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WAVELET-BASED ESTIMATION WITH MULTIPLE
SAMPLING RATES

BY PETER HALL AND SPIRIDON PENEV

Australian National University and University of New South Wales

We suggest an adaptive sampling rule for obtaining information from
noisy signals using wavelet methods. The technique involves increasing
the sampling rate when relatively high-frequency terms are incorporated
into the wavelet estimator, and decreasing it when, again using thresholded
terms as an empirical guide, signal complexity is judged to have decreased.
Through sampling in this way the algorithm is able to accurately recover
relatively complex signals without increasing the long-run average expense of
sampling. It achieves this level of performance by exploiting the opportunities
for near-real time sampling that are available if one uses a relatively high
primary resolution level when constructing the basic wavelet estimator. In
the practical problems that motivate the work, where signal to noise ratio
is particularly high and the long-run average sampling rate may be several
hundred thousand operations per second, high primary resolution levels are
quite feasible.

1. Introduction. In this paper we suggest methods for online signal recovery,
when a noisy signal is sampled at discrete times and either the raw data, or an
estimator of the signal computed from the raw data, is recorded or transmitted
after a relatively short time delay. There may be no opportunity to go back and
re-sample the signal if it transpires that parts of the signal are so complex that
insufficient information was acquired in the first sampling operation. However,
there is a possibility of increasing the sampling rate online, if, at the current
sampling time, it appears that the rate is insufficient to capture important features
of the signal. Nevertheless, the long-run average cost of sampling, per unit time,
should not exceed a given bound, imposed (e.g.) by the capacity of the storage
device.

How should we shift from one sampling rate to another, and back again? What
sorts of gains in performance can we expect to achieve using this technology?
In the setting of wavelet estimators, we suggest an answer to the first of these
questions; and, for our particular rate-switching algorithm, we answer the second
question. Our results help to underpin recent accounts of this type of methodology,
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discussed by, for example, Chen, Itoh and Shiki (1998), Aldroubi and Gröchenig
(2001) and Anon (2002). Our main arguments and results may be summarized
in elementary language, even though their detailed description requires somewhat
intricate theory. We give the summary below.

A wavelet estimator is, of course, particularly good at recovering complex
signals from noisy data. Nevertheless, if the sampling rate is onlyρ, then a
wavelet estimator is unable to adequately approximate a signal whose frequency
approachesρ, particularly if that frequency is only exhibited over a short time
interval. Moreover, if the sampling rate is onlyρ, then we may not even be aware
that signals with frequency greater thanρ are present. However, a sudden increase
in frequency, at a level somewhat below the “base” sampling rate, sayρ = ρ1,
might be interpreted as suggesting that higher frequencies are present. Hence, an
increase in resolvable frequencies might reasonably be used to trigger an increase
in the sampling rate toρ2, say.

In a wavelet estimator, high-frequency terms are incorporated after an empirical
assessment, based on a threshold, of whether or not the coefficients of those
terms are significantly different from zero. We use the occurrence of one or more
relatively large values among the coefficients to indicate the presence of high-
frequency oscillations, and to trigger an increase in sampling rate, fromρ1 to ρ2.
Likewise, the absence of large coefficients among these terms is used to trigger a
return to rateρ1.

This algorithm has a number of variants, including (e.g.) using majority-type
rules, applied to sets of resolution levels, to define triggers for increasing or
decreasing the sampling rate, and using more than two different sampling rates.
An explicit restriction on the amount of time during which we sample at the higher
rate can be imposed to ensure a relatively early return to rateρ1 when there is
a danger of exceeding data storage capacity.

Of course, if the long-run sampling cost is kept fixed, then increasing the
sampling rate in some parts of the signal inevitably involves reducing it in
others, relative to the rate that would be employed if sampling were uniform.
This necessarily reduces the fidelity of the signal estimate there, measured
mathematically in terms ofLp distance, for example. However, in the context of
machine-recorded data that motivates our work, error variances are usually small,
and so theLp error penalties incurred by slightly reducing the sampling rate in
places where the signal is relatively “uninteresting” are not likely to be high.

The potential gain is that relatively high frequencies that would normally
be overlooked can now be recovered. Provided the time periods where these
frequencies occur are relatively short in duration, and assuming our algorithm
adapts sufficiently quickly, using a higher sampling rate there will require only
a modest reduction in the rate at the more common places where the signal is
“quiet.”

There is, of course, a vast and rapidly growing literature on statistical
properties of wavelet methods. We mention here only the papers of Donoho and
Johnstone (1994, 1995) and Donoho, Johnstone, Kerkyacharian and Picard (1995);
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further literature will be discussed in Section 2. Methods for optimal design, in the
setting of wavelet methods, have been suggested by Herzberg and Traves (1994)
and Oyet and Wiens (2000), although not in the context treated in the present paper.

2. Methodology.

2.1. Model for data generation. In practice, while digitally recorded data
might be the result of sampling at unequally spaced times, they would, never-
theless, involve sampling at times on a grid. (Not all grid points need have data
associated with them, however.) Reproducing an approximation to the true signal
may involve a mixture of imputation, to estimate the signal at grid points where it
was not sampled, and interpolation or smoothing, to reduce the impact of noise. If
the edge length of the grid isξ , then the grid points arekξ , for −∞ < k < ∞.

Usually, ξ would equal the minimum possible spacing between adjacent
sampling timesTi , which are indexed in increasing order, are distinct, are integer
multiples of ξ , and (conceptually) increase from the infinite past to the infinite
future. At timeTi we record datumYi , given by

Yi = g(Ti) + εi, −∞ < i < ∞,(2.1)

representing the value of the true signalg at timeTi , degraded by additive noiseεi .
Theεi ’s are assumed to have zero mean and varianceσ 2, and the threshold for the
wavelet estimator will be constructed so that it is proportional toσ and inversely
proportional to the square root of sampling rate. In this way it will reflect signal-
to-noise ratio.

The value ofTi is determined by previous data, and so is measurable in the
sigma-fieldFi−1 generated by the set of pairs(Tj , Yj ) for j ≤ i − 1. It will be
assumed that the distribution ofεi , conditional onFi−1, has zero mean and finite
variance and does not depend oni.

