
The Annals of Statistics
1997, Vol. 25, No. 5, 2259–2272
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Estimation of p, p ≥ 3, location parameters of a distribution of a p-
dimensional random vector X is considered under quadratic loss. Explicit
estimators which are better than the best invariant one are given for a sign-
invariantly distributed random vector X: The results depend only on the
second and the third moments of ��X − u��: The generalizations to concave
loss functions and to n observations are also considered. Additionally, if the
scale is unknown, we investigate the estimators of the location parameters
when the observation contains a residual vector.

1. Introduction. Since Stein (1956) first demonstrated the inadmissibil-
ity of the best invariant estimator of the p-dimensional �p ≥ 3� normal mean
under quadratic loss, there has been considerable interest in improving upon
the best invariant estimator of a location vector. The ensuing development can
be roughly classified in three major directions: considering different loss func-
tions; considering more general estimates; relaxing the normality assumption.

Brown (1966) proved that the best invariant estimator of a location vector
is inadmissible for a wide class of distributions and loss functions if the di-
mension is at least 3. James and Stein (1961) presented an explicit estimator
�1−�p−2�/��X��2�X which is better than the best invariant estimator X under
quadratic loss if X has a normal distribution with identity covariance matrix
I : This result remains true if the distribution of X is spherically symmet-
ric and p ≥ 4 as shown by Brandwein (1979), Brandwein and Strawderman
(1978, 1980, 1991) and others; see the review article by Brandwein and Straw-
derman (1990). In another direction, James and Stein (1961) showed that the
assumption of normality is unnecessary and suggested an estimator of the
form

�1:1� da;b�X� =
{

1− b

a+ ��X��2
}

X;

which is better than X if a and b are suitably chosen. However, no explicit
values for a and b were given. The determination of a and b was later stud-
ied by Shinozaki (1984), who investigated the ranges of a and b under the
assumption that the components of X are independent, identically and sym-
metrically (iis) distributed about their respective means. Shinozaki’s bounds
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for a and b involve the second and fourth moments of the component distribu-
tions. Shinozaki also used integration-by-parts to discuss the ranges of a and
b by assuming that X has the uniform distribution, the t-distribution or the
double exponential distribution.

In the direction of more general estimators, Miceli and Strawderman (1986)
considered an estimator that is more general than (1.1), that is, they replace
b by a function br�X2

1; : : : ;X
2
p�: However, they restricted the distribution of

X to the subclass of iis distributions called independent component variance
mixtures of normals. Their loss function was nonquadratic. When X has a
spherically symmetric distribution about its mean, Brandwein and Strawder-
man (1991) used the divergence theorem to obtain some beautiful results about
the estimator of the form db�X� = X + bg�X�: Their loss function was either
quadratic, or a concave function of quadratic loss or the general quadratic loss.

In this paper, we relax the distributional assumption. We assume that X
has a sign-invariant distribution whose precise meaning is given by Defini-
tion 1 in Section 2. We obtain the ranges of a and b for the estimator given
by (1.1) under the quadratic loss function or a nondecreasing concave func-
tion of the quadratic loss. These bounds depend only on the second and third
moments of W = ��X − u��, which improves upon the previous results of Shi-
nozaki (1984) and James and Stein (1961). In Shinozaki (1984), the second
and fourth moments are used, while in James and Stein (1961), the fourth
moment EW4

i = E�Xi − θi�4 is assumed to be finite. We also discuss the gen-
eralizations of the estimator (1.1). Furthermore, the class of sign-invariant
distributions considered here is much larger than those referenced above. The
class includes spherically symmetric distributions as well as iis distributions
(symmetric about the mean). The basic properties of sign-invariant distribu-
tions can be found in Berman (1965a, b). Finally, we point out that our proofs
utilize certain positively associated inequalities, which is considerably simpler
than the integration-by-parts used by Shinozaki (1984).

