms is larger thag — n + 1)/(ja + n — 1), which in turn is no smaller

than Y (na +n — 1). If the prior onk is proper, it then follows, from the right-
hand side inequality of (41) and the comparison test for series, that the posterior
is also proper. Similarly, if the prior is not proper, the posterior is also seen to be
improper, by an application of the comparison test to the left-hand side inequality
of (41). O

(41)

4.2. Bounds on the posterior of k. In this subsection it is assumed that the
prior distribution on the number of components is proper. A boundr @ix)
results from the maximization of the right-hand side of (39) with respect to
{f,;r}gz1 subject tof}:r > 0. The following result simplifies computations.

PROPOSITION 4.1. Among the vectors that maximize the right-hand side
of (39)thereisat least one vector { f}:r }p—1 With only one nonzero component f,T,
withr e {1,...,k An}.

Note that the nonzero component of the maximizer in Proposition 4.1 need not
be the(k A n)th. Also, note that, as a function ({)ﬁ‘;:r}zzl, the right-hand side
of (39) is constant over lines through the origin; that is, it is homogeneous of zero
degree, so that in computing it one can ﬁét: 1. Proposition 4.1 restricts the set
of vectors{f}:r}zz1 one has to compute to find a maximizer of (39) to the n
vectors with all but one component equal to 0; one can simply compute the right-
hand side of (39) for each of them and then pick the one that yields the maximum
value.
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TABLE 1
Posterior distribution of & which gives maximum probability to k = 3, assuming that n = 82,
(k) =k k=1,..., kmax=30and @ = 1

k 12 3 4 5 6 7 8 9

x(klx) 0 0 0.8623 0.1217 42x 102 1.63x 1073 1.94x 1074 2.44x 107° 3.26x 10°°

The bound thus obtained holds, whatever the distributional form of the
components in the mixture, as long as they are all equivalent. Moreover, it only
depends on the data through the sample sizé&s an example, consider the
posterior ofk for a sample of sizex = 82, with a discrete uniform prior ok
over{l,..., kmax= 30} anda; =a =1 for all j, k. A maximizer of (39) with
k=3is fg =1, fJ =0, h # 3. The posterior ok corresponding to the maximizer
is reported in Table 1. The bound is(3|x) < 0.8623. These numerical results
remain essentially unchanged for any discrete uniform prior kit > 10.

Table 2 contains bounds ar{k|x) for several values df andn, under a uniform
prior onk over{1, ..., kmax= 50} anda = 1. Tables 3 and 4 contain bounds when
a = 2 anda = 0.5, respectively.

Tables 2—4 are still correct, at the reported precision, for any discrete uniform
prior on k with kmax > 50. Since the bounds involve the data only through the
sample siza, they provide a glimpse of the strength of the prior distribution. Thus,
it is to be expected that, for fixel the bounds become weaker as sample size
increases. Perhaps less obvious is that, for fixed sample size, the bounds become
stronger as increases. An intuitive explanation is as follows. Suppose that the
model with k& components has considerable posterior mass. The posterior mass
of the model withk + 1 components is at least in part due to the 1 copies
of ¢, embedded ing,,1, all corresponding to at least one empty component.
How large this part is depends on the prior distribution, but it may well increase
with k since the larger space containg- 1 copies of the smaller one. The values
of the hyperparameters;;, = o also greatly affect the bounds, as one can see
by comparing Tables 2—4. Increasindeads to Dirichlet distributions that make

TABLE 2
Bounds on 7 (k|x) for several ssmplesizesn, (k) = krgéx, k=1,...,kmax=50,a =1

k

1

2

3

4

5

10

20
50
100
500

0.9000
0.9600
0.9800
0.9960

0.7286
0.8847
0.9412
0.9880

0.5299
0.7826
0.8858
0.9762

0.3456
0.6645
0.8170
0.9607

0.2880
0.5414
0.7385
0.9417

0.2419
0.4233
0.6541
0.9193

0.1954
0.3175
0.5677
0.8938

0.1756
0.3119
0.4828
0.8656

0.1505
0.2835
0.4023
0.8350

0.1335
0.2402
0.3322
0.8022
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TABLE 3

