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This article pursues a statistical study of the Hough transform, the
celebrated computer vision algorithm used to detect the presence of lines
in a noisy image. We first study asymptotic properties of the Hough
transform estimator, whose objective is to find the line that “best” fits a set
of planar points. In particular, we establish strong consistency and rates
of convergence, and characteriZge tlimiting distribution of the Hough
transform estimator. While the convergence rates are seen to be slower than
those found in some standard regression methods, the Hough transform
estimator is shown to be more robust as measured by its breakdown point.
We next study the Hough transform in the context of the problem of
detecting multiple lines. This is addressed via the frameworkadss mass
functionals and modality testingThroughout, several nuenical examples
help illustrate various properties of the estimator. Relations between the
Hough transform and more mainstream statistical paradigms and methods
are discussed as well.

1. Introduction. The Hough transform (HT), due to Hough (1959), is one
of the most frequently used algorithms in image analysis and computer vision
[see, e.g., Ritter and Wilson (1996) and the survey articles by Leavers (1993)
and Stewart (1999)]. The algorithm is most often used to detect and estimate
parameters of multiple lines that are present in a noisy image (typically the image
is first edge-detected and the resulting data serve as input to the algorithm).

In the particular case where only one line is present, the algorithm shares
the same objective as simple linear regression, namely, estimating the slope and
intercept of the line. While inference using regression methods is well understood,
the statistical properties of the HT approach have not been studied thoroughly.
Most studies have focused almost exclusively on algorithmic and implementation
aspects [for a comprehensive survey see, e.g., Leavers (1993)], while few articles
pursue a statistical formulation [see, e.g., Kiryati and Bruckstein (1992) and
Princen, lllingworth and Kittler (1994)].

The basic idea of the HT can be informally described as follows. Consider a set
of planar point§(X;, ¥;)};_, depicted in Figure 1(a). The objective is to infer the
parameters of the line that fits the data in the “best” manner. The key to the HT
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FiG. 1. Anillustration of the Hough transform: (a) the original scatterplot; (b) the Hough domain
(dual plot).

algorithm is to view each point as generating a line which is comprised of all pairs
(slope, intercept) that are consistent with this point. Specifically, forttheoint

this line is given byL; = {(a, b) : Y; = aX; + b}. The set of random lined;}?_,;

is plotted in the Hough domain, depicted in Figure 1(b). In the statistical literature
this domain is referred to as tloeial plot. Thus, co-linearity in the original set of
points will manifest itself in a common intersection of lines in the dual plot.

In practice, the HT algorithm is implemented as follows. The Hough domain
is first quantized into cells, and each such cell maintains a count of the number
of lines that intersect it. The cell with the largest number of counts is the
obvious estimator of the parameters of the original line. If one is focusing on
detecting multiple lines, a threshold is specified and those cells with counts
exceeding the threshold indicate the presence (and parametrization) of lines in
the original image. A polar parametrization of the lines is also used in practical
implementations, resulting in sinusoldaurves in the Hough domain [see, e.g.,
Ritter and Wilson (1996)].

The goal of this article is to provide analysis that formalizes and elucidates
statistical properties of the HT methodology. The main contributions of this article
are the following:

(i) We establish almost sure consistency of the HT estimator (Theorem 1),
determine the rate of convergence and characterize the limiting distribution
(Theorem 2). The estimator is shown to have cube-root asymptotics [see, e.g., Kim
and Pollard (1990)].

(i) Robust properties of the HT estimator are derived. In particular, the
breakdown point is determined (Theorem 3) and it is shown that this point
can be made to be arbitrarily close to 50%. The theory is illustrated via a
standard example.



1910 A. GOLDENSHLUGER AND A. ZEEVI

(i) We illustrate the effects of design parameters of the HT estimator on its
performance via a simulation study.

(iv) We relate the multiple line detection problem to multi-modality testing in
the Hough domain. In particular, asymptotic behavior of empirical excess mass
functionals (Theorem 4) provides the building block by which one can pursue
a test for the presence of multiple lines.

While a study focusing on the statistical properties of the HT is lacking in the
literature, several strands of statistics-related research are akin to the HT approach.
The concept of the dual plot has appeared already in early work of Daniels (1954),
and in more recent work of Johnstone and Velleman (1985) and Rousseeuw and
Hubert (1999). As we shall see in what follows, the HT estimator is closely related
to regression methods such as least median of squares of Rousseeuw (1984), and
S-estimators studied in Rousseeuw and Yohai (1984) and Davies (1990). Finally,
the multiple line detection problem is intimately related to multi-modality testing
using excess mass [see, e.g., Hartigan (1987), Muller and Sawitzki (1991) and
Polonik (1995)]. The basic problem of estimating the location of a single mode
studied by Chernoff (1964) can also be viewed as a one-dimensional application
of the HT algorithm. Further details concerning some of these relations are given
in the sequel.

The article has two main focal points: the first three sections, namely,
Sections 2—4, focus on the HT estimator, while the subsequent Section 5 discusses
testing of multiple lines. Section 2 describes the precise formulation of the HT
estimator, while Section 3 studies large sample properties of the HT estimator
(Section 3.1) and robustness (Section 3.2). Section 4 then focuses on some issues
concerned with the design of the estimator, effects of the variates and relation of
the method to other statistical approaches. The problem of testing for multiple lines
is the subject of Section 5. Finally, Section 6 contains several concluding remarks.
Proofs are collected in two appendices: Appendix A gives the proofs related to the
properties of the HT estimator, while Appendix B contains the proofs related to
the multiple line testing problem.

2. Definition of theHT estimator. Let data pointsX1, Y1), ..., (X,,Y,) be
given on the plane. Each observation p@ir, ¥;) defines a straight line in the
Hough domain:

Li'b=—-Xia+Y;, i=1,.

For a positive number, let B, (9) denote the disc of radluscentered a8 = (a,b).