The paper is organized as follows. In Section 2 we define sign-invariant dis-
tribution and present the main results about estimator (1.1). We obtain bounds
for a and b with one observation X: To illustrate the performance of bounds
on a and b, two examples are presented after the main results. Extensions of
the main results in three other directions are considered in Section 3. First,
we consider loss functions which are monotone-concave functions of quadratic
loss and show dominance results for estimator (1.1). Second, we consider domi-
nance results for the more general estimator �1−br���X��2�/�a+��X��2��X: Third,
we consider the estimators of the location parameters when the scale is un-
known and the observation �X′;V′�′ contains a residual vector V: These exten-
sions are given, respectively, by Theorems 2, 3 and 4. In Section 4 we consider
the same problem with n iid observations X1; : : : ;Xn: Under sign-invariance,
any translation-invariant location estimator based on n observations also has
a sign-invariant distribution. Thus the problem is reduced to the one treated
in Sections 2 and 3. Section 5 is devoted to conclusions of this article along
with some open research problems in this area. The last section consists of
proofs of all results in Sections 2 and 3.
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2. Main results. Let Z = �Z1; : : : ;Zp�′ be a p × 1 random vector, and
let H be a p× p diagonal matrix that belongs to H �p� = �diag�h1; : : : ; hp�;
h2
i = 1; i = 1; : : : ; p�: The notation X

d= Y means that X and Y have the
same distributions.

Definition 1. The distribution of Z is said to be sign-invariant if

�2:1� H Z d= Z

for every H ∈ H �p�: We write Z ∼ SIp�0�: The notation X ∼ SIp�u� means
that X − u ∼ SIp�0�: If, in addition, the distribution of the random vector
��X1−θ1�; : : : ; �Xp−θp�� is exchangeable and P�Xi−θi = 0� = 0 for 1 ≤ i ≤ p;
we write X ∼ SIEp�u�: We focus our discussion on the family SIEp�u�:

Let d = �δ1; : : : ; δp�′ be any estimator of u: Consider the quadratic loss
function

�2:2� L�d;u� = ��d− u��2 =
p∑
i=1

�δi − θi�2:

Let R�d;u� = E�L�d;u�� = E��d − u��2 be the risk of d: In this section we
determine the ranges of a and b for which the risk R�da;b;u� of the estimator
(1.1) is smaller than that of R�da;0;u� = R�X;u�:

Theorem 1. Suppose that X ∼ SIEp�u� and da;b�X� is defined by (1.1).
Then, with respect to the quadratic loss (2.2), da;b�X� has smaller risk than
da;0�X� = X provided a ∈ �a∗�p�;∞� and b ∈ �0; b∗�a;p��; where

�2:3�
a∗�p� = �2S/�p− 2��2;

b∗�a;p� = 2��p− 2�a− 2S
√
a �/�4+ paµ−2�;

µi = EWi for i = −2;2;3, S = µ3/µ2 and W = ��X − u��:

Remark 1. The bounds for a and b given by Theorem 1 are by no means
optimal, and they are considered as a guide post. If we know the distribution
of W ; then it is possible to get much sharper bounds for a and b by using
either the above methods or other methods in the literature. To illustrate the
performance of the bounds in Theorem 1, we present two examples below.

Example 1. Assume that the vector Z has a uniform distribution on the
unit sphere with p ≥ 4: Thus, W = ��Z�� has density pwp−1; 0 ≤ w ≤ 1, and
µ−2 = p/�p−2�; µ2 = p/�p+2� and µ3 = p/�p+3�: Applying Brandwein and
Strawderman’s (1991) result yields a ≥ 0 and 0 < b ≤ bBS = 2��p − 2�/p�2:
Applying Evans and Stark’s (1996) result gives a = 1 and 0 < b ≤ bES�α∗� =
2��p− 2�/�p+ 2���α∗/�2+ α∗��6; where α∗ is the unique positive root of

