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STATISTICAL ESTIMATION IN THE PROPORTIONAL HAZARDS
MODEL WITH RISK SET SAMPLING1

BY KANI CHEN

Hong Kong University of Science and Technology

Thomas’ partial likelihood estimator of regression parameters is widely
used in the analysis of nested case-control data with Cox’s model. This
paper proposes a new estimator of the regression parameters, which is
consistent and asymptotically normal. Its asymptotic variance is smaller than
that of Thomas’ estimator away from the null. Unlike some other existing
estimators, the proposed estimator does not rely on any more data than strictly
necessary for Thomas’ estimator and is easily computable from a closed
form estimating equation with a unique solution. The variance estimation is
obtained as minus the inverse of the derivative of the estimating function and
therefore the inference is easily available. A numerical example is provided
in support of the theory.

1. Introduction. Thomas’ partial likelihood estimate [Thomas (1977) and
Oakes (1981)] is the most popular estimate of regression parameters in nested
case-control (n-c-c) studies using Cox’s proportional hazards model. The partial
likelihood score has a simple closed form expression and therefore the estimate is
computationally simple with easily available inference. More important, Thomas’
estimate only relies on the time-restricted n-c-c data: the failure times of all cases
and the covariates of controls (cases) at the time when they are sampled (fail). The
aim of this paper is to propose a new estimate that uses only the time-restricted
n-c-c data and is more accurate than Thomas’ estimate away from the null. This
estimate is also easy to compute with readily available inference. Throughout the
paper, an estimate is said to be more accurate or efficient than another estimate if
the former has smaller asymptotic variance.

Statistical analysis of n-c-c designs has attracted considerable attention in the
past decade; see Langholz and Thomas (1990, 1991), Goldstein and Langholz
(1992), Robins, Rotnitzky and Zhao (1994), Borgan, Goldstein and Langholz
(1995), Langholz and Goldstein (1996), Breslow (1996), Samuelsen (1997),
Suissa, Edwardes and Biovin (1998), Borgan and Olsen (1999) and Chen (2001),
among many others. Some competing estimates were also studied in the literature;
see Robins, Rotnitzky and Zhao (1994), Samuelsen (1997) and Chen (2001).
However, all these studies depend on the extended n-c-c data which are more
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than strictly necessary for Thomas’ estimate. The extended n-c-c data is defined
as the observed failure or censoring times and failure or censoring indices
for all cohort members and the entire covariate histories for all cases and
controls. Robins, Rotnitzky and Zhao (1994) pointed out that Thomas’ estimator
is not semiparametrically efficient based on the extended n-c-c data but they
only dealt with time-fixed covariates. Samuelsen (1997) proposed an estimator
via the inclusion probability method but it is not always more accurate than
Thomas’ estimator; see discussion in Chen (2001). The estimation method of Chen
(2001) leads to a semiparametrically efficient estimator but it inevitably involves
estimating and inverting a Fredholm operator, which is computationally difficult.

The most serious practical limitation of the estimators of Samuelsen (1997),
Chen (2001) and Robins, Rotnitzky and Zhao (1994), in contrast with Thomas’
estimator, is that they rely on the extended n-c-c data rather than only the time-
restricted n-c-c data. The extended n-c-c data contain components that are often
not available or, even if available, are much less reliable than the time-restricted
n-c-c data. First, the nonfailures that are not sampled as controls are usually not
closely followed up, and therefore their censoring times are often not accurately
observed. This happens particularly when the cohort is loosely defined [Chen and
Lo (1999)]. Second, the ascertainment of the entire covariate histories for cases
and controls is often too difficult a task to accomplish with reasonable accuracy.
Thus, a new estimator would be greatly desirable if it uses only the time-restricted
n-c-c data and is reasonably accurate.

The next section introduces notation and Thomas’ estimator based on the time-
restricted n-c-c data. Section 3 presents the proposed estimator and its consistency
and asymptotic normality. A numerical example is provided in Section 4. A few
closing remarks are given in Section 5. Proofs are presented in the Appendix.

2. Thomas’ partial likelihood estimator. Let {T,C,Z(·)} be the random
triplet of life time, censoring time and covariate process of dimensiond . Let
Y = min(T ,C), δ = I (T ≤ C), N(t) = δI (T ≤ t) and Y (t) = I (Y ≥ t),

whereI is the indicator function throughout. Consider a cohort of sizen. Let
Ti,Ci,Zi(·), Yi, δi,Ni(·), Yi(·), i = 1,2, . . . , n, be the i.i.d. sample analogues.
The full cohort data refer to[(Yi, δi), {Zi(t) : t ∈ [0, Yi]} : i = 1, . . . , n]. An
n-c-c design takes a random sample of sizem (for covariate ascertainment)
from the risk set at every failure time, excluding the failed subject itself. Let
R∗

t denote the index set of a sizem random sample selected from all subjects
with the minimum of failure and censoring times greater thant . The extended
n-c-c data refer to{(Yi, δi) : i = 1, . . . , n} ∪ [{Zi(t) : t ∈ [0, Yi]}, {Zj (t) : t ∈
[0, Yj ]} : δi = 1, j ∈ R∗

Yi
, i, j = 1, . . . , n]. The time-restricted n-c-c data refer to

[{Yi,Zi(Yi),Zj (Yi)} : δi = 1, j ∈ R∗
Yi

, i, j = 1, . . . , n]. With the time-restricted
n-c-c data, the exact censoring times for the nonfailures are not necessarily
specified and the covariate histories for controls (cases) are not observed except
at the time when they are sampled (fail).
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The Cox proportional hazards model assumes that the conditional hazard ofT

givenZ satisfies

λT (t|Z = z) = λ0(t)exp{β ′z(t)},
whereβ is the parameter to be estimated andλ0(·) is the baseline hazard function.
The life time T and the censoring timeC are always assumed conditionally
independent givenZ, which is assumed pathwise left continuous with right limit.
Cox’s partial likelihood estimator ofβ based on the full cohort data, denoted
by β̂C , is the solution of

UC(β) ≡
n∑

i=1

∫ τ

0

[
Zi(t) −

∑
j∈Rt

Zj (t)exp{β ′Zj (t)}∑
j∈Rt

exp{β ′Zj (t)}
]

dNi(t) = 0,

whereτ = sup{t : pr(Y > t) > 0} andRt is the risk set at timet ; that is,Rt =
{j :Yj ≥ t, j = 1, . . . , n}. Thomas’ partial likelihood estimator ofβ, denoted
by β̂P , is the solution of

UP (β) ≡
n∑

i=1

∫ τ

0

[
Zi(t) −

∑
j∈R∗

t ∪{i} Zj (t)exp{β ′Zj (t)}∑
j∈R∗

t ∪{i} exp{β ′Zj (t)}
]

dNi(t) = 0.