We are looking for a poind = (a, b) in the Hough domain such that the maximal
number of lined.; cross over the disB, (§). More formally, the HT estlmatc&, n
maximizes the objective function

1 n
My (0) := ~ > UB.(O)NL; #2)
i=1

with respect t&® = (a, b). Note thatL; N B, (f) # & if and only if the distance
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between the lind.; and the disc centér = (a, b) is less than or equal ta Thus,
M, ,(0) takes the following form:

1 n
(1) My ()=~ 3 UIXia+b —¥i|2 < r2(XE + 1)),
i=1
and the HT estimator is defined by
n 12
2) 6, =arg mazx—21{|X,-a+b—Y,-|2§r2(Xi2+1)}.
feRsn i=1

Hence,é,,,, can be regarded as avf-estimator associated with the objective
function M, ,(-). Note that usually the above maximum is not unique; any point

of the solution set may be chosenéag. Note also that the above definition of
the HT estimator depends on the design parameteenote by
(3) M, ©) :=EM,,(0) =P{|Xa+b—Y > <r’(X?+1)}
the deterministic counterpart 81, ,,(0).
The HT estimator admits the following geometrical interpretation. Let
@)  Do={(x.y):lxa+b—y?<r’x*+1), 6=(a.b)eR?

For givené, Dy is the set of all points of the plane lying between two branches
of a hyperbola that has straight lings= (¢ —r)x +b andy = (a +r)x + b
as its asymptotes; see Figure 2. Hence, the HT estimator given by (2) seeks the

y=(a+r)x +\l\)‘\

y=(a—rjz+b N b+r

-2

FIG. 2. Template of the HT estimator.
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value 6 such that the corresponding s} covers the maximal number of data
points. The seDy defines the so-callegdmplate of the HT in the observation space
[e.g., Princen, lllingworth and Kittler (1992)]. We note that the template shape is
determined by the choice of tlell shape, which is a disc of radius in our case.
Various estimators may be defined using other cell shapes; the rectangular cell is
most natural. However, the difference in properties of these estimators is marginal.

3. Properties of the HT estimator. Asymptotic properties of the HT esti-
mator are studied under the following assumptions. Supposg Xhat'1), ...,
(X,,Y,) are independent identically distributed random observations drawn from
the model

) Y =apX + by + ¢,
where:

(d) X isindependent of, and
(b) € is a random variable with bounded, symmetric and strictly unimodal
density, f(x) = f(—x) Vx.

By strict unimodality we mean that densifyhas a maximum at a unique point,
x =0, and decreases in either directiorxatecreases or increases away from zero.

Let PP, denote the empirical measure of a sample of the péXsY;),
i=1,...,n, andP be the common distribution afX;, ¥;). Then the objective
function M,.,,(9) in (1) and its deterministic counterpai,. (9), can be written as
M, ,(0) =P, (Dy) andM, (6) = P(Dy), whereDy is defined by (4).

3.1. Asymptotics. We are interested in the asymptotic behaviorégt as
n — oo. The first theorem establishes consistency.

THEOREM 1. Under assumptions (a) and (b), for any fixed r > 0 the
estimator 6, , is strongly consistent:

A

., 360  asn— oo, wherefy = (ao, bo).

It is interesting to note that the consistency proof does not require existence of
the expectation of the noise For example, the noise may be a sequence of i.i.d.
Cauchy random variables. The next theorem establishes the asymptotic distribution
of the centered and scaled estimator.

THEOREM 2. Let f be continuously differentiable with bounded first deriv-
ative, and let assumptions (a) and (b) hold. Assume that X is a nondegener-
ate random variable with finite second moment. Then for every fixed » > 0,
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n3(@,.,, — 60) = W, where W has the distribution of the (almost surely unique)
maximizer of the process 6 — 3607 Voo + G (9),

(6) Vo=E{Lf'IZI) — f'(—rl1ZIN1ZZ"},
Z=(X,1T, and G is a zero-mean Gaussian process with continuous sample
paths and stationary increments such that for any £, n € R?,

(7) E[G(€) — G =2B{f (1 ZI)1ZT (€ — m)]}.

The cube-root rates of convergence are due to the discontinuous nature of
the objective functionM,.,(-). The most general results dealing with this type
of asymptotics are given in Kim and Pollard (1990); see also van der Vaart
and Wellner [(1996), Chapter 3]. Clearly the asymptotic distribution above is
quite complicated. The one-dimensional instance, wh&¢e is a Brownian
motion, was first studied in Chernoff (1964) [see also, Groeneboom (1989) and
Groenenboom and Wellner (2001)].

3.2. Robustness. One way to characterize the robustness of an estimator is
through its breakdown properties. Intuitively, thiesakdown point is the smallest
amount of “contamination” necessary to “upset” an estimator entirely. We use the
formal definition of the finite-sample breakdown point given by Donoho and Huber
(1983). LetY, = {(X1, Y1), ..., (X, ¥,)} andd = 6(Y,) be an estimator based
on Y,. Consider an additional data sif of sizek. If by choice ofY; one can
maked (Y, U Y;) — 6(Y,) arbitrarily large, we say thad breaks down under
contamination fractiork/(n + k). The finite-sampleaddition breakdown point
cadd@; ¥,) is the minimal contamination fraction under whigltoreaks down:

. ok . L
6aad0: ) =mm{ SUPIIA (Y UYL — DY) =oo}.
Y

n+k’
Similarly, the finite-sampleeplacement breakdown point of 4 is defined by
A [k A n
cren@s Yo = min{ 2 supIOCYE) — 6341 = oo,
Y

where Y% denotes the corrupted sample obtained frgfyp by replacingk data
points of ¥, with arbitrary values. The following theorem gives the breakdown
properties of the HT estimateéy., .

THEOREM3. LetyY, ={(X1,Y1),..., Xy, Y,)} beasamplewith norepeated
valuesof X. Then

LnMr,n(ér,n)J -1
n-+ LnMr,n(ér,n)J - 1’

A 1| nMy.n(6,
erep(t: Yn) = ;{72( ’n)J-

eadd0; Yn) =
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Moreover, if the conditions of Theorem 1 hold, and the distribution of X is
continuous, then, asn — 00,

Sadd(ér,m yn)a_ip(l"' P)_l, Srep(ér,nQ yn)a_ip/Z,
where p = P{e? < r?|Z|3}.