�p− 2�α6�1+ �2+ α�2�2 − p�2+ α�4 = 0:
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Table 1
Bounds for b �a = 1�

p 4 6 8 10 15 20 30 50 100

bBS 0.500 0.889 1.125 1.280 1.502 1.620 1.742 1.843 1.921

bES�1:2� 0.002 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.005

b∗�1; p� 0.048 0.342 0.570 0.746 1.043 1.227 1.442 1.642 1.811

It can be shown that 0 < α∗ < 1:2: Thus, bES�α∗� < bES�1:2� because α∗/�2+α∗�
is nondecreasing in α∗: Applying b∗�a;p� in Theorem 1 with a = 1 gives
b∗�1; p� = 2��p− 2− 2�p+ 2�/�p+ 3��/�p2/�p− 2� + 4��: Table 1 provides the
values of three bounds for different p with a = 1:

It is not surprising that bBS is the best among all three cases since the other
two are obtained under the weaker assumptions. One can see from Table 1
that b∗�1; p� is much better than bES�α∗�: Note that Shinozaki’s (1984) result
is not applicable to this example.

Example 2. Assume that the vector Z has iid components with P�Z1 =
±1� = 1/2: Applying Shinozaki’s (1984) result yields a ≥ a0�p�; 0 < b ≤
b0�a;p� = �4�p − 2�a − 3�/�2�a + 1�� or a ≥ a1�p�; 0 < b ≤ b1�p� = p − 2;
where a0�p� = �p + 2�I�p∈�3;4;5�� + �p + 1�I�p∈�6;7;8�� + pI�p∈�9;10;11�� + �p −
1�I�p∈�12;13;14��+�p−2�I�p≥15� and a1�p� = 4:5I�p=3�+4:2I�p=4�+4I�p≥5� and I�A�
is the indicator function ofA: It can be checked from Theorem 1 that b0�a;p� ≥
b∗�a;p� and b1�a;p� ≥ b∗�a;p� for a ≤ �2 �√p +

√
p+ �p− 3�3 �/�p − 2��2:

However, when p ≥ 4, a∗�p� < ai�p�, i = 0;1, and b∗�a;p� ≥ b1�a;p� for
a ≥ �2 �√p+

√
p+ �p− 3�3 �/�p− 2��2: It is worth mentioning that the lower

bound a0�p� is an increasing function of p while the bound a∗�p� in Theorem
1 is a nonincreasing function in p: For instance, a∗�15� ≈ 0:391 while a0�15� =
13: Note that Brandwein and Strawderman’s (1991) and Evans and Stark’s
(1996) results are not applicable to this example.

3. Extensions to other loss functions and to general estimators. In
this section we show that Theorem 1 in Section 2 can be generalized to a larger
class of loss functions and to a larger class of estimators. The loss function we
consider is

�3:1� L�d;u� = l���d− u��2�;
where l�·� is a nonnegative and nondecreasing concave function. This loss
function has been studied for the spherically symmetric distributions by Bock
(1985) and Brandwein and Strawderman (1980, 1991).

Theorem 2. Let F�·� be the cdf of the random variable W2 with

0 <
∫ ∞

0
l�1��r�dF�r� <∞;
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where l�1��r� is the first derivative of l�r�. Let G�·� be defined by

G�z� =
∫ z

0
l�1��r�dF�r�

/∫ ∞
0
l�1��r�dF�r�

for z ≥ 0, that is, G is a weighted cdf of F with weight function l�1�: If X ∼
SIEp�u� and da; b�X� is defined by (1.1), then with respect to the loss (3.1),
da; b�X� has smaller risk than da;0�X� provided

a ≥ �2S2
∗/�p− 2��2;

0 < b ≤ 2 ��p− 2�a− 2S∗
√
a �/�4+ paµ∗−2�;

where µ∗i = EGW
i for i = −2;2;3; S∗ = µ∗3/µ∗2 and W = ��X − u��:

Now we extend Theorem 1 to a larger class of estimators. The estimators
we consider are of the form

�3:2� da; b; r�X� =
{

1− br���X��
2�

a+ ��X��2
}

X:

Clearly, da; b;1�X� = da; b�X�. Estimators defined by (3.2) for spherically sym-
metric distributions have been studied by Brandwein and Strawderman (1980,
1991). Here we present a similar result for sign-invariant distributions.