It is clear that Thomas’ estimator uses only the time-restricted n-c-c data. It is
proved in Goldstein and Langholz (1992) (whereτ is set to be 1 for convenience)
that, under certain regularity conditions,

n1/2(β̂P − β) → N(0,�−1
P ),

where�P = �C − �a,

�C =
∫ τ

0
E[{Z(t) − µ(t)}⊗2 exp{β ′Z(t)}Y (t)]λ0(t) dt,

�a = 1

m + 1

∫ τ

0
E

([∑m+1
j=1 {Zj(t) − µ(t)}exp{β ′Zj (t)}]⊗2

∑m+1
j=1 exp{β ′Zj (t)}

∣∣∣∣
Y1 ≥ t, . . . , Ym+1 ≥ t

)
pr(Y ≥ t)λ0(t) dt

and

µ(t) = E{Z(t)|Y = t, δ = 1} = E[Z(t)exp{β ′Z(t)}Y (t)]
E[exp{β ′Z(t)}Y (t)] .

Here and throughout the paper,v⊗2 = vv′ for any vectorv of dimensiond .
Moreover,−U̇P (v)|

v=β̂
/n is a consistent estimator of�P . It is also well known

thatn1/2(β̂C − β) → N(0,�−1
C ). Throughout the paper, the true value ofβ is still

denoted byβ.
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REMARK. Set

�(t) =
m+1∑
j=1

({Zj (t) − µ(t)}exp{β ′Zj (t)})
/m+1∑

j=1

exp{β ′Zj (t)}

for ease of notation. It follows from the expression of�P given in Goldstein and
Langholz (1992) that

�P =
∫ τ

0
E

([Z1(t) − µ(t) − �(t)]⊗2

× exp{β ′Z1(t)}Y1(t)|Y2 ≥ t, . . . , Ym+1 ≥ t
)
λ0(t) dt

=
∫ τ

0
E

([Z1(t) − µ(t) − �(t)]⊗2

× exp{β ′Z1(t)}|Y1 ≥ t, . . . , Ym+1 ≥ t
)
pr(Y ≥ t)λ0(t) dt

=
∫ τ

0
E

([Z1(t) − µ(t)]⊗2 exp{β ′Z1(t)}Y1(t)
)
λ0(t) dt

−
∫ τ

0
E

([Z1(t) − µ(t)]�(t)′

× exp{β ′Z1(t)}|Y1 ≥ t, . . . , Ym+1 ≥ t
)
pr(Y ≥ t)λ0(t) dt

−
∫ τ

0
E

(
�(t)[Z1(t) − µ(t)]′

× exp{β ′Z1(t)}|Y1 ≥ t, . . . , Ym+1 ≥ t
)
pr(Y ≥ t)λ0(t) dt

+
∫ τ

0
E

(
�(t)⊗2 exp{β ′Z1(t)}|Y1 ≥ t, . . . , Ym+1 ≥ t

)
pr(Y ≥ t)λ0(t) dt

= �C − �a − �a + �a = �C − �a.

The expression of�P in the first line is intuitively well understandable from the
partial likelihood nature of the Thomas estimatorβ̂P .

3. A new estimator and its inference. The motivation of the new estimator
is described in the following. Observe that the ratio in the expression ofUP

can be viewed as an estimator ofµ(t). This estimator, although unbiased, uses
only m + 1 observations:m controls plus 1 case. Heuristically, its estimation and
accuracy can be improved by utilizing moreobservations of relevance. One way
to do so is to consider altogether the controls inR∗

s for all failure timess in a
neighborhood oft . With a more accurate estimation and approximation ofµ(t)

plus a proper weighting scheme, one can presumably construct a new estimator
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of the regression parameters. The details of the construction are as follows. Set
N̄(s) = (1/n)

∑n
i=1 Ni(s), b(t) = E[exp{β ′Z(t)}|Y ≥ t],

w̃(t) = mb(t)

exp{β ′Z(t)} + mb(t)
, g(t) = E[w̃(t)Z(t)exp{β ′Z(t)}Y (t)]

E[w̃(t)exp{β ′Z(t)}Y (t)] ,

and letw̃i(t) be the i.i.d. copies of̃w(t). Let ψn(x) = ψ(n1/3x), x ∈ (−∞,∞),

whereψ is an infinitely differentiable nonnegative even function with bounded
support. For ease of notation, suppose the support ofψ is (−1,1). Use

b̂(t) ≡
∫ τ
0

∑
j∈R∗

s
exp{β̂ ′

PZj (s)}ψn(t − s) dN̄(s)

m
∫ τ
0 ψn(t − s) dN̄(s)

(3.1)

to approximateb(t) and

wi(t) ≡ mb̂(t)

exp{β̂ ′
PZi(t)} + mb̂(t)

(3.2)

to approximatew̃i(t), i = 1,2, . . . . Let

Sk(t, β) =
∫ τ

0

∑
j∈R∗

s

wj (s)Z
k
j (s)exp{β ′Zj (s)}ψn(t − s) dN̄(s), k = 0,1,2.

Throughout the paper, the power 2 on covariatesZ or Zj , j ≥ 1, always means
the outer product⊗2. The notionA ≥ B for any twod × d nonnegative definite
matrices means thatA − B is nonnegative definite. The proposed estimator,
denoted byβ̂, is the solution of

U(β) ≡
n∑

i=1

∫ τ

0
wi(t)

{
Zi(t) − S1(t, β)

S0(t, β)

}
dNi(t) = 0.(3.3)

We note thatS1(t, β)/S0(t, β) may be viewed as an estimator ofg(t), a weighted
version ofµ(t). Suppose, in the definition ofSk(t, β), we use 1 instead of the
presently definedwi as weights. ThenS1(t, β)/S0(t, β) is an estimator ofµ(t)

which should heuristically be more accurate than its counterpart inUP (β). The
present choice of weights is optimal in the sense that no other choices will
produce estimators ofβ with smaller asymptotic variance; see further discussion in
Section 5. As a result, (3.3) may produce more accurate estimators than Thomas’
estimator. The difference between the weightswi(t) used here and those used in
Sasieni (1993b) is thatwi(t) depends on the covariateZi(t) while those in Sasieni
(1993b) do not.