We now turn to several remarks concerning the theorem. First, the assumption
that the samplé/,, does not contain repeated observationX atiles out parallel
lines in the Hough domain. This assumption is quite typical in the context of the
regression methods utilizing the dual plot approach [see, e.g., Daniels (1954)].
Second, the value of controls breakdown properties of the HT estimator: the
largerr, the closer the breakdown point is tg2l For example, i is chosen to be
the (1 — a)-quantile of the distribution of?||Z|| =2, the addition breakdown point
of the corresponding estimate(it — «)/(2 — @) and the replacement breakdown
pointis(1—«)/2.

To illustrate the breakdown properties of the HT estimator, we consider a
numerical example given in Rousseeuw (1984). The sample containing 30 “good”
observations is generated from the model= X; + 2 + ¢;, wheree¢; are
Gaussian random variables with zero mean and standard deviaorafd
X; are uniformly distributed oril, 4]. Then a cluster of 20 “bad” observations
is added. These observations follow a bivariate Gaussian distribution with
expectation(7,2) and covariance matrix .B5/. Figure 3 displays the data

—  Hough °
--- LS
- - LMS

FiG. 3. Anillustration of the breakdown properties of the HT estimator. The data set consists of
30 observations from the underlying linear regression model and 20 “bad” data points (the cluster
on theright).



THE HOUGH TRANSFORM ESTIMATOR 1915

along with the least squares (LS), least median of squares (LMS) and the HT
estimates. The LMS estimator is defined as the value of the paraéhetéd, b)

that minimizes the median;<, |Y; — aX; — b|? [see Rousseeuw (1984)]. The
parameterr of the HT estimator is set to.D5. Under conditions of the
experimentP{e?(X? + 1)~ < 0.15%} ~ 0.923, which approximately corresponds

to a 46% replacement breakdown point. The HT estimator is calculated by direct
maximization of (2) on the squafe-3, 3] x [—3, 3] using a uniform rectangular

grid comprised of 250,000 points. Because the solution is not unique, the average
of the grid points where the maximum is achieved is taken as the estimate. Thus,
the HT estimate yields = 0.917 andb = 2.173, which is quite close to the
original valueszg = 1 andbg = 2. In general, behavior of the HT estimate in this
example is very similar to that of the LMS.

4. Discussion.

4.1. Choiceof theradiusr. The properties of the HT estimator depend on the
choice of a parameter. The results of Section 3 assert that the HT estimator
is consistent for any choice of, and the asymptotic distribution is given in
Theorem 2. Thus, a reasonable choiceroould be the value minimizing
the variance of the limiting random variable in Theorem 2. Unfortunately, the
asymptotic distribution is not tractable, and we cannot use it as a basis to make
a choice ofr. Clearly, large values of lead to a large connected solution set, and
in this case the estimation accuracy depends crucially on the way the estimator
is chosen from the solution set. On the other hand, small valuedezfd to an
“under-smoothed” dual plot, and the solution set is a union of many disconnected
sets. In this case estimation accuracy of the average estimator may be very poor.
To study how estimation accuracy depends-owe conducted the following
simulation experiment. For sample sizes= 25,50, 100 we generate data sets
from the modelY; = X; + 2 + ¢;, wheree; are Gaussian random variables with
zero mean and standard deviatiof,@ndX; are uniformly distributed ofi-2, 2].
The HT estimator is computed for different values-ofn our implementation we
used the square-3, 3] x [—3, 3] as the search region. The value of the objective
function is computed at nodes of the regular grid comprised of 360,000 points.
The resulting HT estimator is set to be the average of the grid nodes where the
maximum of the objective function is achieved. Simulation results are given in
Table 1. The table presents the values of the HT estimates of the parameters
(ao, bo) = (1, 2) averaged over 1,000 replications, along with the square root of the
resulting mean squared error. Closer inspection of the results shows that the mean
squared error first decreases-agows, but whem becomes large, an increase in
the mean squared error is observed. Overall, it seems that the estimation accuracy
is relatively stable as varies over a wide range of values. This phenomenon has
been consistently observed for various data sets generated from different models.
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TABLE 1

Estimation accuracy of the HT estimator. The numbers in parenthesis are the (slope, intercept)
estimates, and the value below them is the associated root mean squared error. All values are

obtained by averaging over 1000replications

Samplesize

r n=25 n=>50 n =100

0.025 (0.992, 1.981) (0.995, 2.009) (0.990, 2.009)
0.407 0.297 0.245

0.04  (0.999, 1.989) (0.997, 2.013) (0.995, 2.013)
0.392 0.284 0.231

0.05 (1.003, 2.001) (0.995, 2.001) (1.001, 2.009)
0.354 0.272 0.219

0.075 (1.011, 2.007) (0.992, 2.008) (1.000, 2.009)
0.322 0.264 0.213

0.1 (2.009, 2.008) (0.996, 2.009) (0.998, 2.015)
0.308 0.251 0.204

0.2 (2.000, 2.010) (0.997, 2.012) (1.000, 2.004)
0.264 0.208 0.164

0.4 (2.001, 2.010) (0.999, 2.007) (0.996, 2.003)
0.220 0.171 0.137

0.5 (0.996, 2.008) (0.995, 2.004) (0.994, 2.001)
0.211 0.174 0.135

0.75 (1.012,1.999) (1.002, 1.996) (0.999, 2.003)
0.248 0.209 0.172

0.8 (1.015, 1.997) (1.002, 1.997) (0.996, 2.002)
0.254 0.219 0.179

(The results described in Table 1 are one such representative example.) Finally,
we note that, in practice, it may be advantageous to tadlewly tending to zero

asn — oo. This might be particularly important in the problem of multiple line
testing discussed in Section 5. However, analysis of theoretical properties of such
an estimator is beyond the scope of this article.

4.2. Equivariance properties and the effect of design variables. We now
briefly mention some equivariance properties of the HT estimator. In the context of
regression estimators, different notions of equivariance are considered [see, e.g.,
Rousseeuw and Leroy (1987), page 116]. An estimatisrsaid to beregression
equivariant if 6({X;, ¥; + cX;}_;) = 8({X;, Yi}'_,) + ¢, wherec is an arbitrary
constant. It isscale equivariant if 6({X;,c¥;}_) = c0({X;, ¥;}"_,) and affine
equivariant if d({cX;, V;}_)) = ¢ Y0 ({X;, ;) for ¢ #0.