Theorem 3. Let da; b; r�X� be defined by (3.2), where X ∼ SIEp�u� and p ≥
5: Then with respect to the quadratic loss (2.2), da; b; r�X� has smaller risk than
da;0; r�X� = X provided the following hold:

(i) 0 < r�·� ≤ 1;
(ii) r���X��2� is nondecreasing in ��X��2;

(iii) a ≥ a∗1�p� and 0 < b ≤ b∗1�a;p�; where

a∗1 =
{
2
[
S+

√
S2 + �p− 4�T

]/
�p− 4�

}2
;

b∗1 = ��p− 4�a− 4�T+√aS��/�paµ−2 + 4�

and µi = E�Wi�; i = −2;2;3;4, S = µ3/µ2 and T = µ4/µ2.

Remark 2. Although the ranges of a and b using the technique here re-
quire at least five dimensions instead of three, the conditions on the function
r�·� are very weak. For spherically symmetric distributions, the function r
in (3.2) has one more condition, r�t�/t is nonincreasing in t. On the other
hand, it is worth mentioning that Theorem 3 can be easily extended to loss
function (3.1).
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Now we consider the problem of estimating the mean vector u =
�θ1; : : : ; θp�′ when the observation �X′;V′�′ contains a residual vector V
such that X∗ = �1/σ��X − u� ∼ SIEp�0� and V∗ = V/σ ∼ SIEm�0� are
independent, where σ is an unknown scale. The improved estimators will be
of the form

�3:3� d∗a;b�X;V� =
{

1− b ��V��2
a��V��2 + ��X��2 r���X��

2�
}

X:

Theorem 4. Suppose X is a p× 1, p ≥ 5, vector and V is an m× 1 vector
such that �1/σ��X−u� ∼ SIEp�0� and V/σ ∼ SIEm�0� are independent, where
σ is an unknown scale parameter. If d∗a; b�X;V� is defined by (3.3), then, with

respect to scaled quadratic loss L�d;u� = ��d− u��2/σ2; d∗a; b�X;V� has smaller
risk than X provided the following hold:

(i) 0 < r�·� ≤ 1;
(ii) r���X��2� is nondecreasing in ��X��2;

(iii) r���X��2�/��X��2 is nonincreasing in ��X��2;
(iv) a ≥ a∗2�p� and 0 < b ≤ b∗2�a;p��γ4/γ6�, where

�3:4�
a∗2�p� =

{
2
[
Sγ−1 +

√
S2γ2

−1 + �p− 4�Tγ−2

]
/�p− 4�

}2
;

b∗2�a;p� =
[
�p− 4�a− 4�Tγ−2 +

√
aSγ−1�

]
/�paν−2 + 4γ−2�

and γi = Eσ=1; θ=0���V��i�; i = −1;−2;4;6, νi = Eσ=1; θ=0���X��i�; i = −2;2;3;4,
S = ν3/ν2 and T = ν4/ν2:

Remark 3. Theorem 4 is also true for the loss function (3.1).