2.2. Data imputation. At any grid point t = kξ , not necessarily one of
the Ti ’s, we wish to estimateg(t) using the data at the possibly unequally
spaced timesTi . There is a range of ways of achieving this goal, adapted (for
example) from methods suggested for dealing with nonregularly spaced design
in more conventional problems where wavelet estimators are employed. See, for
example, Hall and Turlach (1997), where interpolation is suggested; Cai and
Brown (1998) and Hall, Park and Turlach (1998), where transformation and
binning are employed; Cai and Brown (1999), who used a universal thresholding
technique; Sardy, Percival, Bruce, Gao and Stuetzle (1999), who considered a
variety of different methods; Zhang and Zheng (1999), who addressed theoretical
issues associated with nonregular design; Kovac and Silverman (2000), who
discussed coefficient-dependent thresholding; Antoniadis and Fan (2001), who
developed a penalization approach; Delouille, Franke and von Sachs (2001),
Delouille, Simoens and von Sachs (2001) and Delouille and von Sachs (2002),
who introduced “design-adapted” wavelet methods for a variety of applications;
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and Pensky and Vidakovic (2001), who described theory for projection-based
techniques.

While these methods have excellent numerical and theoretical properties, and
can be expected to produce very good results in relatively familiar settings, not all
are suitable for online applications. This is particularly true of relatively computer-
intensive techniques, and of those that require that an overview be taken of the full
design distribution before determining how the final estimator will be constructed.
We shall borrow from Hall and Turlach (1997) and Hall, Park and Turlach (1998),
and at each grid pointkξ impute a datumZk , taking it to equalYi , whereTi is
chosen to be as close as possible tot subject to not exceedingkξ . DefineZt(s) to
equalZk for kξ ≤ s < min{(k + 1)ξ, t} and to equal 0 otherwise. The superscript
t indicates that the functionZt is based only on data that are sampled up to timet .

To fully appreciate the role played by imputation, it is important to realize that
the wavelet estimator will most likely appear only in the very last step of the
chain: “record data–store/transmit data–recover signal.” It is at this final stage that
imputation will occur, well after any decision has been taken about what to store
or transmit. Therefore, although it might appear as though some sort of “internal
sampling” at the higher sampling rate might avoid the need to interpolate, that will
seldom be possible.

2.3. Wavelet estimator. Let φ and ψ denote the “father” and “mother”
wavelet functions, respectively, and letr ≥ 1 be the least integer such that∫

urψ(u) du �= 0. That is,ψ is of order r . Write p for the primary resolution
level, putpi = 2ip for i ≥ 0, and defineφj(t) = p1/2φ(pt − j) and ψij (t) =
p

1/2
i ψ(pi t − j).
The wavelet coefficients forg are bj = ∫

gφj and bij = ∫
gψij , and the

corresponding expansion ofg is

g = ∑
j

bj φj +
∞∑
i=0

∑
j

bij ψij .(2.2)

The estimators ofbj and bij , based on data observed up to timet , are b̂t
j =∫

Ztφj andb̂t
ij = ∫

Ztψij , respectively. The hard-thresholded form of our wavelet
estimator ofg is

ĝt = ∑
j

b̂t
jφj +

q−1∑
i=0

∑
j

b̂t
ij I (|b̂t

ij | ≥ δ)ψij ,(2.3)

where δ > 0 denotes the threshold, andq > 1 needs to be chosen. A soft-
thresholded estimator may be constructed similarly.

We shall take

δ = Cσ(ρ−1 logρ)1/2,(2.4)
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whereC > 0 is a constant. This choice reflects the fact that the variance ofb̂t
ij is, in

the case of truly independent errors and to a good first approximation, proportional
to σ 2/ρ. Owing to the sequential nature of sampling, the errors are not actually
independent, but̂bt

ij is, nevertheless, a martingale, and using that result the same
variance approximation can be derived.

In practice,C andσ 2 usually would be chosen through prior experience with
both signals and equipment. In the type of application we envisage, there would be
no opportunity for a technician to adjust algorithmsin situ; the equipment would be
expected to function as a “black box.” Therefore, the only options are fixed, prior
choice of parameters, or automatic, locally adaptive choice. Arguments based on
the needs for robustness, real-time analysis and computational economy, and the
fact that traditional measures of performance do not apply in this problem, relegate
in favor of the latter approach.

It is conventional to takeC = 2 in the threshold, althoughC > 21/2 is adequate
for our purposes, as we shall show in Section 4. In the case of heavy-tailed data
one could use a larger moderate-deviation compensator than the factor(logρ)1/2

that we employ in (2.4). The compensator logρ is sometimes suggested as an
alternative.

2.4. Time delays in near-real time inference. A feature that distinguishes the
context of the present paper from more conventional curve-estimation problems is
its “online, real-time” nature. There are two aspects to this, arising when recording
and “playing back” the data, respectively. When recording the data we wish to
detect sharp increases or decreases in frequency relatively quickly, and to change
the sampling rate accordingly. Here, the time-delay should ideally be very small.

The recorded data might, for example, represent acoustic information stored on
a CD track that we have played up to timet . We wish to produce an approximation
to the signal att . When playing the data back in this way it will usually not be a
problem if we interpret “att” a little liberally. For instance, it is not essential that
the sound we hear att represent the signal which, at that very time, is being uptaken
from the CD by the laser reader. We are prepared to accept a short time delay, the
length of which is not as crucial as in the recording phase. In other settings, for
example, where the recorded data represent remotely sensed information that will
be subjected to detailed analysis in a laboratory, time delay at playback will be
even less of an issue.

As we shall show in a moment, it is convenient to take time delays at
both recording and playback stages to be inversely proportional to the primary
resolution level,p, which is an increasing function of the long-term average
sampling rate. Hence, the high sampling rates of contemporary digital equipment
lead to low time-delays. Moreover, the low noise that often characterizes machine-
recorded data, and which permits even larger primary resolution levels, further
reduces time-delay.
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We shall assumeφ andψ are continuous on the real line and have compact
support, contained within the finite interval[a, b], wherea < 0< b. It follows that,
for a given indexi, an integral of the form

∫
αψij , for a functionα, involvesα(t)

only if t ∈ [(a + j)/pi, (b + j)/pi]. If the integral depends onα(t), then it does
not depend onα(s) for s > t +p−1

i (b−a), and, hence, not fors > t +p−1(b−a).
A similar argument applies to integrals of the form

∫
α φi .