Bounds on 7 (k|x) for several samplesizesn, (k) = kr;allx, k=1,..., kmax=50,a =2

k

3

4

5

9

10

20
50
100
500

0.9756
0.9956
0.9989
1.0000

0.8976
0.9797
0.9945
0.9998

0.7636
0.9473
0.9852
0.9993

0.5932
0.8963
0.9695
0.9986

0.4168
0.8268
0.9465
0.9975

0.2958
0.7414
0.9156
0.9958

0.2718
0.6447
0.8766
0.9937

0.2084
0.5426
0.8299
0.9908

0.1915
0.4411
0.7762
0.9873

0.1554
0.3459
0.7167
0.9830

very small mixture weights less probable. In turn this reduces the probability mass
assigned by the prior op to membership vectors with empty components. The
effectis to “loosen” the link between the marginal likelihoods of different numbers
of components, thus making the bounds weaker. Therefore, a more informative
prior on the mixture weights leads to weaker constraints on the postetior of

4.3. Estimation. In Section 3 the set of constraints (36) on the marginal
likelihoods was derived for the case where all components are equivalent. These
constraints can be used to perform a check of internal consistency of Markov
chain Monte Carlo estimates of the marginal likelihogds|k), or of the marginal
likelihoods implied by MCMC estimates of the posteriorkofThe easiest way to
check whether the constraints (36) are satisfied is to compupthrne(SS) and see
whether they are positive. As an example, Richardson and Green (1997) estimate
a Bayesian mixture of univariate normals for the galaxy data set. They assume
that all mixture components are equivalent, the priokas 7 (k) = kgéx, k=1,

..., kmax= 30, and the Dirichlet distributions on weights have hyperparameters
ajr = 1. They report the reversible jump MCMC estimatenaf|x) contained

in Table 5. Since the prior distribution @fis uniform, the marginal likelihoods
are proportional to the posterior #f Substituting the above estimatesmofk|x)

for the f;’s in (35), after disregarding the estimate for- 16, produces, up to a

proportionality constant, thg‘kT’s implicit in Richardson and Green’s estimate.

TABLE 4
Bounds on 7 (k|x) for several ssmplesizesn, (k) = kr?éx, k=1,...,kmax=50,0 =05

k
n 1 2 3 4 5 6 7 8 9

10

20
50
100
500

0.7342
0.8354
0.8847
0.9491

0.4684
0.6477
0.7456
0.8833

0.2734
0.4709
0.6032
0.8090

0.2575
0.3229
0.4703
0.7306

0.1863
0.2983
0.3546
0.6515

0.1783
0.2618
0.3166
0.5742

0.1449
0.2096
0.2972
0.5006

0.1343
0.2047
0.2610
0.4320

0.1202
0.1782
0.2236
0.3691

0.1030
0.1664
0.2189
0.3392
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TABLE 5
Reversible jump MCMC estimate of 7 (k|x) for the galaxy data set reported by
Richardson and Green (1997)

k 1 2 3 4 5 6 7 8

7@ 0.000 0.000 0.061 0.128 0.182 0.199 0.160 0.109

k 9 10 11 12 13 14 15 > 16

@ 0.071 0.040 0.023 0.013 0.006 0.003 0.002 0.003

These quantities are reported in Table 6. Three valueﬁjoare negative, for
k = 12,13 and 15. However, these violations are rather slight, almost within
rounding error and occur for values/othat account for little posterior probability
and are, therefore, more difficult to estimate. Thus, if anything, the check gives
support to Richardson and Green’s estimate.
Checking whether MCMC estimates ¢fx|k) or z (k|x) satisfy the constraints
only makes marginal use of the information supplied by them. This information
can be more fully exploited by incorporating it in the estimation procedure. For
instance, one could estimate tbfé’s by MCMC methods and then use (26) to
transform those estimates into estimates of the marginal likelihgipds | will
return to this point at the end of Section 4.4. Here | only sketch some approaches
to transform estimates of thg’s into estimates that satisfy the inequalities (36).
Letf=(f(x]2),..., f(xlkmaw)' be the vector of marginal likelihoods of the
models withk components; =2, .. ., kmax- Also, letf be the corresponding vector
of MCMC estimates. When the mixture components parameters have conjugate
prior distributions, f1 = f(x|1) can be computed exactly; if this is not the case,
the vectors andf also includef (x|1) and its estimate. The estlmatfemlght be
directly available, as in the approaches of Nobile (1994), Carlin and Chib (1995),