Itis easily seen that the HT estimatbr, is regression equivariant, but notscale
andaffine equivariant. The equivariance properties of the HT estimator are clearly
intimately related to the Hough template. In particular, the template displayed in
Figure 2 implies that the estimate treats differently observations with small and
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large X-variate values. The straight lines in the Hough domain corresponding
to the observations with larg&; values are very steep. If the majority of the
observations have a largé-coordinate and the standard deviation of the noise is
small, then the corresponding straight lines are nearly parallel. In this case behavior
of the HT estimator may be quite poor.

To illustrate the effect of the design distribution, we generate 100 independent
observations from the modg| = X; + 2+ ¢;, whereg; are Gaussian random vari-
ables with zero mean and standard deviatidn Bigure 4 displays the perspective
plots of the objective functioMp 3 ,(6), along with the corresponding dual plots
for two different design distributions. Figure 4(a) and (b) corresponds to the ex-
planatory variableX; uniformly distributed or{—2, 2], while Figure 4(c) and (d)
shows the case aX; uniformly distributed on[20, 24]. In the second case the
objective function is very flat. This leads to a large solution set and high variabil-

i (k)

() (el

FIG. 4. Perspective plots of M, ,(6) along with the corresponding dual plots: (a), (b) X; are
uniformly distributed on [—2, 2]; (c), (d) X; are uniformly distributed on [20, 24].
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ity of the HT estimator. Theoretically, wheXy are large, the matri¥y appearing
in (6) is nearly singular becaus€(r|| Z||) — f'(—r| Z]) is close to zero. There-

fore, the asymptotic distribution cﬁ‘,,,, is close to the distribution of the point

of maximum of a zero mean Gaussian process given in (7). To recapitulate this
point, the influence of the design distribution on estimation accuracy suggests that
it would be reasonable, in practice, to center the explanatory variables before ap-
plying the HT estimator. We note that in computer vision applications this does
not typically pose a problem as the measurement units used fd¢-teordinate

are image-independent.

4.3. Related regression methods. The HT estimator may be viewed as a
counterpart to anS-estimator [cf. Rousseeuw and Yohai (1984) and Davies
(1990)]. Indeed, fix € (0, 1) and consider the following optimization problem:
P6): min  r

0=(a,b)€R?
1 n
st M0 ==Y 1|Y; —aX; —b? <r?(X?+ 1} = 1-38.
iz

(8)

Solution of (8) defines th&-estimatord; , whose replacement breakdown point
equalsarep(égy,,; Y,) = min(8, 1 — §) [cf. Davies (1990)]. The LMS estimator,
see Rousseeuw (1984), can be written in a form similar to (8). In this specific
cases = n~1(|n/2] + 1) and X2 + 1 on the right-hand side should be replaced
by 1. Recall that, by definition, the HT estimaté,{n solves the following
optimization problem:

n
Q(r): max M, ,(0) = 1 S Y —aX; — b2 < r?(X2 + D).
0=(a,b)eR? n.=

Then the connection between the HT estimator and Stestimator (8) is as
follows. For a givené > 0, let 7 = val($(8)), where va(-) is the value of
the optimization problem, and |6At3’n be the solution ta® (). Then, clearly
val(@Q#)) > 1 -3, andé;v,Z belongs to the solution set @? (). Thus, with this
particular choice of, the HT estimator and the correspondifigestimator are
identical; in particulargrep(é;’,,; Y,) =min(§, 1 —9).

5. Multiple line detection. In practice, the Hough domain is discretized into
cells, and the number of lines crossing each cell is counted. Next, each of the
cells is examined to search for “high counts.” In particular, cells with counts
exceeding some predetermined threshold correspond to “detected” lines in the
original space. This procedure amounts to an exhaustive search for local maxima
(threshold crossings) in the Hough domain. Thus, in contrast to other line fitting
procedures, the HT is used to estimate several lines simultaneously. It should
be noted, however, that points of local maxima do not necessarily correspond
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to actual line parameters. Consequently, in the case of multiple lines it is more
accurate to view the HT as a tool for testingdetecting the presence of straight
lines in images. This has also been recognized in the computer vision literature
[cf. Princen, lllingworth and Kittler (1994)].

In view of the above, one can view the multiple line detection problem using
the HT as testing for multi-modality ifneé Hough domain. Testing multi-modality
is a subject of vast literature. This problem is characterized by the fact that
only one-sided inference is possible [see, e.g., Donoho (1988)], that is, the only
verifiable hypotheses are of the type “there are at least three lines in the image.”
The most appropriate approach for our purposes is based on the coneegassf
mass[see Hartigan (1987), Muller and Sawitzki (1991) and Polonik (1995)], which
is typically used in the “mode testing” problem. In the context of the HT, this
excess mass corresponds to regions in the parameter space (Hough domain) where
large counts are present.

5.1. Excess mass functionals. Let (X1, Y1),..., (X,, Y,) be a sample of i.i.d.
random variables, and, for > 0 andé = (a, b) € R?, let M, ,(6) and M,(0)
be given by (1) and (3), respectively. We stress t#t, Y1), ..., (X,,Y,) are
not assumed to be drawn from the linear model (5). Throughout this section we
suppose that parametgis confined to a compact sl c R2.

The excess mass functional is defined by

EQ) = /(M,(@) —)*ae

= | M,(0)do —rL{O,]},
(O
where (x)* := max0, x), ©; := {6 € R?:M,(9) > A}, and £{-} stands for
Lebesgue measure ®2. We call ®; the A-level set; note that®;,, is closed and
bounded becaus#, (-) is continuous. For a compact $8tc RZ and € (0, 1),
let us define

HA{®}:=/ M,(0)d6 — LL{O}.
e
Then E(L) = supH,{0®}:0® c R?compact. The empirical version of the

excess mass functional is obtained by substitutivg,(-) for M,(-) in the
definition, namely,

E,(\) = /(M,,,,(@) - AT de
= Mr,n(e) do — )\'°C{®)\,,n}a
@A,n

where ©, , = {# € R?: M, ,(0) > 1} is the empirical A-level set. Using the
notation

Hy 1[0} = /O My.(6)d6 — 3.L{O),
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we have thatt, (1) = Sup H ,{©}:0 C R2, compac}. Note that the empirical
Ar-level set®, , is a closed subset oR?; this follows from the fact that
M,,:R?— [0,1] is upper semi-continuous [see, e.g., Rudin (1987), pages
37 and 38]. Since the parameteis assumed to take values in the compactxgt
©,.., is also bounded.