Therefore, if it is acceptable to have a delay ofτ ≡ (b − a)/p time units,
between when a signal att is sampled and when its value att is estimated, thent
can be taken to be an “interior” point of the estimator. In this case estimatingg(t)

by ĝt+τ (t) is appropriate. The latter is identical toĝs (t) for anys ≥ t + τ and, in
particular, is identical to the familiar wavelet estimator that would be used if the
full dataset, in infinite time, were employed. It is, therefore, no longer necessary
to employ the superscript on̂gt , b̂t

j andb̂t
ij , and we shall usually not use it in the

sequel.
The time taken to respond to a change in signal frequency, by increasing or

decreasing the sampling rate, will usually equal an integer multiple ofξ that is
not less thanτ . To appreciate how smallτ might be in practice, note that the
optimal choice ofp, for a high sampling rate, is large. Indeed, the appropriate
value of p−1 is approximately equal to(κσ 2/γ 2)1/(2r+1)ρ−1/(2r+1), whereσ 2

denotes noise variance,γ 2 is the average of the squaredr th derivative of the
signal,κ is a constant depending only on the wavelet type, andρ (expressed as a
frequency in Hz, denoting the number of samples per second) is the sampling rate.
See Section 4 for details. Usually,κ1/(2r+1) is only a little greater than 1,σ 2 is
small,γ 2 is moderately large, andρ−1/(2r+1) is small; see below for discussion.
As a result,τ can be kept to a small fraction of a second.

Sampling rates (and, hence, values ofρ) for familiar digital consumer devices
are generally quite high. They vary from 8 kHz (for digital telephony), through
32 kHz (digital radio), 44.1 kHz (for conventional CDs) and 96 kHz or 192 kHz for
DVD audio, to several mHz for new multi-channel systems. Taking these values
to the power 1/5, so as to model a second-order smoother, gives a small value
for ρ−1/5. For example, it is 0.1 in the case of a 100 kHz sampler.

2.5. Rate-switching rule. Our rule operates on the principle that a signal
can be deemed to be relatively erratic, and the sampling rate increased, when
the thresholded terms in the double series at (2.3) start to make significant
contributions. In theory, the sampling rate can be varied virtually in the continuum.
However, we shall treat only a two-rate regime, where the estimator is constructed
using rateρ1 on the majority of occasions, but the rate is increased toρ2
on relatively rareoccasions when high-frequency thresholded terms start to be
included in the estimator. Likewise, a reduction in the sampling rate, fromρ2
back toρ1, is triggered when the threshold inequality|b̂ij | ≥ δ starts to fail to
be satisfied.
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Therefore, the determination of sampling rate, which is done only at the
recording step, uses just the wavelet coefficientsb̂ij , not the full estimator̂g. The
latter is employed only at the playback step. Nevertheless, our analysis will treat
the two steps together, because the strategy employed during recording must be
justifiable by good performance during playback.

2.6. A specific variable-sampling rate estimator. If, at the current time, we are
sampling the signal at time points that are integer multiples of�ξ , we shall say we
are sampling at rateρ1 = (�ξ)−1. If we are sampling at all integer multiples ofξ ,
we shall say we are sampling at rateρ2 = ξ−1.

Letp denote a primary resolution level (appearing in the definition of estimators
in Section 2.3) that is appropriate when the sampling rate is constant atρ1 over
a long period. Choice ofp will be discussed in Section 4. We shall use thisp

throughout, even when the sampling rate isρ2, and rely on thresholded terms to
produce improved performance when the signal is relatively erratic. However, the
values ofq at (2.3), andδ at (2.4), will be rate-dependent. Each will be given the
subscriptj when the sampling rate isρj .

Let τ0 denote the least integer multiple of�ξ that is not less than(b − a)/p,
whereb − a is an upper bound to the widths of the supports ofφ andψ . Then
the time-delayτ , introduced in Section 2.4, does not exceedτ0. Putq = q2 if the
sampling rate has beenρ2 for at least the lastτ0 time units, andq = q1 otherwise.
Likewise, recalling (2.4) and definingδj = Cσ(ρ−1

j logρj )
1/2, we employ the

thresholdδ2 when the sampling rate has beenρ2 for at least the lastτ0 time
units, and we use the thresholdδ1 otherwise. In practice, the value ofσ would
be replaced by a value determined after extensive experimentation with real data.
Section 4 will discuss choice ofq1, q2 and the constantC. We could use a smaller
time delay thanτ0 when sampling at the higher rateρ2, but choose not to so as to
simplify discussion.

The actual estimator used is given at (2.3). There we taket = s +τ0 and evaluate
the estimator ats. It follows that the coefficient estimatorŝbj and b̂ij have the
same form they would if the full dataset, in infinite time, were employed. Using
this interpretation of̂bj andb̂ij , we define

ĝ(s) = ∑
j

b̂j φj (s) +
q−1∑
i=0

∑
j

b̂ij I (|b̂ij | ≥ δ)ψij (s),

where the rule given in the previous paragraph is used to determineq andδ.
Next we define the mechanism for changing the sampling rate. If we are

currently sampling at rateρ1, then, at timet = k�ξ , we increase the rate toρ2
if and only if at least one of the values of|b̂ij |, for j such thatψij (t) �= 0 and fori
such thatpi exceeds a predetermined lower boundπ1, exceeds the thresholdδ1. If
we are currently sampling at rateρ2, and have been for at leastτ0 time units, we
continue at this rate until the next timet = kξ at which none of the values of|b̂ij |,
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for π2 ≤ pi ≤ pq2 and j such thatψij (t) �= 0, exceedsδ2. Hereπ2 is another
predetermined lower bound.

Our regularity conditions onq1 and q2 [see (4.3)] do not requireq1 < q2.
However, takingq1 < q2 does reflect the fact that a higher sampling rate allows
a greater number of wavelet coefficients to be reliably estimated. Similarly, our
assumptions do not demand thatπ1 < π2, but this restriction is not unnatural, for
the following reason:π1 can be viewed as the highest frequency which the low-
sampling-rate estimator is capable of adequately resolving, andπ2 as the lowest
frequency for which sampling at the higher rate is necessary in order to produce
an adequate estimate.

Of course,δ1 > δ2, but this does not contradict the fact that exceedences of
the thresholdsδ1 andδ2 are used as parts of rules for increasing and decreasing
the sampling rate, respectively. The relatively large size ofδ1 reflects only the
fact that sampling at the lower rate produces relatively noisy estimates of wavelet
coefficients, which require a relatively high threshold in order to guard against
incorrect decisions caused by stochastic variation. It is the values ofπ1 andπ2,
not those ofδ1 and δ2, which are instrumental in determining whether high- or
low-frequency features are present.

Therefore, the rule for switching from rateρ1 to ρ2 is to increase the rate if and
only if

|b̂ij | > δ for some pair(i, j) with ψij (t) �= 0 (at current timet)
andπ1 ≤ pi ≤ pq1,wherep = o(π1) andπ1 = o(pq1);

(R.1)

and the rule for switching back again is

|b̂ij | ≤ δ for each pair(i, j) for whichψij (s) �= 0 for
somes ∈ [t − τ0, t] (wheret denotes current time)
andπ2 ≤ pi ≤ pq2 [whereρ1 = o(π2) andπ2 ≤ pq2].