4. Multiple observations. In practice, one would have a sample of n iid
observations X1; : : : ;Xn from a SIEp�u�; and the estimate of u depends on all
n observations. The best invariant location estimator is Pitman’s estimator
defined by d�X1; : : : ;Xn� = X1 − E0�X1�Y2; : : : ;Yn�, where Yi = Xi − X1; i =
2; : : : ; n: As pointed out by Brandwein (1979), this estimator is usually difficult
to calculate and other estimators may be preferred. Let d be an estimator of
u satisfying

�4:1� d�H X1 − g; : : : ;H Xn − g� = H d�X1; : : : ;Xn� − g;

where H ∈ H �p� is defined in Section 2, and g is any p× 1 vector. It can be
shown that d has a sign-invariant distribution about u: Both Pitman’s estima-
tor and the sample mean X satisfy (4.1). If d has a sign-invariant distribution,
then the results of Sections 2 and 3 are applicable to d:

5. Discussion. The ranges of a and b given by the theorems in Sections
2 and 3 are by no means optimal, and they are considered as a guide post. It
is possible to get much sharper bounds for a and b by using other methods
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with specific distributions of W : For example, the best bounds for a and b for
estimator (1.1) with a normal distribution are a ≥ 0 and 0 < b < 2�p − 2�
which are obtained by integration-by-parts. Generally, there is a reduction
of the ranges of a and b without a normality assumption on the underlying
distribution. The purpose of this paper is to generalize Shinozaki’s (1984)
result in two respects. One is to relax the distributional assumption from
iis to SIEp�u�: The other is to use the second and the third moments of the
components only while Shinozaki used the second and the fourth moments.
On the other hand, three extensions have also been considered. The first is to
extend the quadratic loss (2.2) to the loss function (3.1). The second is to extend
the estimator (1.1) to estimator (3.2). The last is to investigate the estimator
of the location parameters when the scale is unknown and the observation
�X′;V′�′ contains a residual vector V: As the referees mentioned, it would
be interesting to investigate the more general estimator db�X� = X + bg�X�:
Some nice results for this estimator have been obtained by Brandwein and
Strawderman (1991) for the spherical symmetric distributions. It is known
that the spherical symmetric distribution which is a mixture of the uniform
distribution on the surface of the unit sphere depends on a scale

∑p
i=1 �Xi−θi�2:

One can see from Definition 1 in Section 2 that the sign-invariant distributions
X ∼ SIp�u� depend on a vector ��X1−θ1�; : : : ; �Xp−θp��: It seems very difficult
to obtain conditions on g�X� such that db�X� dominates X if X ∼ SIEp�u�: This
difficulty can also be seen from a recent paper by Evans and Stark (1996).
Under some moment assumptions on the underlying random vector X; they
also studied the estimator (1.1) with a = 1 and found the bound for b such
that d1;b�X� dominates d1;0�X�: It is worth pointing out that one can find a
random vector X which is sign-invariant about its mean vector u, but does not
satisfy condition (1) of Evans and Stark’s (1996) theorem, see Example 2.

6. Proofs.

Proof of Theorem 1. Let Z = X−u: Then Z ∼ SIEp�0�: By Lemma 1.2 of
Berman (1965a), sign-invariant random variables are conditionally indepen-
dent when their absolute values are given. Thus

Z d= W U;

where the diagonal matrix W = diag�W1; : : : ;Wp� and the vector U =
�U1; : : : ;Up�′ are independent, U1; : : : ;Up are independent, identically dis-

tributed with P�U1 = −1� = P�U1 = 1� = 1/2 and Wi
d= �Zi� = �Xi − θi�; i =

1; : : : ; p: The difference between the risks of two estimates da; b�X� and
da;0�X� = X is given by

1 = R�da; b�X�;u� −R�da;0�X�;u�

= b2EX

[
X′X

�a+ X′X�2
]
− 2bEX

[�X − u�′X
a+ X′X

]
:
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We will show that, in the specified region (2.3), 1 ≤ 0, or equivalently, 1∗ =
−1/b ≥ 0, where

1∗ = EX

[ −bX′X
�a+ X′X�2

]
+ 2EX

[�X − u�′X
a+ X′X

]

≥ EX

[−b+ 2�X − u�′X
a+ X′X

]

= EZ

[
2Z′Z− b+ 2Z′u

a+ Z′Z+ u′u+ 2Z′u

]