TABLE 6
Estimates, up to a proportionality constant, of _fkT implicit in Richardson and Green (1997)
MCMC estimate of 7 (k|x), galaxy data set

k 1 2 3 4 5 6 7 8

f,:r 0.0000 0.0000 0.0610 0.1194 0.1532 0.1413 0.0792 0.0352

k 9 10 11 12 13 14 15

f]:r 0.0167 0.0015 0.0035 —-0.0005 —0.0008 0.0013 —0.0006
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Raftery (1996) and Roeder and Wasserman (1997). Alternatively, they may only
be computed up to a proportionality constant, from the prior on the number of
components and an estima@ of its posterior, as in the approaches of Phillips
and Smith (1996), Richardson and Green (1997) and Stephens (2000). In this latter
case, the constraint proceeding fr@ﬁiaf@ = 1 is disregarded. Estimates of

the variability off can be computed, either by replicating the MCMC runs or by
using single run methods, such as batching and time series methods [see, e.g.,
Chapter 6 of Ripley (1987) or Geyer (1992)]. It is assumed that as the MCMC
sample size increases, the distributiorfapproaches a multivariate normal

(42) S—12F-1) 2 N, D),

where is a consistent estimate of the variance—covariance matfix.at R be
the region where the constraints (36) are satisfiéﬁgélk, an estimate of which
satisfies the constraints is the maximizer oieof the likelihoodL (f) associated
with (42). From a Bayesian viewpoint, this is equivalent to usihgs a plug-in
estimate ofx, employinglg(f) as the prior distribution of and estimating by
the mode of its posterior distribution, which is proportional to

(43) expl—3(F - TE7XF -} r(®).

The posterior mode is the point iR which is closest tdf with respect to the
metric induced byi. Hence, unlesge R, the mode will occur on the boundary
of R, where the multivariate normal contours are tangerR.td he maximization
of (43) is equivalent to the minimization afl/2)f" £~ — TS~ subject to

[b2:b3: -+ by Jf > —b1f1, where the vectob; has generic entryy, =
(—1)k+’(’t‘)aktl(k >1),t=2,...,kmax. This is a simple problem in quadratic
programming, for which software is publicly available; for instance, Goodall
(1995) provides a basic S-PLUS implementation. Table 7 contain§ Wigch
maximizes (43) withf equal to the estimates of Richardson and Green (1997)
given in Table 5.

TABLE 7
Mode of (43), galaxy data, f is the Richardson and Green (1997)estimate
givenin Table5
k 1 2 3 4 5 6 7 8

fp, 0.000 0.000 0.061 0.128 0.181 0.198 0.160 0.109

k 9 10 11 12 13 14 15

fr 0.071 0.041 0.023 0.013 0.007 0.003 0.002




NUMBER OF COMPONENTS IN A FINITE MIXTURE 2063

TABLE 8
Estimate of the mean of (43), galaxy data, T is the Richardson and Green
(1997)estimate given in Table 5. The estimate has been rescaled
inorder that ", fr =1