Denote byBc the closed ball ind dimensional real space centered at the origin
with radiusc > 0, wherec is a large but fixed constant. LetC∞(Bc) denote the set
of all infinitely differentiable functions defined onBc. Some regularity conditions
are assumed here:

(i) pr{supt∈[0,τ ] |Z(t)| ≤ c} = 1;
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(ii) the baseline hazard functionλ0(t) is bounded away from 0 and infinity
on [0, τ ] and has continuous second derivative;

(iii) pr{Y (t) = 1} > 0 for all t ∈ [0, τ ];
(iv) �P and� defined in (3.5) are positive definite;
(v) for any φ(·) ∈ C∞(Bc), E[φ{Z(t)}Y (t)] as a function oft on [0, τ ] has

continuous second derivative;
(vi) for any φ(·) ∈ C∞(Bc), the processn−1/2 ∑n

i=1(φ{Zi(t)} Yi(t) −
E[φ{Z(t)}Y (t)]), as a process oft , converges to a Gaussian process on[0, τ ]
asn → ∞.

THEOREM. Assume the above conditions (i)–(vi) hold. Then

n1/2(β̂ − β) → N(0,�−1),(3.4)

where

� =
∫ τ

0
E[w̃(t){Z(t) − g(t)}⊗2 exp{β ′Z(t)}Y (t)]λ0(t) dt.(3.5)

Moreover, −(1/n)U̇(v)|
v=β̂

is a consistent estimator of �, where

U̇ (v)|
v=β̂

= −
∫ τ

0

[
S2(t, β̂)

S0(t, β̂)
−

{
S1(t, β̂)

S0(t, β̂)

}⊗2] n∑
i=1

wi(t) dNi(t).

REMARK. There are six conditions assumed in Goldstein and Langholz
(1992) to ensure the consistency and asymptotic normality ofβ̂P . Conditions
(i)–(iv) here are analogous to Conditions 2–5 in Goldstein and Langholz (1992).
Their Conditions 1 and 6 are implied in the model description in Section 2 and
therefore are not listed here. The inheritance of their conditions is understandable
since the proposed estimatorβ̂ uses the Thomas estimatorβ̂P . Conditions (i)–(iii)
and (v) are necessary for using the empirical approximations (e.g., the proof of
part 1 of the Lemma in the Appendix) to obtain the rates of convergence for
various random quantities, as in the Lemma in the Appendix. Condition (iii)
here, parallel to Condition 4 in Goldstein and Langholz (1992), can be relaxed
with increasing technicalities involving the tail behavior near the endpointτ .
Condition (iv) validates the asymptotic normality ofβ̂ claimed in (3.4). It is also
used in proving the consistency ofβ̂; see Step 3 of the proof of the Theorem
in the Appendix. The requirement of differentiability in conditions (ii) and (v),
for obtaining the bounds of kernel estimation, may appear to be restrictive in
that it does not allow, for example, pr(Y ≥ t) andE{Z(t)} to be discontinuous,
although pathwise discontinuousZ(·) are not excluded. In fact, the differentiability
requirements in conditions (ii) and (v) can be relaxed to piecewise differentiability.
Then, functions such as pr(Y ≥ t) andE{Z(t)} can be discontinuous at a finite
number of time points. The important case of fixed censoring is also covered.
The proof of the Theorem under such relaxed conditions requires a careful but
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regular treatment on the edge effect caused by the discontinuity points and the
endpoints, which is partly reflected in the Lemma. The current presentation was
chosen to avoid a lengthy but not essential technical argument. In particular,
condition (v) is satisfied when

∫
P {C ≥ t|Z(t) = z}φ(z)ft(z) dL(z) as a function

of t on [0, τ ] is piecewise twice continuously differentiable, whereφ(·) ∈ C∞(Bc)

and ft (z) is the density ofZ(t) with respect to a measureL which can be a
combination of the Lebesgue measure and a counting measure. Condition (vi) is
essentially about the tightness of the sequence, which can be ensured by a certain
Lipschitz condition on the incrementsZ(t) − Z(s). For example, it is satisfied if
there exist ana > 1 andA > 0 such thatE(|Z(t) − Z(s)|2) ≤ A|t − s|a for all
s, t ∈ [0, τ ]. More relaxed but technical conditions in terms of metric entropy may
be found in Pollard (1990) or van der Vaart and Wellner (1996). Condition (vi)
is used to obtain uniform bounds on[0, τ ] for sequences of random processes in
concern; see (A.13). Again, a piecewise version of condition (vi) is sufficient.

REMARK. One can use another version of the weightswi(t) by replacing
β̂P by β in the definitions ofb̂ andwi in (3.1) and (3.2). The advantage is that
one does not have to computeβ̂P first to obtainβ̂. The disadvantage is that the
estimating equation (3.3) may possibly have multiple roots. Still, the same proof
shows that one of the roots is consistent and asymptotically normal with the same
asymptotic variance�−1.

PROPOSITION. Assume the conditions of the Theorem hold. Then �−1
P ≥ �−1

and equality holds if and only if β = 0.

This inequality justifies that the asymptotic variance of the proposed estimator
is smaller than that of Thomas’ estimator away from the null.