(R.2)

[Both (R.1) and (R.2) include regularity conditions which will be used in
Section 4.] An overview of the algorithm, after these rate-switching rules are
incorporated, is given in the flow chart in Figure 1.

Constraints on the amount of time spent sampling at the higher rate can be
introduced to prevent the storage device from filling too rapidly. The algorithm
depends on a number of “tuning” parameters, in particular,p, q1 andq2, π1 andπ2,
the constantC in the threshold formula (2.4), and, of course, the sampling rates
themselves. In practice these quantities would be chosen from practical experience
with the signal type.

2.7. Using local Fourier methods with windows of fixed length. A reviewer
has suggested that our wavelet approach might not be competitive relative to
a classical local Fourier method using a window of fixed width. However, if,
for example, the signal were to have a discontinuity within the interior of the
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FIG. 1. Flow chart summarizing rate-switching algorithm.

window, or if the values of the signal at either end of the window were unequal,
then the Fourier approach—which would perform poorly for functions with
discontinuities, interpreted in a periodic sense—would not give good results. In
principle this problem could be overcome by choosing the interval adaptively
so that discontinuities were situated at its ends. However, that would require
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continuous local testing for change-points and would arguably be difficult to
implement in an on-line fashion. Moreover, such an approach would not address
cases where function values at the ends of the interval were different, or where
other sorts of signal irregularities, readily adapted to by wavelets, were present.

This issue, of the noncompetitiveness of fixed-bandwidth, local-Fourier meth-
ods relative to wavelet ones, in the context of signals with discontinuities and other
types of irregularity, is unrelated to our rate-switching scheme. It arises equally in
conventional function estimation problems.

3. Numerical properties.

3.1. Smooth signals with aberrations. Here we illustrate performance in the
case of a smooth sinusoid with four different aberration sequences, depicted in
Figures 2–5, respectively. Figures 2 and 3 deal with aberrations of increasing
amplitude and fixed frequency, and increasing frequency and fixed amplitude,
respectively, added at extrema (i.e., at peaks and troughs) of the sinusoid. Figures
4 and 5 address the same respective types of aberration, but added at relatively

FIG. 2. Analysis of noisy observations of g1. The first panel shows the noisy data at a sampling
rate of 100 Hz, the second panel shows the true signal [i.e., a graph of y = g1(t), where g1 is
given by (3.1)], and the third and fourth panels show the estimates of g1 obtained by dual- and
constant-rate sampling, respectively. Here and in subsequent figures, the superimposed dashed line
indicates whether the algorithm was operating at the “high” or the “ low” sampling rate.
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FIG. 3. Analysis of noisy observations of g2. The first panel shows the true signal [i.e., a graph
of y = g2(t), where g2 is given by (3.2)], and the second and third panels show the estimates of g2
obtained by dual- and constant-rate sampling, respectively.

“linear” places between peaks and troughs. Formulae for the true functions,
g = g1, . . . , g4, used to produce the respective figures, are given at (3.1)–(3.4).

Figures 3–4 have three panels, showing, respectively, the true signal, its wavelet
estimate based on dual-rate sampling and its estimate in the case of fixed-rate
sampling using the average of the sampling rates employed in dual-rate sampling.
In particular, for a given realization we calculated the number of sampling
operations used by the dual-rate algorithm to produce the estimate in the second-
to-last panel; and we then sampled at a constant rate, using this number of sampling
operations, and employed the data so obtained to produce the estimate in the last
panel. Similar results were obtained if, in the constant-rate case, we sampled at
the rate obtained by averaging over allB = 500 Monte Carlo simulations in the
dual-rate case.

The last three panels of Figure 2 show, respectively, the results described above.
The first panel of Figure 2 depicts the noisy dataset from which the estimates in
the third and fourth panels were computed. We have not shown the noisy data for
the other three signals, since doing so adds little of interest.

The superimposed dashed line, in the second-to-last panel of each figure,
indicates sampling rate as a function of time. Where the line is at level 0 or 0.5
the sampling rate was low or high, respectively. It can be seen that the rate actually
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FIG. 4. Analysis of noisy observations of g3. Panels are in the same order as in Figure 3.

switches up and down several times during high-frequency oscillations. (Using
a slightly modified rate-switching rule virtually eliminates these fluctuations and
improves performance, but we do not show those results here.)

For each panel of each figure the results shown are those for the realization
that gave, among allB = 500 realizations of data corresponding to that figure,
the median value of integrated squared error. (For two of the signals we actually
conductedB = 1000 simulations to check whether the results were significantly
different, but they were, in fact, virtually identical. The results reported here are
all for theB = 500 case.)

Following standard practice we illustrate results in the casesp = 1 andC = 2,
although more favorable results were obtained for different values. In the algorithm
discussed in Section 2 we tookq1 = 4, q2 = 5, π1 = 2 andπ2 = 3.

The functionψ was chosen from the Daubechies family of compactly supported
wavelets with extremal phase andr = 5 (i.e., with the length of its support equal
to 2r − 1 = 9).

Signals were sampled at discrete points in the interval[0,100]. To each sampled
value, Normal N(0,0.152) noise was added. The edge length of the basic sampling
grid (i.e., the minimum permitted spacing between adjacent sampling times) was
chosen to beξ = 0.01, which would correspond to a sampling rate of 100 data per
unit time if sampling were performed at each grid point. This rate, which we shall
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FIG. 5. Analysis of noisy observations of g4. Panels are in the same order as in Figure 3.

refer to as “100 Hz,” is the rate used to construct the picture of noisy data in the
first panel of Figure 2.

For our dual-rate algorithm, in the low-rate mode we sampled every sixth
observation. That is, in the notation of Section 2.6, we took� = 6. Equivalently,
ρ1 = 100/6 ≈ 17 Hz. In the high-rate mode we sampled at each grid point, so
thatρ2 = 100 Hz. Sampling at the high rate continued until the end of a minimal
time period, of length(2r − 1)100(6p)−1 + 1 ≈ 150 units, in which no wavelet
coefficient exceeded the threshold.

For each signal type, observations from the first 5% of the time interval[0,100],
sampling at the higher rate, were used to estimate error variance and, thereby,
compute thresholds. In particular, we did not assume error variance to be known,
although in practice it would most likely be fixed in advance.