k 1 2 3 4 5 6 7 8

fp, 0.000 0.000 0.061 0.126 0.182 0.197 0.156 0.109

k 9 10 11 12 13 14 15 > 16

fr, 0.069 0.040 0.023 0.013 0.008 0.005 0.003 0.008

Another estimate of, which satisfies the constraints (36) and does not lie on
the boundary oR, is the mean of the distribution (43), which can be estimated by
averaglng independent draws from the posterior (43). However, drawing from the
N(, %) distribution and using a rejection technique can be very inefficie®t s
in the tail of the distribution. When this occurs, Gibbs sampling provides a more
efficient alternative; working in terms of the distribution of tﬁé’s, a multivariate
normal restricted to the positive orthant, leads to full conditional distributions that
are univariate normals restricted to the positive reals. Table 8 contains an estimate
of the posterior mean computed from,200 draws from (43), obtained using
rejection, withf being Richardson and Green’s (1997) estimate for the galaxy data.
On the whole, the mean of (43) agrees with the estimate of Richardson and Green
(1997), although it tends to give some more weight to models with a larger number
of components. Table 9 displays tjﬁ,é’s corresponding to the estimate of the mean

of (43) given in Table 8. These estimates of ;fi&s agree with those reported in
Table 6 for values ok up to 9, then they drop off much more regularly while
remaining positive.

4.4. The number of nonempty components. Bayesian and classical analyses
of the same data may lead to widely contrasting conclusions about the number

TABLE 9
Estimates of kar corresponding to the mean of (43) givenin Table 8

k 1 2 3 4 5 6 7 8

kar 0.0000 0.0000 0.0612 0.1180 0.1536 0.1395 0.0766 0.0370

k 9 10 11 12 13 14 15

f',:r 0.0146 0.0033 0.0019 0.0007 0.0003 0.0002 0.0002
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of mixture components. A stylized account of a typical situation is as follows:
a classical analysis identifié&scomponents as sufficient to provide a good fit to
the data. On the other hand, the posterior of the number of components assigns
considerable probability to values &f> k. Moreover, the posterior predictive
distribution, conditional o, of the next observation remains essentially the same
for all k > k. Much of this divergence of conclusions derives from the use of the
same term, in the two approaches, to denote different entities. In the Bayesian
approach the parametér denotes the number of components in the mixture
model, not the number of components from which data are actually observed. It
is instead this second meaning that is attached to “number of components” in the
classical approach; accordingly, determining the number of components amounts
to finding k such thatk mixture components afford a good fit of the data. The
difference between the two approaches can be highlighted by positing a very small
sample size, say = 3; the classical approach will point at just one component,
while the posterior ofk will be much the same as the prior. In the Bayesian
approach it is quite possible for the posteriorkafo assign much probability to
values larger than the number of components from which the data have originated.
In fact, in Section 4.2 it was shown that, for a certain prior distribution, when
n = 82 the posterior probability of three components is no larger than 0.8623,
whatever the data are. This occurs because the posterior probabilities of four
and more components cannot be too small, since they also account for allocation
vectors with only three nonempty mixture components. As noted in Section 4.2,
the strength of this link depends on the prior distribution of the mixture weights
and it tends to abate as the sample size increases. However, the usefulness of the
posterior ofk, as a tool for selecting or estimating the number of components
in a mixture, tends to be put in question by the fact that it may, to a very large
extent, reflect probability mass associated with membership vectors that allocate
observations to fewer thancomponents.

In summary, while the classical approach addresses the question:

Q1. How many components are needed to fit the data well?
The posterior ok is suited to answer:

Q2. How many components are likely to be in the model that generated the
data?

While Q2 is concerned with the number of components in the mixture, Q1 deals
with the number ohonempty components. Since the Dirichlet prior on the mixture
weights determines how likely empty components are to arise, it appears that the
answer to Q2 depends on the prior specification more than the answer to Q1. This
section seeks to pursue in a Bayesian way the objective of the classical approach,
by deriving an expression for the posterior distribution of the number of nonempty
components.
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Let 2 denote the number of nonempty components in the mixture. The joint
prior distribution of the number of componeritsand the membership vectogs
induces a prior oth. Sinceh < k, one has

fy=Y mftlk), h=1..,n.

k=h

Let g;; be the set of all membership vectorsgn which assign observations to
exactlys components,

k
(44) = 9.

t=h
Then the conditional distribution of given k£ can be computed by summing
f(glk, i) overgy,

(45) iy =" f(glk, ax), h=1,....kAn.
g<g)
The following proposition provides a representationfah|k) which makes its

computation feasible for sample sizes up to about 100; for larger samples sizes an
estimate can be obtained by stochastic simulation.