4. A numerical example. Some simulation results are presented in this
section. The covariate process is such thatZ(t) = 4tu1 + u2, t ∈ [0,1], where
u1 andu2 are two independent random variables uniformly distributed on[−1,1].
The baseline hazard functionλ0(t) is set to be constant at 1. We consider separately
two different types of censorship: the fixed censoring with pr(C = 1) = 1, and
the random censoring with the conditional distribution ofC given thatZ is the
uniform distribution on[0,min(1, |Z(0.25)|)]. The functionψn(t) is chosen to
be I (|t| ≤ 0.05). The regression parameterβ takes values 0, 1 and 2 and the
size of controls to be selected from each risk set is 1, 2 and 3. The sample size
is 200. For each scenario, 2000 simulations are conducted and Thomas’ estimator
and the proposed estimator are calculated. For reference, we also calculate Cox’s
partial likelihood estimator based on full cohort data. The results are presented in
Table 1. Table 1 shows that the proposed estimate has indeed smaller variances
(and mean squared errors as well) than Thomas’ estimate ifβ �= 0. Whenβ = 0,
the two estimates have about the same asymptotic variances. These simulation
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TABLE 1
Summary of the simulation resultsa

β = 0 β = 1 β = 2

Ave Emp Est Ave Emp Est Ave Emp Est
Est Var Var Est Var Var Est Var Var

Fixed censoring:C = 1
Cen Prop 0.368 0.603 0.667
Cox −0.004 0.013 0.012 1.012 0.030 0.029 2.025 0.067 0.063

m = 1
Thomas −0.003 0.026 0.025 1.039 0.089 0.087 2.127 0.316 0.299
Proposed −0.004 0.025 0.027 0.989 0.065 0.081 1.962 0.162 0.197

m = 2
Thomas −0.003 0.019 0.018 1.034 0.059 0.058 2.096 0.189 0.174
Proposed −0.003 0.019 0.019 1.031 0.049 0.056 2.028 0.123 0.140

m = 3
Thomas −0.001 0.017 0.016 1.034 0.054 0.048 2.073 0.142 0.134
Proposed −0.001 0.017 0.017 1.039 0.047 0.048 2.041 0.106 0.116

Random censoring:C|Z ∼ U [0,min(1, |Z(0.25)|)]
Cen Prop 0.771 0.849 0.843
Cox −0.007 0.059 0.056 1.009 0.080 0.079 2.018 0.124 0.121

m = 1
Thomas 0.009 0.138 0.123 1.106 0.336 0.301 2.231 0.845 0.880
Proposed −0.001 0.126 0.147 0.991 0.195 0.276 1.963 0.376 0.453

m = 2
Thomas −0.011 0.094 0.087 1.063 0.189 0.176 2.159 0.481 0.435
Proposed −0.013 0.095 0.095 1.031 0.145 0.176 2.024 0.256 0.300

m = 3
Thomas −0.003 0.082 0.078 1.069 0.154 0.144 2.137 0.370 0.334
Proposed −0.006 0.082 0.082 1.057 0.133 0.147 2.043 0.205 0.243

a“Ave Est” and “Emp Var” stand for the averages and empirical variances of the estimates over 2000
simulations. “Est Var” stands for the average of the estimated variances over 2000 simulations. “Cen
Prop” stands for the proportion of censoring. “Cox,” “Thomas” and “Proposed” refer, respectively,
to the Cox estimate based on full cohort data, Thomas’ estimate and the proposed estimates based
on time-restricted n-c-c data.

results are consistent with the Theorem and the Proposition. In this example, when
β = 2 the bias of Thomas’ estimate appears to be relatively serious, while that
of the proposed estimate is always negligible. We also notice that, in a few cases
of this example, the variance estimation appears to be biased down for Thomas’
estimate and biased up for the proposed estimate. Typically, the latter will result in
conservative but still valid inferences. As sample size increases, the bias tends to
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be negligible. It is concluded that this simulation example provides solid evidence
in support of the established theoretical results.

5. Closing remarks. In summary, the proposed estimateβ̂ is asymptotically
more accurate than Thomas’ estimate away from the null and it uses only the
time-restricted n-c-c data which is strictly necessary for Thomas’ estimate. This
estimate is relatively easy to compute: The estimating equation takes a simple
closed form and has a unique solution. Its inference is equally easy to obtain as the
variance estimate is simply minus the inverse of the derivative of the estimating
function. Unlike the case of curve estimation, the problem of (optimal) bandwidth
choice is much less significant here. In the definition ofψn, the order of bandwidth
is n−1/3. In fact, with little modification of the proof, the Theorem holds for all
bandwidths of ordern−r with r ∈ (1/4,1/2). At least within this range, the choice
of bandwidth does not affect the first-order asymptotic behavior of the estimate. In
practice, however, a proper objective or data-driven choice of bandwidth should be
valuable for the implementation of the estimation procedure.

Although it is not clear whether the proposed estimator is semiparametric
efficient based on the time-restricted n-c-c data, it does have the following
optimality. Consider the class of estimators as solutions of

n∑
i=1

∫ τ

0

[
h{Zi(t), t, β}

−
∫ τ
0

∑
j∈R∗

s
h{Zj(s), s, β}exp{β ′Zj (s)}ψn(t − s) dN̄(s)∫ τ

0
∑

j∈R∗
s

exp{β ′Zj (s)}ψn(t − s) dN̄(s)

]
dNi(t) = 0,

where h is any bounded infinitely differentiable function. Heuristically, if
h{Zj (t), t, β} is replaced bywj(t){Zj (t) − S1(t, β)/S0(t, β)}, it can be shown
that the above estimating function is

∑n
i=1

∫ τ
0 h{Zi(t), t, β}dNi(t) + oP (n1/2).

Hence the above equation with this particular choice ofh is asymptotically
equivalent to (3.3) in the sense that the resulting estimators ofβ are asymptotically
equivalent. In this asymptotic sense, (3.3) might be viewed as approximately a
member of the above general class of estimating equations. More important, it
can be proved under regularity conditions that the theoretical optimal choice of
h{Zj (t), t, β} is w̃j (t){Zj (t)−g(t)}, which in actual construction is approximated
bywj(t){Zj (t)−S1(t, β)/S0(t, β)}. It implies that no other choice ofh used in the
above estimating equation shall result in estimators ofβ with asymptotic variance
smaller than�−1 and that no other choice of weights used in (3.3) will produce
estimators ofβ with asymptotic variance smaller than�−1.

APPENDIX

Proofs of the Theorem and the Proposition. More notation is needed.
Throughout the Appendix, the notion| · | for a vector or matrix means the
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sum of the absolute values of all elements. Setnt = ∑n
i=1 I (Yi > t), f (t) =

E[exp{β ′Z(t)}Y (t)]λ0(t) and hk(t) = E[w̃(t)Zk(t)exp{β ′Z(t)}|Y ≥ t], k =
0,1,2. Notice that together conditions (i), (ii) and (v) ensure thatf (t) is bounded
above, bounded above 0 and has a continuous second derivative on[0, τ ]. Much
of the proof relies on counting process martingale techniques; see, for example,
Andersen and Gill (1982). The following lemma provides the approximations used
in the proof of the Theorem.