Given an interval[a, b], let I[a,b](t) = 1 or 0 according ast ∈ [a, b] or t /∈ [a, b].
In this notation, formulae for the functions shown in the first panels of Figures 3–5,
and second panel of Figure 2, are, respectively,

g1(t) = 2.4 sin(0.06πt) + 0.2525 sin{8π(t − 24)}I[22,26](t)
+ 0.5050 sin{8π(t − 42)}I[40,44](t)

(3.1) + 0.7575 sin{8π(t − 58)}I[56,60](t)
+ 1.1 sin{8π(t − 75)}I[73,77](t),
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g2(t) = 2.4 sin(0.06πt) + 0.35 sin{2π(t − 24)}I[22,26](t)
+ 0.35 sin{4π(t − 42)}I[40,44](t)

(3.2) + 0.35 sin{6π(t − 58)}I[56,60](t)
+ 0.35 sin{8π(t − 75)}I[73,77](t),

g3(t) = 2.4 sin(0.06πt) + 0.2525 sin{8π(t − 32)}I[30,34](t)
+ 0.5050 sin{8π(t − 51)}I[49,53](t)

(3.3) + 0.7575 sin{8π(t − 67)}I[65,69]
+ 1.1 sin{8π(t − 84)}I[82,86](t),

g4(t) = 2.4 sin(0.06πt) + 0.35σ {2π(t − 32)}I[30,34](t)
+ 0.35 sin{4π(t − 51)}I[49,53](t)

(3.4) + 0.35 sin{6π(t − 67)}I[65,69](t)
+ 0.35 sin{8π(t − 84)}I[82,86](t).

These represent a basic sinusoid, with frequency 0.06 and formulag(t) = 2.4 ×
sin(0.06πt), to which are added, in the cases of functionsg1, . . . , g4, respectively,
(i) four aberrations, each with frequency 8π and with increasing amplitudes, and
each of duration four time units; (ii) four aberrations, each with amplitude 0.35
and with increasing frequencies [culminating in the frequency arising in case (i)],
and each of duration four time units; and (iii) and (iv) the respective versions of
(i) and (ii) where the four aberrations are added midway between extrema of the
sinusoid. (The aberrations are of the same duration in each case, although it may
appear that durations are longer in the cases of signalsg3 andg4.)

The following qualitative properties of dual-rate sampling are illustrated by
Figures 2–5. Performance advantages are generally most clear in particularly
difficult cases, where the aberrations are of relatively high frequency and low
amplitude and so are difficult to distinguish from noise. (The first of the four
aberrations added to the signal in Figure 2 is of just this type.) Even though the
advantages of dual-rate sampling become more evident as frequency increases, it
can, nevertheless, perform well even for relatively low-frequency aberrations (see
Figures 3 and 5). Its potential is most marked when an aberration is added to a part
of the signal which is changing relatively fast, such as to an extremum of the sine
waves (see Figures 2 and 3). However, in difficult cases, where the aberration is
of low amplitude and high frequency, it has much to offer in other cases too (see
Figures 4 and 5).

The mean integrated squared errors (MISEs) of the four signals, approximated
by averaging integrated squared errors over theB = 500 simulations conducted
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for each of the four signals, were (i) 0.348, (ii) 0.320, (iii) 0.341, (iv) 0.321
in the respective cases ofg1, . . . , g4, for dual-rate sampling; and, respectively,
(i) 0.963, (ii) 0.342, (iii) 0.965, (iv) 0.348 for constant-rate sampling with the same
average sampling rate. Noting that the MISE advantages of dual-rate sampling are
substantially greater in cases (i) and (iii) than in cases (ii) and (iv), one reaches the
expected conclusion that dual-rate sampling primarily overcomes problems due to
aberrations of a high-frequency, rather than low-amplitude, nature.

Indeed, on the basis of these results one might argue that, in MISE terms, the
advantages of dual-rate sampling are marginal in the cases of signalsg2 andg4. At
first sight this seems at variance with a visual inspection of the figures. However,
calculating mean integrated squared errors over only the four intervals, each of
length four time units, for each signal, one obtains instead the values (i) 0.202,
(ii) 0.180, (iii) 0.185, (iv) 0.162 in the dual-rate case, and (i) 0.869, (ii) 0.245,
(iii) 0 .763, (iv) 0.209 in the constant-rate setting. Therefore, in the cases of
g2 andg4, dual-rate sampling does confer an advantage in terms of its ability to
resolve the aberrations, although not as much of an advantage as in the cases of
g1 andg3.

3.2. Discontinuous signals with aberrations. In order to show that our
algorithm is not adversely affected by jump discontinuities in signals, we applied it
to signals which had high-frequency aberrations just before, or just after, or shortly
before or after, jumps.

Specifically, the functiong5 has jumps at points of increase or decrease in the
function, and one jump (the third) at a point which is both a point of increase and
a point of decrease. On the other hand, the “block” functiong6 has zero derivative
except at points that are either part of high-frequency aberrations, or are located at
jumps. Apart from the fact that we use different functions in the present section, all
settings (and, in particular, all tuning parameters) are the same as in Section 3.1.

Results are summarized in Figure 6, which shows (for each of the two signals)
the realization that gave the median value of integrated squared error out of the 500
simulations conducted. In the case of the signalg5, it can be seen that the isolated
discontinuity neart = 20 causes no problems for the rate-switching rule, and that
the method takes in its stride even the very large discontinuity neart = 40, which
has high-frequency aberrations on either side. The Gibbs phenomena which are
present, and which are related to the jump discontinuities, also appeared when our
experiments were conducted in the absence of the high-frequency aberrations (but
with the jumps still present). These phenomena are a feature of the wavelet method
rather than of the rate-switching rule.

The method also gives good results for the functiong6, although better
performance for such a signal (with orwithout the high-frequency episodes)
usually is obtained using a Daubechies wavelet with a smaller value ofr . (We
employed the same parameter values throughout our study, since we did not
wish parameter values to be confounded with function type when interpreting
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FIG. 6. Analysis of noisy observations of g5 and g6. The top two panels show the true functions.
Immediately below them are the respective estimates, obtained using the rate-switching rule.

the results.) The isolated discontinuities att = 20 andt = 80 are dealt with very
well, and the method also enjoys good performance around the pointst = 60 and
t = 63. The Gibbs effect to the right oft = 43 andt = 90 are caused by the large
discontinuities there.

Isolated jump discontinuities, such as those in the functionsg5 and g6, can
sometimes trigger an increase in sampling rate; the jumps may be “misinterpreted”
by the algorithm as very high-frequency phenomena. However, this does not cause
difficulty. When a sampling-rate increase occurs at a jump discontinuity, it elicits
extra information about the location and size of the jump, and that does no harm.
Moreover, the rate quickly switches down again after the jump, so little cost is
incurred through additional sampling.