Following Polonik (1995), we also consider the excess mass functional over
some classes of subsets Rf. Let 7 be a class of compact subsets [f.
The excess mass functional over 7 at level A € (0, 1) is given by

Er (L) :=supH){©®}: 0T} = sup[/ M, (6)do — AOC{@}]
eeTL/O
Every set®, (7) € T satisfying E (L) = H,{®;(7)} is calledthe r-level set
in7 . Clearly,E+ (1) < E(A) andE+ (L) = E()) if ©, € 7. The empirical version
E3 , (%) of E¢ (%) is defined by

E7 ,(A) :=supH, ,{®}:0 € T}
= M, ,(0)d0 — AL{O; ,(T)},
®A,n(7)

where®, ,(7) is theempirical A-level setin 7.

We stress that the excess mass approach is very natural in the context of
the HT. In particular, the value df, (1) conveniently quantifies the total sum of
counts corresponding to cells with counts exceedinGonsequently, asymptotic
behavior of the empirical excess mass functional is of interest.

5.2. Asymptotics of the empirical excess mass functional. The asymptotic
behavior of the empirical excess mass functional is the key building block in a
statistical procedure for detecting multiple lines; this is given in the next theorem.
To that end, let us denote

0 i= Vi [ [M(®) = M,@01d0.  heAi=[4T]C 0D,
A

and let/®°(A) denote the space of all uniformly bounded real-valued functions
OoverA.

THEOREM4. Supposethat M, :R?— [0, 1] satisfies
9) im SUpL{{6:|M,(6) — 4| < 8}} =0.

|
8—>0xeA
Then:

(i) sup.ca IVRIEx(A) — E(M)] — vu(M)| = 0p(1) @sn — oo, and

(10) v, (L) = G@0)do in£%°(A), n — oo,
(CJ
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where G (+) is a zero mean Gaussian random field with covariance kernel
EIGEGmI=P{Z"e —Y|<r|Z|.1Z"n—Y| <r|Z]}
—P{ZTE - Y| <r|IZNP{Z 0 — Y| <rlIZ]I},

where Z = (X, )7 and &, n € R2.
(i) Let 7 denote the class of compact subsets of R? such that ©; € 7 for
every L € A. Then

ASUgﬁ[ET,n()») — EM]—va(W)| = 0,(D), n— 0o,

and (10) holds.

The asymptotics of the empirical excess mass functional are determined by two
factors: the asymptotic behavior of the random fi¢dd, (6) and the asymptotic
behavior of the (random) level sé¥, ,. There are essentially two main ideas
that underlie the proof: (i) the class of sets generated by the Hough template,
D ={Dy:.0 € RZ}, is a separable VC class of sets, and, thus, a uniform central
limit theorem holds for the random field¥, ,(-) [cf. Proposition 2]; (ii) under
assumption (9), which essentially posits that the deterministic sigld) does not
have “flat parts,” the convergence of the random field also implies convergence
of the associated (random) level sets to their deterministic counterparts. In the
absence of assumption (9), difficulties can easily arise in “mode testing” [see
Muller and Sawitzki (1991) and Poldni(1995), where a similar condition is
imposed in the context of excess mass testing for modes of a distribution].

5.3. Testing for multiple lines. We now sketch how Theorem 4 may be used
for detecting multiple lines in some specific cases. To illustrate the ideas, consider
the following hypothesis test:

(12) Ho: oneline vs. Hi: more than one line.

The rigorous interpretation of the above is that “under the null hypothesis,”
the data is generated by the model (5) with some unknéy (ao, bo), and
assumptions (a) and (b) of Section 3 hold. To characterize the behavior of excess
mass functionals under the null hypothesis, we will need the next result which
essentially states that und8p the A-level set®, for A € A is a convex set which

is balanced aroungéh = (ag, bo).

PrRoPOSITION1. Assume that the data are generated by the model (5), and
assumptions (a) and (b) hold. Then M, (6) = M, (6 — 6p) for some function M,.(-)
which is symmetric near zero with unique mode at 6 = 0. In addition, the set
O, = {6 € R2: M, () > 1} is a closed convex and balanced set (i.e., if 6 € ©,,
then —6 € ;).
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First consider the testing problem under the assumption that the distributions of
€ and X are known. Suppose th¥, (-) has no “flat parts,” that is, (9) holds. By
Proposition 1, undeHy the excess mass function&l) is completely specified
and given by

£ = [(M,©0) ~3)" a0
= /(M,(e) —2)"de

_ /(IP’{le + 2701 <r|1Z|}) — 2" .
Thus, (12) reduces to testing
Hy E(L) = E4(A) VYieA vs. HiiEQ)#E«) for somei € A.
It follows from Theorem 4(i) that

T, :=/nsup|E,(A) — Ex(M)| = x,
rEA

wherey :=sup |[@A G(9)d6|. Observe tha®; = ©, + 6, hence,

X = sup
AEA

’

/~ G(@—@o)de‘ :su4  G(H)do
(CJ) reAl/O;
where G(-) = G(- — 6p). We note that the covariance kernel of the zero mean
Gaussian proces§ () := G(- — 6g) does not depend ofig and is given

by (11) with Y replaced bye. Thus, the test can be based on the statigfic
whose asymptotic distribution does not depend on unknown parafgtand

is completely specified undeflp, provided that the distributions of and X

are known. Such a test will be consistent against all alternatives of the type
|[E(M) — E«(A)| > 0 for somer € A. We note that although the assumption that the
distributions ofe andX are known may seem to be restrictive, it is quite typical in
many application settings [see, e.g., Princen, lllingworth and Kittler (1994)].