LEMMA . Assume conditions (i)–(vi) hold. Let ε > 0 be an arbitrary number.

1. Let fn(t) = n1/3E{ψn(t − Y )δ} and an(t) = n1/3E{δ(Y − t)ψn(Y − t)}. Then

sup
0≤t≤τ

∣∣∣∣n1/3
∫ τ

0
ψn(t − s) dN̄(s) − fn(t)

∣∣∣∣ = OP (n−1/3+ε),(A.1)

sup
0≤t≤τ

∣∣∣∣n1/3
∫ τ

0
(s − t)ψn(t − s) dN̄(s) − an(t)

∣∣∣∣ = OP (n−2/3+ε).(A.2)

Moreover, fn(·) and an(·) are continuous on [0, τ ], satisfying

0 < inf
n

inf
t∈[0,τ ] fn(t) ≤ sup

n
sup

t∈[0,τ ]
fn(t) < ∞,

(A.3)
sup

t∈[0,τ ]
|an(t)| = O(n−1/3),

and fn(t) = f (t) and an(t) = 0 for t ∈ (n−1/3, τ − n−1/3).
2. Let S̃k(t, β) be defined the same as Sk(t, β), k = 0,1,2,except with wi replaced

by w̃i . Then

sup
t∈[0,τ ]

|b̂(t) − b(t)| = OP (n−1/3+ε);(A.4)

sup
1≤i≤n

sup
t∈[0,τ ]

|wi(t) − w̃i(t)| = OP (n−1/3+ε);(A.5)

sup
t∈[0,τ ]

∣∣∣∣ Sk(t, β) − S̃k(t, β)

m
∫ τ
0 ψn(t − s) dN̄(s)

∣∣∣∣ = OP (n−1/3+ε);(A.6)

sup
t∈[0,τ ]

∣∣∣∣ S̃k(t, β)

m
∫ τ
0 ψn(t − s) dN̄(s)

(A.7)

− E[w̃(t)Zk(t)exp{β ′Z(t)}|Y > t]
∣∣∣∣ = OP (n−1/3+ε);

sup
t∈[0,τ ]

∣∣∣∣ S̃1(t, β)

S̃0(t, β)
− g(t)

∣∣∣∣ = OP (n−1/3+ε);(A.8)
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sup
s∈[0,τ ]

∣∣∣∣∣1n
∫ τ

0
ψn(t − s)

∑n
i=1 w̃i(t) dNi(t)

S̃0(t, β)
(A.9)

− λ0(s)P (Y ≥ s)

mfn(s)

∣∣∣∣∣ = OP (n−1/3+ε),

where λ0(s)P (Y ≥ s)/{mfn(s)} = 1/{mb(s)} for s ∈ (n−1/3, τ − n−1/3).
Moreover, (A.7)–(A.9)also hold if S̃k(t, β) is replaced by Sk(t, β).

PROOF. 1. Observe that var{ψn(t −Y )δ} ≤ ∫ τ
0 ψ2

n(t − s)f (s) ds = O(n−1/3)

and write

n1/3
∣∣∣∣n1/3

∫ τ

0
ψn(t − s) dN̄(s) − fn(t)

∣∣∣∣
= n−1/3

∣∣∣∣∣
n∑

i=1

[ψn(t − Yi)δi − E{ψn(t − Y )δ}]
∣∣∣∣∣.

SetM as a large but fixed number. It follows from Bernstein’s inequality [see, e.g.,
van der Vaart and Wellner (1996), page 102] that

P

(
n−1/3

∣∣∣∣∣
n∑

i=1

[ψn(t − Yi)δi − E{ψn(t − Y )δ}]
∣∣∣∣∣ ≥ nε

)
≤ 2n−M

for all large n. Set An = {kτ/n2 :k = 0,1, . . . , n2}. The above exponential
inequality ensures, through the Borel–Cantelli lemma, that

sup
t∈An

n−1/3

∣∣∣∣∣
n∑

i=1

[ψn(t − Yi)δi − E{ψn(t − Y )δ}]
∣∣∣∣∣ = O(nε)

almost surely. Extending the supremum overAn to over[0, τ ], the above equality
still holds by the differentiability of the kernel functionψ . Therefore (A.1) holds.
(A.2) can be proved in a similar fashion. (A.3) and the rest of the claims can be
verified by direct calculation using Taylor expansion.

2. Set dj (t) = [exp{β ′Zj (t)} − b(t)]Yj (t+). Observe (A.1)–(A.3) and that
β̂P − β = OP (n−1/2). One can apply Taylor expansion and write

b̂(t) − b(t)

= 1

m
∫ τ
0 ψn(t − s) dN̄(s)

×
[∫ τ

0

∑
j∈R∗

s

[exp{β̂ ′
P Zj (s)} − b(s)]ψn(t − s) dN̄(s)

+ m

∫ τ

0
{b(s) − b(t)}ψn(t − s) dN̄(s)

]
(A.10)
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= 1

m
∫ τ
0 ψn(t − s) dN̄(s)

×
[∫ τ

0

∑
j∈R∗

s

[exp{β̂ ′
P Zj (s)} − exp{β ′Zj (s)}]Yj(s+)ψn(t − s) dN̄(s)

+
∫ τ

0

∑
j∈R∗

s

[exp{β ′Zj (s)} − b(s)]Yj (s+)ψn(t − s) dN̄(s)

+ mḃ(t)

∫ τ

0
(s − t)ψn(t − s) dN̄(s)

]

+ OP (n−2/3)

= (β̂P − β)′E[Z(t)exp{β ′Z(t)}|Y ≥ t]

+ 1

mfn(t)

∫ τ

0

n∑
j=1

{
I (j ∈ R∗

s ) − m

ns

}
dj (s)n

1/3ψn(t − s) dN̄(s)

+ 1

nfn(t)P (Y ≥ t)

n∑
j=1

∫ τ

0
dj (s)n

1/3ψn(t − s)f (s) ds

+ ḃ(t)an(t)/fn(t) + oP (n−1/2).