For example, in the case of the functiong6, jumps at the points 20, 60 and 80
were sufficiently small not to trigger any rate increase. A rate change did generally
occur in connection with the larger jump at 40, but without detrimental effects on
the estimator. Indeed, the algorithm deduced that the jump was followed by high-
frequency events, and correctly maintained sampling at the higher level until the
high-frequency sinusoids were past. If the high-frequency events immediately to
the right of 40 were removed, then the algorithm returned quickly to the lower
sampling rate immediately after the jump.
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The functionsg5 andg6 are given by the following:

g5(t) = log(1+ 0.1t)I[0,20](t) + [exp{0.1(t − 20)} − 1]I(20,40](t)
+ log{1+ 0.1(t − 40)}I(40,60](t) + exp{−0.2(t − 60)}I(60,80](t)
+ 0.5 log{1+ 0.05(t − 80)}I(80,100)(t) + sin{9(t − 16)}I(15,17](t)
+ sin{8(t − 38)}I(37,39](t) + sin{7.3(t − 41)}I(40,42](t)
+ sin{9(t − 61)}I(60,62](t) + sin{9(t − 81)}I(80,82](t),

g6(t) = I(20,40](t) + 4I(40,60](t) + 6I(60,80](t) + 5I(80,90](t)
+ sin{9(t − 16)}I(15,17](t) + sin{9(t − 42)}I(41,43](t)
+ sin{9(t − 61)}I(60,63](t) + sin{9(t − 89)}I(88,90](t).

4. Theoretical properties. The main aim of this section is to establish, under
explicit conditions, the four properties below. Together they describe the manner
in which the rate-switching algorithm responds to different signal frequencies, and
the way in which it can increase the estimator’s overall performance. Proofs are
given in a longer version of the paper available on the web [Hall and Penev (2002)].

PROPERTY I (Sampling rate remains atρ1 during “quiet” periods). Suppose
we start at the left-hand end of a finite intervalI using sampling rateρ1, and that
the signal is relatively quiet inI. Then the probability that rateρ1 persists right
acrossI converges to 1 asρ1 → ∞. Moreover, the rate will quickly switch from
ρ2 to ρ1 if we start a quiet interval at the higher rate. See Theorems 4.1 and 4.6 for
details.

PROPERTYII (Sampling rate increases toρ2 when signal complexity increases).
Suppose the variable-rate estimator is operating at rateρ1 during a quiet period,
and then enters a period of relative activity. Then the algorithm will, with high
probability, trigger a switch from rateρ1 to ρ2 duringJ. See Theorem 4.4.

PROPERTYIII (Sampling rate remains atρ2 through periods ofhigh-frequency
fluctuations). Once the sampling rate has increased fromρ1 to ρ2, it stays there
with high probability, provided the signal is sufficiently noisy. See Theorem 4.5.

PROPERTY IV (Dual sampling rates can enhance recovery of high-frequency
oscillations, with little adverse affect on estimation of low-frequency features).
If sampling is undertaken at rateρ1, then the estimator is able to recover (in the
sense of consistent estimation) signals that haver continuous derivatives, and,
indeed, can recover fluctuations that have frequencies of smaller order thanρ1. If
sampling is at rateρ2, then frequencies of smaller order thanρ2 can be recovered.
The dual-rate estimator is able to consistently estimate high-frequency parts of the
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signal that would not be accessible using a constant-rate estimator with the same
long-run average sampling cost. This can be done without degrading, in first-order
asymptotic terms, the accuracy of approximation in time intervals where the signal
is of relatively low frequency. See Theorem 4.7 and the discussion at the end of
this section.

Our asymptotic arguments, based on high sampling rates, are justified by the
high rates and low noise levels which are commonly encountered in practice; see
Section 2.4 for discussion. We shall state our main results, and particularly the
regularity conditions, in such a way that the proofs do not require analysis at the
level of a martingale error process. Nevertheless, the results have direct application
in the latter context, as we shall relate.

Theorems 4.1–4.3 address performance of the wavelet estimator when sampling
is at a constant rate and the true signal is smooth. Our aim is to indicate the
appropriate sizes forp and δ in this setting, thereby motivating choices in the
variable-sampling rate case wheng is not so smooth. Therefore, for the present we
takeg = g0, where

g0 is anr-times continuously differentiable
function defined on the whole real line.

(4.1)

Suppose too that

the errorsεi , in (2.1), are identically distributed with
E|εi|6+B < ∞ for someB > 0, zero mean and varianceσ 2.

(4.2)

Let ρ denote eitherρ1 or ρ2. For reasons that will become clear in Theorem 4.2,
the appropriate size ofp for smooth signals isρ1/(2r+1), for largeρ. To determine
the correct size ofq, observe that we cannot resolve frequencies as large asρ

if we are only sampling at rateρ. Therefore, we shall selectq so thatpq is a
little smaller thanρ; let it be of orderρ1−c, wherec > 0. This is equivalent to
2q = O(p−1 ρ1−c). Note too that we use the samep whenρ = ρ1 or ρ = ρ2.
These considerations motivate the regularity condition

p = p(ρ1) 	 ρ
1/(2r+1)
1 andq = q(ρ) → ∞ so

slowly that 2q = O(p−1ρ1−c) for somec ∈ (0,1).
(4.3)

(If a andb are positive functions ofρ, then the propertya 	 b, asρ → ∞, means
that the ratioa/b is bounded away from zero and infinity along the sequence.)

Finally, suppose that

φ andψ are each bounded and supported on the compact
interval[a, b], ψ is of orderr as defined in Section 2.3,∫

φ = 1, and integer translates ofφ are orthonormal.
(4.4)

Our next theorem shows that for functions such asg0, the thresholded terms
only very rarely make a contribution to the estimatorĝ. Recall thatĝ(s) =
ĝs+τ0(s), whereĝt is given by (2.3). LetI denote a finite interval.
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THEOREM 4.1. Suppose data are generated by the model at (2.1), with
signal g = g0 and independent errors εi . Assume the sampling rate is constant
at ρ = ρ1 or ρ2, and that δ in the definition at (2.3) is given by (2.4), with
C > 21/2. Suppose too that (4.1)–(4.4)hold, with B > C2/(1 − c) in (4.2) and,
in (4.3), (q, ρ) = (qj , ρj ) in the two respective cases. Then (a) if the sampling
rate is ρ1, the probability that a thresholded term enters nondegenerately into
the estimator ĝ(t) for some t ∈ I converges to zero as ρ1 → ∞; and (b) if the
sampling rate is ρ2 ≥ ρ1, the probability that a thresholded term corresponding

to a resolution level pi greater than C1ρ
1/(2r+1)
2 ( for an arbitrary fixed C1 > 0)

enters nondegenerately into ĝ(t) for some t ∈ I converges to zero as ρ2 → ∞.