If the distributions of X and e are unknown,7, cannot be computed
and, therefore, testing the presence of one line against multiple lines is more
complicated. In this setting one can pursue the multiple line testing problem
by comparing restricted and unrestricted empirical excess mass functionals.
Proposition 1 states that under the null hypothesisi tlevel set®, is convex and
balanced arouné. Therefore, the test may be based on compaking.) with the
empirical excess magse , (1) over the se€ of all compact convex subsetsif.

Thus, we consider testing

Hy:©,€eC  YieA vs. H{:©,¢C  forsomere A.

In view of Theorem 4, a natural test statistidjs:= /7 SUp . s | En(A) — Ec.n (M),
and A should be rejected for large values @f. Under Hj, T, = O,(1)

n
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asn — oo. On the other hand, iE(L) — Ee(1) > 0 for somei € A, then by
Theorem 4 the power of the test basedfqrconverges to 1 as — oo. Thus, the
described test is consistent against all alternatives of the B\(pg — Ec(A) > 0
for somei € A. Unfortunately, the limiting distribution of,{ is not available; in
general, it depends on the rate at which,sup{{6:|M, () — A| < §}} goes to
zero ass — 0 [cf. (9)]. We note thaeven though tb conditionE (L) — Ee(1) >0

does not imply tha®, # ©,(C), in many situations this is the case.

6. Concludingremarks.

1. The HT estimator can be used in the multiple regression context. Assume
the model

p
Y=Y BiXi+e,
k=1
and denot® = (B1, ..., B,)" andZ = (X1, ..., X,)T. Then the HT estimator is
defined by

A

1¢ T2 _ 20712
(13) 9m—ﬂ©£$%2;ﬂﬂ 07 Z;|* < r?|1 Z; )%}
It can be easily seen that Theorems 1-3 hold for the multiple regression setup with
obvious modifications. In particular, the breakdown point given in Theorem 3 does
not depend on the dimension. Unfortunately, the maximization problem in (13) is
difficult and cannot be solved as easily as in the two-dimensional case.

2. The slow, cube root, convergence rate of the HT estimator is a consequence
of the discontinuous objective function. Kim and Pollard (1990) study this phe-
nomenon and survey various estimation settings in which cube root convergence
rates govern the asymptotics. To this end, the original objective function might be
approximated by a smooth function, and the resulting modified “smoothed” esti-
mator would have standargdn asymptotics and “good” breakdown properties. In
this case maximization of the objective function can be pursued using a gradient-
based search.

3. A variety of modified estimators may be obtained using different cell
shapes in the Hough domain. For example, a vertical line segment of length 2
as a cell shape in the Hough domain corresponds to an estimator which maximizes

1¢ T,2_.2

=YY —60" Zi|" < rf)

n:

i=1

overd € R?. The template of this estimator represents a strip of widtmgasured
in the vertical direction. Such an estimator can be viewed as a counterpart to
the LMS estimator. The properties of the estimator are quite similar to those of
the HT estimator. In addition, such an estimator is scale and affine equivariant.
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4. Fitting a straight line when both variables are subject to random errors can
be treated using the described techniques. For example, it can be easily shown that
the estimator based on the vertical line-segment cell is consistent, provided the
errors have symmetric strongly unimodal densities.

APPENDIX A: PROOFS FOR SECTION 3

PROOF OFTHEOREM 1. Conditioning onX, we have fo® # 6,
E[M,,(0)|X]=P{|Xa+b—Y[><r}(X?+1)|X}

=P{—rVX%+1— X(a—ao) — (b—bo)
<—e<rvX24+1—X(a—ap) — (b—bo)|X}
<P{—rVX?+1<—e<rVX?+1/X}.

The last inequality is a consequence of the Anderson lemma [Anderson (1955)]
and the fact thay is symmetric and strictly unimodal. Hen&g,is a unique point
of maximum of functionM, (9) := EM,.,,(6) for anyr > 0. In particular, denoting
by B, (6p) the ball of radiug with centerdy, we have that for any > 0,
(14) max M, (0) < M,(6p).
€ B¢ (6o)
The point of maximum ofZ,.(-) is, thus, unique and well separated.

Consider the class of sef® = {Dy, # € R?}, whereDj is defined in (4). This
class has polynomial discrimination, that is, it is a Vapnik—Cervonenkis (VC)
class of sets [see Pollard (1984), Definition 11.13, or van der Vaart and Wellner
(1996), page 85]. Indeed, as was mentioned befdrés a class of subsets of the
plane generated by a linear space of quadratic forms. Hence, by Lemma 11.18 in
Pollard (1984).D has polynomial discrimination. Note also thBtis universally
separable in the sense of Pollard [(1984), page 38]. [This follows straightforwardly
from Pollard (1984), page 38, problem 4.] Therefore, we conclude that the random
variable sup|M, ,(0) — M,(0)| is measurable. Now, Theorem I1.14 from Pollard
(1984) implies that

(15) sup|M;., () — M.(0)| = sup|P,(D) —P(D)|—~0  as.
[ DeD
Further, write
M, (6y.) — M, (60)
= M, Br.p) — My Br.n) + My (6r.0) — M, (60)
< sgmMr(e) — My (O + My, (0r.) — My (Br.)

<2supM, () — M, ,(0)|.
0
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Hence, (15) implies
(16) | M, (6r.0) — M, (60)] — O,

almost surely, ag — oo. Fix ¢ > 0. Then by (14) there existséa> 0 such that
MaXy e pege) My (8) < M, (60) — 8. Consequently, we have the set inclusion

{Br.n € BE(00) 1.0.) € (M (Br.) < My (6p) — 8 i.0.).

But (16) implies that the probability of the event on the right-hand side is zero.
Thus, we conclude thé#, , € B.(6p) ev.} occurs with probability one. Sinee> 0

was arbitrary, we have thé];,n — 6p, almost surely, as — oco. This concludes
the proof. O

PROOF OFTHEOREM 2. The proof is based on verifying conditions of the
main theorem of Kim and Pollard (1990) [cf. also Theorem 3.2.10 in van der Vaart
and Wellner (1996)].