Here and in the following,OP (·) and oP (·) are uniform overt ∈ [0, τ ]. The
first term in the last expression isOP (n−1/2) by the asymptotic normality of
β̂P established in Goldstein and Langholz (1992). LetF denote theσ -algebra
generated by[{Yi, δi,Zi(·)}, i = 1,2, . . .]. The integrands of the second term are
conditionally independent with conditional mean zero when conditioning onF .
Thus, the empirical approximation analogous to the proof of (A.1) can be applied
to show the second term isOP (n−1/3+ε). Sincedj (t) is uniformly bounded with
mean zero, the third term can be similarly shown to beOP (n−1/3+ε). The fourth
term isOP (n−1/3+ε) by part 1. Therefore (A.4) is proved.

To show (A.5), apply the mean value theorem and write

wi(t) − w̃i(t)
(A.11)

= w̃i(t){1− w̃i(t)}[{b̂(t) − b(t)} − (β̂ ′
P − β ′)Zi(t)] + oP (n−1/2),

whereoP (·) is uniform over[0, τ ]. Then (A.5) follows from (A.4), the bounded-
ness ofZ(·) in condition (i) and the asymptotic normality ofβ̂P .

Equation (A.6) follows directly from (A.5) and the definitions ofSk(t, β) and
S̃k(t, β).

To show (A.7), letĥk(t) = (1/nt)
∑n

j=1 w̃j (t)Z
k
j (t)exp{β ′Zj (t)}Yj (t+) and

recall the definition ofhk(·). Conditions (v) and (vi) imply that supt∈[0,τ ) |ĥk(t) −



RISK SET SAMPLING 1525

hk(t)| = OP (n−1/2). Therefore we can write

S̃k(t, β)

m
∫ τ
0 ψn(t − s) dN̄(s)

− hk(t)

=
∫ τ
0

∑
j∈R∗

s
[w̃j (s)Z

k
j (s)exp{β ′Zj (s)} − hk(t)]ψn(t − s) dN̄(s)

m
∫ τ
0 ψn(t − s) dN̄(s)

=
∫ τ
0

∑
j∈R∗

s
[w̃j (s)Z

k
j (s)exp{β ′Zj (s)} − hk(s)]ψn(t − s) dN̄(s)

m
∫ τ
0 ψn(t − s) dN̄(s)

+ OP (n−1/3+ε)

=
∫ τ
0

∑
j∈R∗

s
[w̃j (s)Z

k
j (s)exp{β ′Zj (s)} − ĥk(s)]ψn(t − s) dN̄(s)

m
∫ τ
0 ψn(t − s) dN̄(s)

+ OP (n−1/3+ε),

where the orderOP (·) is uniform overt ∈ [0, τ ). Notice that the integrands in
the numerator are bounded conditionally independent with conditional mean zero
when conditioning onF . Then (A.7) can be shown by applying the empirical
approximation analogous to the proof of (A.1).

Equation (A.8) follows from the definition ofg(·), (A.6) and (A.7).
To show (A.9), recall thath0(t) is defined asE[w̃(t)exp{β ′Z(t)}|Y ≥ t]. Use

(A.1) and (A.7) and write

1

n

∫ τ

0
ψn(t − s)

∑n
i=1 w̃i(t) dNi(t)

S̃0(t, β)

= 1

n

n∑
i=1

∫ τ

0

n1/3ψn(t − s)w̃i(t) dNi(t)

mfn(t)h0(t)
+ OP (n1/3+ε)

= 1

n

n∑
i=1

n1/3ψn(Yi − s)w̃i(Yi)δi

mfn(Yi)h0(Yi)
+ OP (n1/3+ε)

(A.12)

= E

[
n1/3ψn(Y − s)w̃(Y )δ

mfn(Y )h0(Y )

]
+ OP (n−1/3+ε)

=
∫ τ

0

[
n1/3ψn(t − s)λ0(t)P (Y ≥ t)

mfn(t)

]
dt + OP (n−1/3+ε)

= λ0(s)P (Y ≥ s)

mfn(s)
+ OP (n−1/3+ε),

whereOP (·) is uniform overs ∈ [0, τ ]. In the above equations, the third equality
can be proved analogous to the proof of (A.1). The details are omitted. That
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λ0(s)P (Y ≥ s)/{mfn(s)} = 1/{mb(s)} for s ∈ (n−1/3, τ − n−1/3) follows from
the result of part 1 and the definitions ofb(·) andfn(·).

Equations (A.7)–(A.9) also hold if̃Sk(t, β) is replaced bySk(t, β) because
of (A.6). The proof of this lemma is complete.�

PROOF OF THE THEOREM. Define M(t) = N(t) − ∫ t
0 exp{β ′Z(s)}Y (s) ×

λ0(s) ds. Let Mi(t), i = 1,2, . . . , be the i.i.d. copies ofM(t),

gn(t) =
∑n

i=1 w̃i(t)Zi(t)exp{β ′Zi(t)}Yi(t+)∑n
i=1 w̃i(t)exp{β ′Zi(t)}Yi(t+)

and

Ũ (β) =
n∑

i=1

∫ τ

0
w̃i(t)

{
Zi(t) − S̃1(t, β)

S̃0(t, β)

}
dNi(t).

Then condition (vi) implies that, for anyεn ↓ 0,

sup
|t−s|≤εn,0≤t,s<τ

|gn(t) − gn(s) − g(t) + g(s)| = oP (n−1/2).(A.13)

The rest of the proof is divided into four steps.

Step 1 [To shown−1/2Ũ (β) → N(0,�)]. Apply (A.1) and write

Ũ (β) =
n∑

i=1

∫ τ

0
w̃i(t){Zi(t) − gn(t−)}dNi(t)

−
n∑

i=1

∫ τ

0

{
S̃1(t, β)

S̃0(t, β)
− gn(t−)

}
n∑

i=1

w̃i(t) dNi(t)

=
n∑

i=1

∫ τ

0
w̃i(t){Zi(t) − gn(t−)}dMi(t)

−
∫ τ

0

∫ τ

0

∑
j∈R∗

s

w̃j (s){Zj (s) − gn(t−)}

× exp{β ′Zj (s)}ψn(t − s) dN̄(s)

∑n
i=1 w̃i(t)

S̃0(t, β)
dNi(t)

=
n∑

i=1

∫ τ

0
w̃i(t)[Zi(t) − gn(t−)]dMi(t)

−
∫ τ

0

[∫ τ

0

∑
j∈R∗

s

w̃j (s){Zj (s) − gn(s)}

× exp{β ′Zj (s)}ψn(t − s) dN̄(s)

]∑n
i=1 w̃i(t) dNi(t)

S̃0(t, β)
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−
∫ τ

0

∫ τ

0
{gn(s) − gn(t−)} ∑

j∈R∗
s

w̃j (s)exp{β ′Zj (s)}

×
[
ψn(t − s)

S̃0(t, β)

n∑
i=1

w̃i(t) dNi(t)

]
dN̄(s)

= �1 + �2 + �3, say.