PROPOSITION 4.2. Consider the model of Section 2 under Assumptions
A.1 and A.2 and suppose that all mixture components are equivalent. Let d =
d(n1, ..., np) bethe number of distinct entries in the vector (n1,...,n;)"; also
let my, ..., my bethefrequenciesof thedistinct ;’sin (ng, .. ., np)". Then

_ Tka) [k
AU I (ko + n) <h>

(46) O<ny<---<my

Note that the sum in (46) does not involkgthis allows one to easily obtain
f(h|k) with k > h from f(h|k) with kK = h. Therefore, one only needs to compute
the sum in (46) at most times. The total number of terms in thessums is the
numberp(n) of partitions ofn into integer summands without regard to order;
tabulated values op(n) are in Table 24.5 of Abramowitz and Stegun (1964).
Figure 1 contains a plot of the prior distribution kfcorresponding to the prior
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FiG. 1. Prior distribution of the number # of nonempty components when n = 82, n(k) =
1 knhok=1,..., kmax=30and « = 1.

used by Richardson and Green (1997) for the galaxy data. The computation was
done in Fortran and took six minutes on a PC with a 1.1 GHz processor.

The posterior distribution of the number of nonempty components can be
written as

(47) fhlx)=">"m(klx) f(hlk, x), h=1,...,n.

k=h

The following result provides a representation of the posterior of terms of
the f,’s, the portions of the marginal likelihoods corresponding to no empty
components.

PrROPOSITION 4.3. Consider the model of Section 2 under Assumptions
A.1 and A.2 and suppose that all mixture components are equivalent. Then

I'ka) T(ha+n)
Fka+n) T(ha)

_ IS (¢
(48) f(hIX)—f(x)];n(k)<h>

Since the prior distribution of is only specified indirectly, through the priors
onk and the mixture weights, one may prefer to consider, rather than the posterior
of h, the marginal likelihoodf (x|k) for A nonempty components. This quantity is
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FIG. 2. Estimatesof f(x|k) and f(x|h) for the galaxy data, both normalized to sumto 1. Circles
denote the estimate of f(x|k) reported in Table 8; dots are the estimate of f(x|h) obtained using
the f}:r sgivenin Table 9.

readily derived from (48):

16 =505 2700 ) Faa v o

Estimates of f(x|h) are obtained by replacing th¢,’s with the estimates
produced in Section 4.3. Figure 2 displays estimates(ofi), normalized to sum

to 1, along with normalized estimates of the marginal likelihogds|k), for the
galaxy data using the prior of Richardson and Green (1997). As one would expect,
the marginal likelihoods of the number of nonempty components favor a smaller
number of components than the posteriok péffectively narrowing the plausible
range of normal components in the observed data to between three and eight.

As a conclusion, note that the path here followed from estimates ofitheo
estimates of thef,'s to estimates off (x|i) can also be travelled in the opposite
direction. For instance, it would be immediate to obtain estimatg¥jfc) using
Richardson and Green’s (1997) reversible jump algorithm. These could then be
turned, using (48), into estimates, up to a proportionality constant, oj‘,fl’m
and finally estimates of the marginal likelihooggs automatically satisfying the
constraints (36).
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APPENDIX: PROOFS

PROOF OFLEMMA 3.2. The inverse image undéf, of g € &, consists of
all the g € g, which differ from g only in that the nonempty components in each
class can be any of the components in the class that are smaller,thather
than being the first ones. W # i(¢), there arec(m,t) components inC(m)
no larger thary, of which only &, are nonempty; this yield$"}"") ways of
selecting the nonempty components out of dte, r) candidates. A%}, C 47,
component: is nonempty; this leaves;;, — 1 nonempty components to be
selected among(i (1), t) — 1 candidates i (i (1)), yielding (°(’(’) 1) possible
selections. Multiplying together the numbers of possible selectlons invilg
classes yields (19).0