Let V (0) denote the second derivative matrix of the function

M, (0)=P{|Xa+b-Y|< X2+ 1}]P{|ZT9 Y| <r|Z]|}.
Write
(17) M.(0)=E[F(rlIZ| — 2" (6 — 60)) — F(—rl1ZI — Z" (6 — 60))].

where F is the distribution function ofe, and the expected value above is
taken w.r.t. the distribution ofZ := (X, 1)”. Now, recall thatf is assumed
to be continuously differentiable with bounded derivative, and &2 < co.
Therefore, we can apply the dominated convergence theorem to interchange the
order of expectation and differentiation for the expression on the right-hand side
of (17). In particular, (17) can be differentiated twice w#.tunder the integral
sign, yielding
V(0) = VM, (6)
=E{[f' (rIIZ] = (0 —60)T Z) — f'(—r1ZI| — (6 —60) Z)]ZZT}.

Let Vo = V(6p). Note that the matrixVy is negative definite whenX is
nondegenerate. This follows because foicHy unimodal ymmetricdensties f,
f'(x) — f'(=x) <0 forallx > 0, and under the premise of the theor&#,Z7 is
positive definite.

Fors > 0 consider classes of functiongs = {mg — mg, : |0 — 6ol < §}, where
mg = 1p,, andDy is defined in (4). These classes have polynomial discrimination,

that is, they are VC classes [see Pollard (1984), Definition 11.13, or van der Vaart
and Wellner (1996), page 85] with envelope functions

. AN ZT0g—Y
Ms= sup |[lj—r<——<r{—-1{—-r<—— <r
10—60] <5 I1Z]] 1Z]l
ZT6g—Y ZT6g—Y
51{—r—8§7§—r+8}+1{r—8§7§r+8}.
1Zl IZ]l
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Therefore, for smals,

] . .
EM2§IP’{—r—8§—§—r+8}+P{r—8§—§r+3}
’ I1Z] 1ZIl

<8 :=c¢?(5)

for some positive constant. This verifies condition (vi) in Kim and Pollard
[(1990), Theorem 1.1], namely, th&M{s2 = 0(8). Thus, we anticipate that

n~13 s the rate at whicié,’n converges t@p. To arrive at a rigorous conclusion,

the key is to comput&(mg,.ss — may+s,)> for fixed § > 0 andg, n € R?. This
behavior, together with the order ¢f6), will also determine the structure of the
increments of the limiting Gaussian process asserted in the theorem. To that end,
note that

2
E[(meg+se — mag+sn) UZTE < 2T )]

= E/ fOUxelrlZI+8Z &, rZIl + 82" nl}dx1{Zz"E < 2" n}

+ / FOLUx e [F1Z] + 8278, r1ZI| + 827 nydxL{ZTE < ZT )

=E[F(—rl|Z||+8Z"n) — F(=r||ZI| +527§); 2" < Z"q]
+E[F(ZI +8Z"n) — FrlZ| +627§); 26 < 2"
=: 41+ do.
Similar expressions hold when the above expectation is taken on the event

1{zT& > zTy}, with £ replaced by, and vice versa. Our objective is to evaluate
an expression for

E(mgyrse — Mogoy)?
510 $2(8)

But, sinces (8) = 81/, this amounts to differentiating (g, +sc — meg+sn)> W.I.L.

8 under the integral. (This interchange is justified sintethe density ofe,

is assumed to be bounded, aAdhas finite second moment.) Given the above
expressions fod 1 andJ,, straightforward algebra yields

im E(mog+se — Mogton)>
840 $2(8)

=E{L/ (= IZID) + FCUZIDNZT (5 =)

=2E{f(rlIZIDIZ" ¢ — )}
This completes the proof.[]

PROOF OF THEOREM 3. Under the premise of the theorem, there are no
parallel linesL; in the Hough domain. In other words, any pair of random lines
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intersect, and there is a closed ball of finitg raplius that contains the set of all
intersection points. By construction, for fixedé = 6, , is the center of the ball of
radiusr that crosses over the maximal number of random liyeis the parameter
space. Of course,M, ,,(6,.,) is the corresponding number of such lines. Clearly,
in order to shift this estimate to infinity one should add at Ieﬂm,n(ém,) -1
lines at infinity. Thus, the smallest contamination fraction under wﬁi,grbreaks
down is(nM,.,,.,) — 1)/ (n +nM,.,(6,.,) — 1). Applying the argument as in the
proof of Theorem 1, we conclud,.,,(9;.,) 2> M, (6g) = P{e? < r2||Z||2}, and
the result forsadd(é,,n; Y,) follows. For the replacement breakdown point, it is
sufficient to note that under the premise of the theorem at Le:am,n(é,, n)/2]
lines should be replaced. The proof is completel

APPENDIX B: PROOFS FOR SECTION 5

First we state the uniform central limit theorem for the random figld, (-)
alluded to before. The statement is formulated in terms of the class of sets
generated by the Hough template.

PROPOSITION2. Let D = {my = 1p,:0 € R?}, where Dy is defined in (4).
Let [°°(D) denote the set of all uniformly bounded real functions on £. Then
the class O is P-Donsker, that is, «/n(P, — P) = Gp in £°(D), where the limit
process {Gpmg :mg € D} iszero mean Gaussian with covariance function

(18) E[Gpme Gpmy] =P(Dg N Dy) — P(Dg)P(Dy).

The proposition follows from the uniform c#al limit theorem for measurable
VC-classes [e.g., Corollary 6.3.17 in Dudley (1999)]. Through the mapping
6 — Dy, the weak convergence #°(D) implies thaty/n(M,.,(0) — M, (9)) =
G(-), where ‘=" denotes weak convergence if°(R?), and the limit is a zero
mean Gaussian process with covariance function induced by (18).

PROOF OFTHEOREM 4. First we prove the statement given in part (i) of the
theorem. The proof proceeds in two steps.