We first show�3 = oP (n1/2). In view of (A.13), it is seen that�3 differs by a
term of orderoP (n1/2) whengn(s) − gn(t−) is replaced byg(s) − g(t−). Notice
that condition (v) ensures the differentiability ofg(·). Therefore

sup{|g(s) − g(t)|ψn(t − s) : t, s ∈ [0, τ )} = O(n−1/3)

sinceψ(·) has bounded support. Then, using the delta method,�3 can be reduced
to

n4/3
∫ τ

0

∫ τ

0
{g(s) − g(t)}ψn(t − s) ds E[w̃(t)exp{β ′Z(t)}Y (t)]λ0(t) dt

+ oP (n1/2)

= O(n1/3) + oP (n1/2)

= oP (n1/2)

by condition (v) and the result of part 1.
We next show the asymptotic normality of�2. Recall thatF is theσ -algebra

generated by[{Yi, δi,Zi(·)} : i = 1,2, . . .]. For everyt , the integral in the brackets,
conditioning onF , has mean 0 and, when normalized by

∫ τ
0 ψn(t − s) dN̄(s), can

be shown to beOP (n−1/3+ε) uniformly overt ∈ [0, τ ] for any fixedε > 0. Thus,
in view of (A.9), the delta method can be applied to show that�2 is∫ τ

0

∑
j∈R∗

s

w̃j (s){Zj (s) − gn(s)}

× exp{β ′Zj (s)}
[∫ τ

0

ψn(t − s)

S̃0(t, β)

n∑
i=1

w̃i(t) dNi(t)

]
dN̄(s)

=
∫ τ

0

∑
j∈R∗

s

w̃j (s){Zj (s) − gn(s)}

× exp{β ′Zj (s)} 1

mb(s)

n∑
i=1

dNi(s) + oP (n1/2),

where the main term, conditioning onF , is the sum of bounded random variables
with conditional mean 0. Therefore it converges at the raten1/2 to a normal
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distribution with mean 0 and asymptotic variance

�0 ≡
∫ τ

0
E

[
w̃(t)2

mb(t)
{Z(t) − g(t)}⊗2 exp{2β ′Z(t)}Y (t)

]
λ0(t) dt

=
∫ τ

0
E[w̃(t){1− w̃(t)}{Z(t) − g(t)}⊗2 exp{β ′Z(t)}Y (t)]λ0(t) dt.

Consider the first term�1 and write

�1 =
n∑

i=1

∫ τ

0
w̃i(s)[Zi(s) − gn(s−)]dMi(s)

=
n∑

i=1

∫ τ

0
w̃i(s)[Zi(s) − g(s)]dMi(t) −

n∑
i=1

∫ τ

0
w̃i(s)[gn(s−) − g(s)]dMi(t)

=
n∑

i=1

∫ τ

0
w̃i(s)[Zi(s) − g(s)]dMi(t) + oP (n1/2).

The main term in the above expression is the sum of i.i.d. bounded random
variables with mean 0 and variance�1 ≡ var[∫ τ

0 w̃(t){Z(t) − g(t)}dM(t)].
Therefore�1 converges at the raten1/2 to a normal distribution with mean 0 and
variance�1 defined above.

Last, combine the limits of the terms�1,�2 and �3, and notice that�1 is
F -measurable and that the asymptotic normality for�2 holds conditioning onF .
Observe that�1 = E[w̃(s)2{Z(s)− g(s)}⊗2 exp{β ′Z(s)}Y (s)]λ0(s) ds. It follows
that

n−1/2(�1 + �2 + �3) → N(0,�0 + �1) = N(0,�).

Step 2 [To shown−1/2U(β) → N(0,�)]. The following equalities use the
approximations (A.5)–(A.9) and the delta method:

U(β) − Ũ (β)

=
n∑

i=1

∫ τ

0

(
{wi(t) − w̃i(t)}

{
Zi(t) − S̃1(t, β)

S̃0(t, β)

}

− wi

[
S1(t, β)

S0(t, β)
− S̃1(t, β)

S̃0(t, β)

])
dNi(t)

=
n∑

i=1

∫ τ

0

(
{wi(t) − w̃i(t)}{Zi(t) − g(t)}

− w̃i(t)

[
S1(t, β) − S̃1(t, β)

S̃0(t, β)

− S̃1(t, β)

S̃2
0(t, β)

{S0(t, β) − S̃0(t, β)}
])

dNi(t) + oP (n1/2)
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=
n∑

i=1

∫ τ

0

({wi(t) − w̃i(t)}{Zi(t) − g(t)})dNi(t)

−
∫ τ

0

1

S̃0(t, β)

[
S1(t, β) − S̃1(t, β)

− g(t){S0(t, β) − S̃0(t, β)}] n∑
i=1

w̃i(t) dNi(t) + oP (n1/2)

=
n∑

i=1

∫ τ

0
{wi(t) − w̃i(t)}{Zi(t) − g(t)}dNi(t)

−
∫ τ

0

[ ∑
j∈R∗

s

{wj(s) − w̃j (s)}

× {Zj (s) − g(t)}exp{β ′Zj (s)}Yj(s+)

×
∫ τ

0
ψn(t − s)

∑n
i=1 w̃i(t) dNi(t)

S̃0(t, β)

]
dN̄(s) + oP (n1/2)

=
n∑

i=1

∫ τ

0
{wi(t) − w̃i(t)}{Zi(t) − g(t)}dMi(t)

− 1

m

∫ τ

0

[
n∑

j=1

{
I (j ∈ R∗

s ) − m

ns

}

× {wj(s) − w̃j (s)}{Zj (s) − g(s)}

× exp{β ′Zj (s)}Yj (s+)
n

b(s)

]
dN̄(s) + oP (n1/2).