= E�Y;W2�

[
2W2 − b+Y

β+Y

]
:

The last two equalities are obtained by applying X−u = Z d= W U with θ2 = u′u,
W2 = ∑p

i=1W
2
i , β = a +W2 + θ2 and Y = 2

∑p
i=1WiθiUi: Now we use the

following identity twice,

�6:1� 1
β+ y =

1
β
− y

β�β+ y� ;

to obtain the conditional expectation of the ratio in the last equality given
W = diag�W1; : : : ;Wp� as follows:

EY

[
2W2 − b+Y

β+Y

∣∣∣∣ W

]
= 2W2 − b

β
− 4µ
β2
+A;

where

A = EY

[
Y2�2W2 − b+Y�

β2�β+Y�

∣∣∣∣ W

]
;

µ = u′W 2u:

For simplicity, put T ≡ 2W2−b−β =W2−�a+b+θ2�. Let IC be the indicator
function of the event C = �W2x T ≥ 0�. Noting the monotone property of the
function �2W2 − b+Y�/�β+Y� obtains

A ≥
(

2W2 − b+ 2Wθ
β+ 2Wθ

IC +
2W2 − b− 2Wθ

β− 2Wθ
IC c

)(
4µ
β2

)

≥
(
IC −

b+√aW
a

IC c

)(
4µ
β2

)
:

The last inequality holds because the minimum value of �2W2−b−2Wθ�/�β−
2Wθ� for all θ is −�b+

√
b2 + 4aW2�/�2a�, which is greater than −�b+√aW�/a:

Therefore, the conditional expectation of 1∗ given W satisfies

E�1∗ �W � ≥ 2W2 − b
β

− 4µ
β2

(
1+ b+

√
aW

a

)
IC c

≥ 2W2 − b
β

− 4µ
β2

(
1+ b+

√
aW

a

)
:
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It follows by the exchangeability assumption ofW1; : : : ;Wp thatE�W2
i �W2� =

W2/p, i = 1; : : : ; p. Then

�6:2�

1∗ = EW �E�1∗ �W ��

≥ EW

[
2W2 − b

β
−
(

1+ b+
√
aW

a

)
4µ
β2

]

= EW2

{
EW

[
2W2 − b

β
−
(

1+ b+
√
aW

a

)
4µ
β2

∣∣∣∣ W
2
]}

= EW2

[
2W2 − b

β
− 4W2θ2

pβ2

(
1+ b+

√
aW

a

)]

≥ EW2

[
2W2 − b

β
− 4W2

pβ

(
1+ b+

√
aW

a

)]

= EW2

{[
−b
(

1
W2
+ 4
pa

)
+
(

2
(

1− 2
p

)
− 4W
p
√
a

)](
W2

β

)}
:

Note that

�6:3� EW2

[(
1
W2
+ 4
pa

)(
W2

β

)]
≤
[
µ−2 +

4
pa

]
EW2

(
W2

β

)

because 1/W2 + 4/�pa� is nonincreasing and W2/β is nondecreasing in W2:
On the other hand, applying Theorem 2 of Wijsman (1985) with f1�W2� =
2�1 − 2/p� − 4W/�p√a�; f2�W2� = 1; g1�W2� = W2/β and g2�W2� = W2

yields that

EW2

[(
2− 4

p
− 4W
p
√
a

)
W2

β

]
= EW2�f1�W2�g1�W2��

≥ EW2�f1�W2�g2�W2��
EW2�f2�W2�g2�W2��EW2�f2�W2�g1�W2��

=
[
2
(

1− 2
p

)
− 4S
p
√
a

]
EW2

[
W2

β

]
;

(6.4)

where S = µ3/µ2 and µi = E�Wi�; i = 2;3: Thus, 1∗ ≥ 0 follows immediately
by combining (6.3) and (6.4) and using the range (2.3). 2

Proof of Theorem 2. First assume that the Wi’s are given. Using the
same approach as in Brandwein and Strawderman (1980) we obtain that