PROOF OF LEMMA 3.3. Use in (9) the partition of; given in (17) to
obtain f* =3, %, de% f(xlz, g, ¢:) f(glt, ar). Replace the inner sum with the
expression in (20)f* = Y, Vi Ygee, £ (X1, g, @) f (glt, ;). Next recall that
&n C 9»; and use C.1 and C'Z‘t* = Zheﬂ’, atsy;i de&h fxls, g, &) f(gls, as).
Then use again (20) and then (21) to prodyige= Y, c 5, ars(v4/ V) deg,,; f(x]
5,8, 05) f(gls,as) = D peg a,s(y}i/y}f)fh From the partition of#, in (15) it
follows that f* = Zi:l Zhe&t’; atr()/h/)’ )fh = Zi:l Ay Zhe}t’; I(he %rt)(y;i/
y}{)th, where the second equality uses the relationship in (16). Now (22) follows
since, for allh € #, I(h € #!) = 0 implies thaty, = 0. To see this consider
h € #\H.. Sinces(h) =r, h € # would imply h € #! contrary to the
hypothesis; henck ¢ #; and from Definition 3.7,/ =0. O

PROOF OF THEOREM 3.2. Substitute formula (22) in (11) to obtaiff =
Z’; 10kt Z§ 14sr Zheﬂ, (y,;/y,;)f,j Next recall thatai,a; = ai, and inter-
change the order of the two outer sunfis= Z, 1 Akr Zf:, Zhem(yg/y}{)f}j =

Z —1Gkr Dpeser fh (1/y}{) Zt _,v}. Finally, use (24) to produce (23). To
prove (25) replacg”k in (12) with the expression provided by (22) with= k.
O

PROOF OF COROLLARY 3.1. Part (i) follows from Lemma 3.1 and Theo-
rem 3.2. Equations (31) and (32) of part (ii) are obtained by replagingn (26)
and (27) with the expression given in (10) and usig = k«. Part (iii) follows
straightforwardly from part (ii) witw = 1. O

PROOF OF LEMMA 3.4. LetD = {dy} with D = BC. Then D is lower
triangular with generic elementy, = >7_; byrcre = S0 _ (=D bybyy =
Z’,‘:,(—l)’”bk,brt, with the last equality holding sinc# is lower triangular.
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It then immediately follows thaD has unit diagonal elements, since so Bas
Therefore, it only remains to show thdt, = 0, k > ¢. Now use the definition
of by, and Condition C.2,

k k r
dig =3 (=1 (r ) i (:) ar

r=t

= 3 1r+t K r! — k £ 1r+t k—t
_é(_) r!(k—r)zzz(r—z)z“"’_<t>“kfz(—) (k_,,).

r=t

Next, change the summation indexjte= r — ¢ to obtain

k—t k—t
dio= () aw 072 (S0 )= (V) v (4 1) =0
j=0 j=0

as the sun}_; is null because of a basic property of binomial coefficients [see,
e.g., Abramowitz and Stegun (1964), page 10, Property 3.1[1].

PROOF OFPROPOSITION3.4. In the formula forf; given in (26) withk > n,
repIacef,Jr with the expression in (35) to produce

n

fi= () an é(—l)f*’ (1 )aws

=1

=;Zlakrfré<—1>f+’ (5)(})
(49) =;Zlakrfr (5) S - (527):

t=r
Call S the inner sum and rewrite it by changing the summation indexsta — r

and making use o, " ) = ("),

(50) S:ig(—l)j (";’").