The two main terms are also of orderoP (n1/2), by observing the expressions
(A.10) and (A.11) and an argument along the line of the proof of Theorem 4.1
of Sasieni (1993a). HenceU(β) − Ũ (β) = oP (n1/2) andn1/2U(β) → N(0,�)

follows from Step 1.

Step 3 [To show the consistency of̂β]. Let B(β, ε0) be the ball inRd centered
atβ with radiusε0 > 0. In view of (A.6)–(A.8), one can show that, asn → ∞ and
thenε0 → 0,

sup
v∈B(β,ε0)

| − U̇ (v)/n − �| → 0(A.14)

in probability, wherev may be different for different elements of the matrixU̇ (·).
Now, choose any small but fixedε0 > 0 and view−U(·)/n as a random mapping
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from R
d to R

d . Then, since� is assumed to be positive definite and thus invertible
in condition (iv), (A.14) implies that, with probability tending to 1, the mapping
−U(·)/n is a homeomorphism fromB(β, ε0) to its image, denoted asBn, which
contains a ball of fixed radius. SinceU(β)/n = OP (n−1/2) as proved in Step 2,
Bn contains 0∈ R

d with probability tending to 1. Therefore,̂β, as the unique
solution of U(·) = 0, is in the ballB(β, ε0) with probability tending to 1. The
consistency of̂β is proved sinceε0 is arbitrary.

Step 4 [To shown1/2(β̂ − β) → N(0,�−1)]. It follows from the mean value
theorem that

−U(β) = U(β̂) − U(β) = U̇ (v)(β̂ − β),

wherev lies on the line segment joininĝβ andβ but may be different for different
elements of the matriẋU(·). Then the desired asymptotic normality ofβ̂ follows
from (A.14), the consistency of̂β proved in Step 3 and the asymptotic normality
of U(β) proved in Step 2. The proof is complete.�

PROOF OF THE PROPOSITION. Define η(t) = {1 − w̃(t)}{Z(t) − g(t)} +
{g(t) − µ(t)}/(m + 1). Let ηi(t), i = 1, . . . ,m + 1, be the i.i.d. copies ofη(t).
The following calculations use the fact thatE[{Z(t)−µ(t)}exp{β ′Z(t)}|Y ≥ t] =
E[w̃(t){Z(t)−g(t)}exp{β ′Z(t)}|Y ≥ t] = E[{1− w̃(t)}{Z(t)−g(t)}|Y ≥ t] = 0.
Write

1

m + 1
E

(
m+1∑
k=1

ηk(t)

m+1∑
j=1

[{Z′
j (t) − µ′(t)}exp{β ′Zj (t)}]

∣∣∣∣Y1 ≥ t, . . . , Ym+1 ≥ t

)

= E[η(t){Z′(t) − µ′(t)}exp{β ′Z(t)}|Y ≥ t]
= E[{1− w̃(t)}{Z(t) − g(t)}{Z′(t) − µ′(t)}exp{β ′Z(t)}|Y ≥ t]
= E[{Z(t) − µ(t)}⊗2 exp{β ′Z(t)}|Y ≥ t]

− E[w̃(t){Z(t) − g(t)}⊗2 exp{β ′Z(t)}|Y ≥ t]
= H1(t) − H2(t), say.

Similarly,

1

m + 1
E

[{
m+1∑
k=1

ηk(t)

}⊗2 m+1∑
j=1

exp{β ′Zj (t)}
∣∣∣∣Y1 ≥ t, . . . , Ym+1 ≥ t

]

= E[η(t)⊗2 exp{β ′Z(t)}|Y ≥ t] + mE{η(t)⊗2|Y ≥ t}b(t)

+ 2mE[η(t)exp{β ′Z(t)}|Y ≥ t]E{η′(t)|Y ≥ t}
+ m(m − 1)[E{η(t)|Y ≥ t}]⊗2b(t)
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= E
(
η(t)⊗2[exp{β ′Z(t)} + mb(t)]|Y ≥ t

)
+ m

m + 1

{
2
(
−1+ 1

m + 1

)
+ m − 1

m + 1

}
{g(t) − µ(t)}⊗2b(t)

= E

[
η(t)⊗2 exp{β ′Z(t)}

1− w̃(t)

∣∣∣Y ≥ t

]
− m

m + 1
{g(t) − µ(t)}⊗2b(t)

= E[{1− w̃(t)}{Z(t) − g(t)}⊗2 exp{β ′Z(t)}|Y ≥ t]
− {g(t) − µ(t)}⊗2b(t)

= E[{Z(t) − µ(t)}⊗2 exp{β ′Z(t)}|Y ≥ t]
− E[w̃(t){Z(t) − g(t)}⊗2 exp{β ′Z(t)}|Y ≥ t]

= H1(t) − H2(t).

Then it follows from (the matrix version of) the Cauchy–Schwarz inequality that

H3(t) ≡ 1

m + 1
E

( [∑m+1
j=1 {Zj (t) − µ(t)}exp{β ′Zj (t)}]⊗2

∑m+1
j=1 exp{β ′Zj (t)}

∣∣∣∣Y1 ≥ t, . . . , Ym+1 ≥ t

)

≥ H1(t) − H2(t),

and equality holds if and only if

pr

[
m+1∑
j=1

ηj (t) = h(t)

∑m+1
j=1 {Zj(t) − µ(t)}exp{β ′Zj (t)}∑m+1

j=1 exp{β ′Zj (t)}
∣∣∣∣

Y1 ≥ t, . . . , Ym+1 ≥ t

]
= 1,

where h(t) is a nonrandom function. This equality holds only when the con-
ditional distribution of

∑m+1
j=1 exp{β ′Zj (t)} given Y1 ≥ t, . . . , Ym+1 ≥ t is de-

generate. If the above equality holds for allt ∈ [0, τ ] except for a Lebesgue
measure 0 set, thenβ = 0. Observe that�C = ∫ τ

0 H1(t)pr(Y ≥ t)λ0(t) dt , � =∫ τ
0 H2(t)pr(Y ≥ t)λ0(t) dt and�a = ∫ τ

0 H3(t)pr(Y ≥ t)λ0(t) dt . Then it follows
that �a ≥ �C − �, or, equivalently,�−1

P = (�C − �a)
−1 ≥ �−1. And �−1

P =
�−1 if and only if β = 0. The proof is complete.�
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