R�X;u� −R�da; b�X�;u� = El�W2� −El�W2 − 1a; b�X��
where

1a; b�X� = ��X − u��2 − ��da; b�X� − u��2:
Since l�·� is a concave function,

l�W2 − 1a; b�X�� < l�W2� + l�1��W2��−1a; b�X��:
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Let c = 1− 2�a+ b�/�pa� and h�W2� = �−b+ 2cW2 − 4W3/�p√a��/β: Then

R�X;u� −R�da; b�X�;u�

≥ EX �l�1��W2�1a; b�X��

≥ EW �l�1��W2�EU�1a; b�W U + u� �W ��

≥ EW

{
l�1��W2�

(
2W2 − b

β
−
[
1+ b+

√
aW

a

]
4µ
β2

)}

= EW2

{
EW

{
l�1��W2�

(
2W2 − b

β
−
[
1+ b+

√
aW

a

]
4µ
β2

) ∣∣∣∣W
2
}}

≥ EW2

[
l�1��W2�

(
2W2 − b

β
−
[
1+ b+

√
aW

a

]
4W2

pβ

)]

= EW2

[
l�1��W2�h�W2�

]

=
∫ ∞

0
h�w2�l�1��w2�dF�w2�

=
∫ ∞

0
h�w2�dG�w2�

∫ ∞
0
l�1��w2�dF�w2�

= EG�h�W2��EF�l�1��W2��:

The next-to-last equality above follows from the definition of the cdf G. The
result follows immediately from the assumption that EF�l�W2�� ∈ �0;∞� and
the proof of Theorem 1 except for changing the cdf F to G. 2

Proof of Theorem 3. Similarly to the proof of Theorem 1, it suffices to
show 11 ≥ 0; where

�6:5�

11 = �1/b� �R�da;0; r�X�;u� −R�da; b; r�X�;u��

= EX

[−b r2���X��2���X��2
�a+ ��X��2�2

]
+ 2EX

[�X − u�′X r���X��2�
a+ ��X��2

]

≥ EX

[−br���X��2�
a+ ��X��2

]
+ 2EX

[���X��2 − ��X�� ��u��� r���X��2�
a+ ��X��2

]

= EX

[
2��X��2 − 2��X�� ��u�� − b

a+ ��X��2 r���X��2�
]

≥ r�η2�EX

[
2��X��2 − 2��X�� ��u�� − b

a+ ��X��2
]
;

where η = �θ+
√
θ2 + 2b �/2; θ2 = u′u: The last inequality of (6.5) follows from

the facts that the function r�t2� is nondecreasing in t2 and that the function
2t2 − 2tθ − b < 0 if t < η and 2t2 − 2tθ − b > 0 for t > η and crosses 0 when
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t = η: Thus, it suffices to show that

1∗1 = EX

[
2��X��2 − 2��X�� ��u�� − b

a+ ��X��2
]
≥ 0

because of condition (i) of Theorem 3. Using the identity (6.1) twice and X−u =
Z d= W U with W2 =∑p

i=1W
2
i ; β = a+W2 + θ2; Y = 2

∑p
i=1WiθiUi we obtain

the conditional expectation of 1∗1 given W = diag�W1; : : : ;Wp� as follows:

EX

[
2��X��2 − 2��X�� ��u�� − b

a+ ��X��2
∣∣∣∣ W

]
≥ EY

[
W2 − b+Y
β+Y

∣∣∣∣ W

]

= W
2 − b
β

− 4µ
β2
+A1;

where

A1 = EY

[
Y2�W2 − b+Y�
β2�β+Y�

∣∣∣∣ W

]
;

µ = u′W 2u:

Since �W2 − b+Y�/�β+Y� is a strictly increasing function of Y;

A1 ≥
(
W2 − b− 2Wθ
β− 2Wθ

)(
4µ
β2

)