Our proof of the theorem shows that, forρ = ρ1 or ρ2, the respective
probabilities equal 1− O(ρ1−(C2/2)+η) for eachη > 0. This type of bound also
applies to all the probabilities that are discussed in Theorems 4.4–4.6: each of the
probabilities converges to 1 at rateρA(C), whereρ denotes the relevant sampling
rate andA(C) can be made arbitrarily large by choosing the constantC, in (2.4),
sufficiently large.

Part (a) of Theorem 4.1 motivates us to consider in more detail the estimator
obtained by sampling at the base rateρ1. A result in this case was given by Hall
and Patil (1995); the following version is better adapted to the present context.

THEOREM 4.2. Assume data are generated by the model at (2.1), with
independent errors εi and time points Ti equally spaced ρ1 units apart. Suppose
too that, for (q, ρ) = (q1, ρ1), (4.1)–(4.4)hold, and that δ in the definition at (2.3)
is given by (2.4)with C > 21/2. Then, for all finite intervals I,∫

I
E(ĝ − g0)

2

= ρ−1
1 p|I| + p−2rκ2(1− 2−2r)

∫
I

(
g(r))2 + o(ρ−1

1 p + p−2r)

(4.5)

as ρ1 → ∞.

It is immediately clear from (4.5) that for a constant sampling rateρ1, and a
smooth signalg0 that is not a polynomial of degreer − 1, the asymptotically
optimal value ofp will be a constant multiple ofρ1/(2r+1)

1 . This motivates the
first part of (4.3), and suggests that we should takep to be of this size in the
variable-sampling rate case too, provided the signal is smooth “most” of the time.

The L2 convergence rate, whenρ = ρ1 and p 	 ρ
1/(2r+1)
1 , is, as implied

by Theorem 4.2,O(ρ
−r/(2r+1)
1 ). Based on experience for more conventional

estimators, we expect theL∞ convergence rate to differ from this by no more than
a factor(logρ1)

1/2. Theorem 4.3 confirms this. The reason for our interest inL∞
rates is that, for more complex signals, we shall use consistency in the supremum
metric to assess performance of the estimator.
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THEOREM 4.3. Assume the conditions of Theorem 4.2,and, in particular, that
the sampling rates are constant at ρ1. Then,

sup
t∈I

|ĝ(t) − g(t)| = Op

{
ρ

−r/(2r+1)
1 (logρ1)

1/2}.

Next we develop a model for high-frequency fluctuations. It will be asymptotic
in character, and depend on a parameter,ν say, which we could interpret either as
one of the ratesρ1 andρ2, but perhaps more realistically as the long-term average
sampling rate; see (4.12) for a definition of the latter. Our theory will involveν

diverging to infinity.
Our model for the signal will amount to a smooth functiong0, described at (4.1),

to which we shall add (on an intervalJ) fluctuations at least one of which is of
unboundedly large frequency. If the frequencies of the fluctuations are represented
by α1, α2, . . . , then, in order for at least one of them to lead to a rate change as
suggested by rule (R.1) in Section 2, we should assume that

for somek = k(ν), αk/π1 → ∞ and αk = o(pq1).(4.6)

The high-frequency fluctuations that we shall add tog0 will have the form
γ {α(· − u)}, whereα = αk and

γ is a nondegenerate function, supported on the interval
[−1,1] and havingr continuous derivatives on the real line.

(4.7)

Without loss of generality,γ is centred so that

γ (r)(0) �= 0.(4.8)

(Any shift in the location ofγ can be incorporated into theu’s.) For the sake of
simplicity we shall chooseγ to be the same for each fluctuation, although our
results are not changed if we use a more elaborate construction. The locationsu

and frequenciesα will vary, however, as follows.
Since the functiong0 satisfies (4.1), then its firstr derivatives are bounded in

any compact interval. On the other hand, ifγ satisfies (4.7) andα = α(n) → ∞,
then the supremum of the absolute value of any one of the firstr derivatives
of γ {α(· − u)} diverges to infinity in any open interval containingu. Therefore,
γ {α(· − u)} can fairly be said to exhibit fluctuations whose size is an order of
magnitude greater than in the case ofg0. We shall use the former function to model
high-frequency wiggles which trigger an increase in the sampling rate, fromρ1
to ρ2.

We shall add the fluctuations within an intervalJ, the length of which could
converge to zero asν → ∞. Thus, there will be a “cluster of wiggles”γk in J,
described through a sequence of pairs(uk,αk) with the following property:

the functionsγk = γ {αk(· − uk)} are all supported inJ, and
no two of the support intervals[uk − α−1

k , uk + α−1
k ] overlap.

(4.9)
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The signal that our wavelet estimator will endeavor to recover is

g = g0 + ∑
k

γ {αk(· − uk)}.(4.10)

For the present we assume that the intervalJ is placed immediately to the right
of I, so that (in view of Theorem 4.1) the probability that the algorithm entersJ
using sampling rateρ1 converges to 1 asν → ∞. Our next result gives conditions
under which, if the fluctuations inJ are as described at (4.10), then (with high
probability) a rate switch fromρ1 to ρ2 occurs duringJ.

If the frequencyα1 of the first fluctuation satisfies (4.6) fork = 1, then, with
probability converging to 1 asν → ∞, there will be a switch to rateρ2 in the close
vicinity of time u1. This follows from Theorem 4.4, on considering the case where
the series at (4.10) consists of the single fluctuationγ {α1(· − u1)}. In such a case,
the theorem does not make any comment on what happens later in intervalJ; that
will be dealt with in Theorems 4.5 and 4.6.

THEOREM 4.4. Suppose data are generated by the model at (2.1),with signal
g given by (4.10).Assume the estimator ĝ is constructed using C > 21/2 in the
threshold δ, that the rule (R.1) is used to define an upward rate switch, and that
(4.1)–(4.4)hold, with B > C2/(1 − c) in (4.2) and, in (4.3), (q, ρ) = (q1, ρ1).
Suppose too that (4.6)–(4.9)hold. If, on entering time interval J, the sampling
rate is ρ1, then with probability converging to 1 as ν → ∞, an increase in the rate
to rate ρ2 will occur during time interval J.

We continue to assume the signal is composed of fluctuations that may be
modelled as at (4.10). However, when showing that the rate will not change during
the time intervalJ, we make the additional assumption that during each subinterval
of J, of lengthτ0, there exists a fluctuation whose frequency is of larger order than
π2 and of smaller order thanpq2:

it is possible to choose a subsetA of the set of all frequencies
αk represented at (4.10), such that, for each time intervalK of
lengthτ0 included withinJ, there is at least oneαk ∈ A such
that the associated functionγ {αk(· − uk)} is supported within
K, and, moreover,π2 = o(minα∈A α) and maxα∈A α = o(pq2).