Now, if n — r is even, add: — r — 2j to the exponent of—1). This leavesS
unchanged, so that= Y"_0(~1)"~"~/ (") = (%), where the last equality
follows from a property of the binomial coefficients [see, e.g., Abramowitz and
Stegun (1964), Section 24.1.1, Relations II.B]xlf- r is odd, premultiply the
sum3}_; in (50) by —1 and addn — r — 2;j to the exponent of—1), yielding

S =—(*""1. Thus, in generals = (~1)"~"(*."~1). Finally, substituting the
above expression df for the sum}_, in the right-hand side of (49) and changing
the index fromr to ¢ yields (37). O



2070 A. NOBILE

PROOF OFPROPOSITION4.1. Rewrite (39) as follows:

kAn

(51) 7 (klx) = Z fdn/ Z b,

where d;, = n(k)(z)akh and b, = Z?ihn(j)(;;)a‘,-h. It is immediate that a
maximizer hasf}:r =0, h > k A n, for otherwiser (k|x) could be increased by
simply setting these components to Odaleaving the other ones unchanged.
Suppose next tha{th}Zzl has at least two nonzero components: there exist
t,ref{l,...,kAn}, t#r,such thatftT #0, f;r = 0. Without loss of generality,
assume that

(52)

U‘|®‘
Q.|Q..

Deflneanewvecto{rfh}h 1 With ft ft + (b, /bt)f, , f, =0, fh _fh,h #t,r.

One can easily verify that replacmg, with f; in the right-hand side of (51)
leaves the denominator unchanged while (52) ensures that the numerator does not
decreasey X fudy > YK fld),. Therefore one can replagg with f, in (51),

thatis, select one of the nonzero components, set it to 0 and correspondingly adjust
the other one, without decreasingk|x). An appeal to induction completes the
proof. O

PROOF OFPROPOSITION4.2. Substituting in (45) (glk, ax) from (3) and
using the fact that all components are equivalent, one obtains

B [(ka) & T(a+n;)
S ki) = Zk Pke+n) ;5 T

€Fn

The sum is over vectorg with exactlys nonempty components, so oriiyterms

in the products are not equal to 1. Since the terms in the sum do not depend on
which components are nonempty, the sum is equ(ai‘ll)tdmes asum oveg,z, the
subset ofg;, comprising vectors which allocate observations to all/thaixture
components. Therefore,

_ Tka) [k F(a+n])

The terms in the above sum dependgonly through(ny, ...,n,) . Therefore
one canreplace the sum oﬁ}with a sum over all partitions of theobservations
in 4 groups. Since to each partitiofy,...,n;)" there corresponcqnl " nh)
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membership vectors igz, one has

_Thke) (K no Y Retn)

nj>0j=1..., h j=1
np+---+np=n

Finally, since the terms in the sum are invariant to a change in the orderof'the
the sum above can be replaced by a sum over ordeysdAs to each ordered

vector(ny, ..., np) ' there correspon@llf’”md) unordered ones, (46) follows[]
PROOF OFPROPOSITION4.3. The conditional distribution af givenk andx

in (47) can be obtained by summing the conditional distributiog givenk andx

over all membership vectors §) which allocate observations to exadklgompo-

nents;f (hlk, x) = degﬁ{f(ﬂk, 2) f(glk)}/f (x|k). Substituting this expression

in (47) produces

X falm k) — Sk g)f (glk)
h =
S ,;1 o X

8€Gh

1 o0
(53) Yok Y fxlk, &) f(glk).

Y k=h 8<g),

Consider now the inner sum in (53):

k
D fxlk g ) f(glh,ar) =Y Y flxlk, g, ) f(glk, o)

gegk 1=hgeg),

k
=33 fxlt. g b0 f(glt, ) ak

t=hgeg;

k
= Zakl‘y}i Z f(x|t’g’¢t)f(g|tvat)v

t=h ge&y,

where the first equality uses (44het second one follows from Conditions
C.1 and C.2 and the third uses (20). Now, when all components are equivalent
&y = % so that using again Conditions C.1 and C.2 one obtains

k
> flxlk, g o) f(glhow) =D aryy Y f(xlh, g, dn) f(glh, an)am

g€gh t=h g€y

k
+
=amfy, Y Vi
t=h
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with the second equality following from formula (28). Singe= (,ij) it follows
that the inner sum in (53) equa(t})akhf;, so that

_ IS (K
f<h|x>—f(x)§1n<k>(h)akh.

As an aside, note that the series in the right-hand side was already met in the
denominator of (39). Substitutingy;, with the expression in (10) and using
agr = ka yields (48). O
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