STEP1. We will require a notion of convergence of sets (all sets are members
of the Borelo -field overRZ). For any two setél; ,Ap, let A1AA ;= (A1\ A2) U
(A2 )\ A1) be the symmetric difference, and define
d(A1, A2) :=SUpL{(A1AA2) N By},
k>1
where.£{-} stands for Lebesgue measuréify andB; = {# € R?:||0|| < k}. Note
that the above supremum is always finite due to the compactness assumption of
the parameter space. First, we prove that

(29) supd(®;, 0, ,) —0 a.s,
rLEA
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asn — oo [we refer to Molchanov (1998) for closely related results]. For brevity,
let us denotey, , := O, A0, ,. Fix§ > 0. We start with the decomposition

d(®)u ®A,n) = oc{AA,n N {9 : |Mr(9) - )‘| < 8}}
+L{Ann DB IM(6) — 1] = 8)).

The first term on the right-hand side is dominated®y{0 : |M,(6) — 1| < 8}}.
The second term on the right-hand side can be upper bounded using the Markov
inequality as follows:

L{Asn N {0 1M (6) — 2 = 8)) < 5—1/ M, 6) — 1] d6
Ak,n

<871L{Asn) SUp M, (6) —Al.
QGA)M,,

Now, for sufficiently large: (not depending on the choice bf we have (a.s.) the
set inclusions

Apn=1{0 M- (0) = A, M ,(0) <A}U{O: M, (0) <A, M, ,(0) > A}
C{OM0) =1, M (0) <A+, U{O M (0) <A, M (0) > A — 1y}
C{O:IM(0) — Al < mn}s

where

Nn = Suler,n(Q) - Mr(9)|
0eR?

and does not depend anlt follows that

sup [M,(0) — Al <.
QGA)\J,

In particular, we have for sufficiently large(independent of) that
d(Oy, ©).n) = L{A) 0}
=< oC{{@ HMR(0) — Al < nn}}

and the bound on the right-hand side is unifornkifThus, taking the supremum
overa € A, lettingn — oo and appealing to condition (9), we obtain the asserted
asymptotic (19).

STEP2. We now show that for all € A,

(20) Vn(E,(A) — E(V) = v,(A) 4+ 0,(D), n— 0o,
whereo, (1) is uniform ini € A. First, observe that

E,(A\) — EQV) =/~ (M., (6) — 1) db — /O (M, (6) — 1) d6

(21)
=v,(A) + Ry,
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where

(22)  Ryi= / (My.n(8) — 3)d6 — f (My.(0) — 1) dO.
Oy, \Ox O\ n

Now,

VAR =V [ IM(6) - 21de
OLAO; ,

<d(03,0;.)v/n  sup M, () — Al
96@1&(’9)‘,,1

To prove that|/nR,| = 0,(1), it suffices to prove this for the right-hand side
above. To see this, recall from Step 1 that

sup  [M,(0) —A| =sup|M,,(0) — M (©0)],
9E®)‘A@)L’n %

where the upper bound does not depend oGonsequently, we have that
|\/ﬁRn| =< d(®)\,7 ®)\,n)\/ﬁs‘;1ler,n(9) - Mr(9)|-

But it follows from Proposition 2 that

ﬁsgler,n(e) - M, 0)| = sgplG(e)l,

where G(-) is the zero mean Gaussian process identified in Proposition 2 and
the discussion following thereafter, and the above supremum is finite, almost
surely. Note that the weak limit does not dependiomBy Step 1 we have that
SUP.cp d(O;, 0, ,) — 0asn — oo, a.s. Finally, using Slutzky’s lemma, we have
that \/nR, = 0,(1) uniformly in 1. This result, together with (21), gives the
assertion (20).

Finally, we put the pieces together using the continuous mapping theorem in
the space of continuous functions [see, e.g., Billingsley (1968)], which yields
that v, (1) converges to the corresponding integral of the proeg&s. To that
end, we note that the mapping— ©; is continuous w.r.t. the metri¢, because
M, (-) is continuous and (9) holds. This concludes the proof of the first statement
of the theorem.

The proof of statement (ii) goes along the same lines as above. We indicate only
the differences. Note thaft+ (1) = E()) because®, € 7. Also, by definition
of ©;.(7),

(23) Hy 1{03} < Hy y{O3 n (7))} < Hy 005, 0}
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Therefore, similarly to (21), we write
E7 »(0) — EQ) =va(A) + Ry,

where

R, = / (M, ,(6) — 1) db — / (M, (8) — 1) db
©3.n(T)\Ox ©;\0;.4(T)

- H)\,n{G))\,n(T)} - H)\,n{G))\}
=< H)\,n{G))\} - H)\,n{G))\,n} = an

the last inequality follows from (23) an#,, is defined in (22). Thus/nR,]| is
bounded using the bounds ¢gnR,| above. Other details of the proof remain
unchanged. O

PROOF OFPROPOSITIONL. It follows immediately from the definition that
M, (0) = M, (0 — 6p), where

M, 0) =P{le + 20| <r||Z|}
=E[F(r|Z| - Z"6) - F(—r|Z| - Z"6)].
By symmetry off,
F(r|ZIl - 2"0) - F(—r|Z| - Z"6)
=F|ZI+270) = F(-r|Z|+270) VZ,

and, thereforeM, (9) = M,(—6) V6. Uniqueness of the mode follows from the
Anderson lemma.

Let 61, 62 € ©,, that is, M,(61) > » and M,(62) > A. Let 6, = a1 + (1 —
«)f> for somea € (0,1), and denotel; = [—r||Z|| — ZT 61, r||Z|| — Z764],
L=[-r|Z| — Z"6p,r|Z|| — Z7 6], and L, = [—r|| Z|| — ZT O, r | Z|| — Z" 6s].
With this notation,

M0 =E [ f@dx.
The lengths ofly, I, and I, are equal to 2|Z||. However, since mifZ’ 6y,
7100} < 7zT0, < maxzT 6., Z70,}, the center ofl, is closer to the origin than

one of the centers di and/». Therefore, by symmetry and unimodality 6f for
all Z,

Mr(H*):E/I* f(x)dxzEmin{/Ilf(x)dx,/lzf(x)dx} > Al

Thus,6, € ©,, and®,_is convex. [J
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