(4.11)

In the result below, we assume that we start the time intervalJ using sampling
at rateρ2. Thus,J can no longer be thought of as following immediately after an
interval where the signal is smooth. However, it could follow immediately after
a short interval that contained a single fluctuationα = α1 which triggered a switch
from rateρ1 to ρ2; see the paragraph immediately preceding Theorem 4.4. Recall
that rule (R.2), for switching to a lower sampling rate, was given in Section 2.
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THEOREM 4.5. Assume that the estimator ĝ is constructed using C > 21/2 in
the threshold δ, that the rule (R.2) is used to define a downward rate switch, and
that (4.1)–(4.4)hold, with B > C2/(1− c) in (4.2)and, in (4.3),(q, ρ) = (q2, ρ2).
Suppose too that |J| is bounded as ν → ∞, that (4.7)–(4.9)and (4.11)hold, that g

is given by (4.10),and that the sampling rate at the start of J equals ρ2. Then, with
probability converging to 1 as ν → ∞, the sampling rate stays at ρ2 throughout J.

This result has an analogue in which the frequencies inJ are relatively low, and
a switch from sampling rateρ2 to ρ1 is virtually assured:

THEOREM 4.6. Assume the conditions in Theorem 4.5, except that the
constraints “π2 = o(minα∈A α) and maxα∈A α = o(pq2)” at the end of (4.11)are
changed to “maxα∈A α = o{min(π1, π2)}.” Then, with probability converging to 1
as ν → ∞, the sampling rate switches from ρ2 to ρ1 during J, and stays there for
the duration of that time interval.

Finally we show that, when sampling is carried out at rateρ, the estimator is
able to consistently recover frequencies almost up to the levelρ.

THEOREM 4.7. Suppose data are generated by the model at (2.1), with
independent errors εi . Assume the sampling rate is constant at ρ = ρ1 or ρ2, and
that the threshold δ is given by (2.4) with C > 21/2. Suppose too that (4.2)–(4.4)
hold, with B > C2/(1 − c) in (4.2) and, in (4.3), (q, ρ) = (q1, ρ1) or (q2, ρ2) for
the respective sampling rates. Assume the signal is given by (4.10) on J, where
maxαk = o(pq). Then, for each η > 0, the probability that |ĝ − g| ≤ η uniformly
on J converges to 1 as ν → ∞.

We conclude by quantifying some of the potential gains and losses from dual-
rate sampling. Suppose the expense of sampling, expressed, for example, in terms
of the capacity of the data storage device, demands that the long-run sampling
rate not exceedν per unit time. If, in parts of the signal that have relatively high
frequency, we use rateρ2 > ν rather thanν, then (in order to stay within budget) at
other time points we should reduce the rate toρ1, whereρ1 andρ2 are connected
by the formula

ν = ρ1(1− �) + ρ2�,(4.12)

and� denotes the long-run proportion of time for which we use rateρ2.
It may be deduced from Theorem 4.2 that the condition for there to be no

asymptotic deterioration in mean-squared error, to first order, in the relatively
smooth places where rateρ1 is employed, isν ∼ ρ1. This is, of course, equivalent
to �ρ2 → 0 as ν → ∞. In the proportion� of the time when we use the
higher sampling rate, there is (in view of Theorem 4.7) potential for consistently
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estimating the signal where this would not otherwise be possible.
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DELOUILLE, V., SIMOENS, J. andVON SACHS, R. (2001). Smooth design-adapted wavelets for

nonparametric stochastic regression. Discussion Paper No. 0117, l’Institut de Statistique,
Univ. Catholique de Louvain, Belgium.

DELOUILLE, V. and VON SACHS, R. (2002). Properties of design-adapted wavelet transforms of
nonlinear autoregression models. Discussion Paper No. 0225, l’Institut de Statistique,
Univ. Catholique de Louvain, Belgium.

DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.
Biometrika 81 425–455.

DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet
shrinkage.J. Amer. Statist. Assoc. 90 1200–1224.

DONOHO, D. L., JOHNSTONE, I. M., KERKYACHARIAN, G. and PICARD, D. (1995). Wavelet
shrinkage: Asymptopia? (With discussion.)J. Roy. Statist. Soc. Ser. B 57 301–369.

HALL , P. and PENEV, S. (2002). Wavelet-based estimation with multiple sampling rates. Available
at www.maths.unsw.edu.au/˜spiro/publicat.html.

HALL , P. and PATIL , P. (1995). Formulae for mean integrated squared error of nonlinear wavelet-
based density estimators.Ann. Statist. 23 905–928.

HALL , P., PARK, B. U. and TURLACH, B. A. (1998). A note on design transformation and binning
in nonparametric curve estimation.Biometrika 85 469–476.

HALL , P. and TURLACH, B. A. (1997). Interpolation methods for nonlinear wavelet regression with
irregularly spaced design.Ann. Statist. 25 1912–1925.

HERZBERG, A. M. and TRAVES, W. N. (1994). An optimal experimental design for the Haar
regression model.Canad. J. Statist. 22 357–364.

KOVAC, A. and SILVERMAN , B. W. (2000). Extending the scope of wavelet regression methods by
coefficient-dependent thresholding.J. Amer. Statist. Assoc. 95 172–183.

OYET, A. J. and WIENS, D. P. (2000). Robust designs for wavelet approximations of regression
models.J. Nonparametr. Statist. 12 837–859.

PENSKY, M. and VIDAKOVIC , B. (2001). On non-equally spaced wavelet regression.Ann. Inst.
Statist. Math. 53 681–690.

SARDY, S., PERCIVAL, D. B., BRUCE, A. G., GAO, H. Y. and STUETZLE, W. (1999). Wavelet
shrinkage for unequally spaced data.Statist. Comput. 9 65–75.



1956 P. HALL AND S. PENEV

ZHANG, S. L. and ZHENG, Z. G. (1999). Nonlinear wavelet estimation of regression function with
random design.Sci. China Ser. A 42 825–833.

CENTRE FORMATHEMATICS

AND ITS APPLICATIONS

AUSTRALIAN NATIONAL UNIVERSITY

CANBERRA, ACT 0200
AUSTRALIA

AND

DEPARTMENT OFSTATISTICS

LONDON SCHOOL OFECONOMICS

HOUGHTON STREET

LONDON WC2A 2AE
UNITED KINGDOM

E-MAIL : Peter.Hall@maths.anu.edu.au

DEPARTMENT OFSTATISTICS

SCHOOL OFMATHEMATICS

UNIVERSITY OF NEW SOUTH WALES

2052 SYDNEY, NSW
AUSTRALIA

E-MAIL : spiro@maths.unsw.edu.au