≥ −
(

1
2a

)(
W2 + b+

√
�W2 + b�2 + 4aW2

)(4µ
β2

)

≥ −
(

1
a

) (
W2 + b+√aW

)(4µ
β2

)
:

The last two inequalities hold because the minimum value of �W2 − b −
2Wθ�/�β − 2Wθ� for all θ is −�W2 + b +

√
�W2 + b�2 + 4aW2�/�2a�, which is

greater than −�W2 + b + √aW�/a: Therefore, the conditional expectation of
1∗1 given W satisfies

E�1∗1 �W � ≥
W2 − b
β

− 4µ
β2

(
1+ W

2 + b+√aW
a

)
;

which implies that

1∗1 = EW �E�1∗1 �W ��

≥ EW

[
W2 − b
β

− 4µ
β2

(
1+ W

2 + b+√aW
a

)]

= EW2

[
W2 − b
β

− 4W2θ2

pβ2

(
1+ W

2 + b+√aW
a

)]

≥ EW2

[
W2 − b
β

− 4W2

pβ

(
1+ W

2 + b+√aW
a

)]
(6.6)
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= −bEW2

[(
1+ 4W2

pa

)
1
β

]
+EW2

[(
1− 4

p
− 4W
p
√
a
− 4W2

pa

)
W2

β

]

≥ −b
[
µ−2 +

4
pa

]
EW2

(
W2

β

)

+EW2

[(
1− 4

p
− 4W
p
√
a
− 4W2

pa

)
W2

β

]
:

Applying Theorem 2 of Wijsman (1985) with f1�W2� = 1−4/p−4W/�p√a�−
4W2/�pa�; f2�W2� = 1; g1�W2� =W2/β and g2�W2� =W2 yields that

�6:7�
EW2

[(
1− 4

p
− 4W
p
√
a
− 4W2

pa

)
W2

β

]

≥
[
1− 4

p
− 4S
p
√
a
− 4T
pa

]
EW2

(
W2

β

)
;

where µi = E�Wi�; i = 2;3;4: Combining (6.6) and (6.7) we conclude that
1∗1 ≥ 0 under condition (iii) of Theorem 3. 2

Proof of Theorem 4. The difference between the risks of two estimates
d∗a; b�X;V� and X is given by

12 = R�d∗a; b�X;V�;u� −R�X;u�

=
(

1
σ2

){
b2E�X;V�

[ ��V��4 ��X��2
�a��V��2 + ��X��2�2 r

2���X��2�
]

− 2bE�X;V�

[�X − u�′X��V��2
a��V��2 + ��X��2 r���X��

2�
]}
:

We will show that, in the specified region (3.4), 12 ≤ 0 or equivalently 1∗2 =
−σ212/b ≥ 0; where

�6:8�

1∗2 = E�X;V�
( −b��X��2 ��V��4
�a��V��2 + ��X��2�2 r

2���X��2�
)

+ 2E�X;V�

( �X − u�′X ��V��2
a��V��2 + ��X��2 r���X��

2�
)

≥ E�X;V�
[−b��V��4 r���X��2�
a��V��2 + ��X��2

]

+ 2E�X;V�

[���X��2 − ��X�� ��u��� ��V��2 r���X��2�
a��V��2 + ��X��2

]

= E�X;V�
[

2��X��2 − 2��X�� ��u�� − b��V��2
a��V��2 + ��X��2 ��V��2 r���X��2�

]

≥ E�X;V�
[

2��X��2 − 2��X�� ��u�� − b��V��2
a��V��2 + ��X��2 ��V��2 r�ρ2�

]
;
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where ρ = �θ+
√
θ2 + 2b��V��2�/2, θ = ��u��: The last inequality of (6.8) follows

from the facts that the function r�t2� is nondecreasing in t2 and that the
function 2t2−2tθ−b��V��2 < 0 if t < ρ and 2t2−2tθ−b��V��2 > 0 for t > ρ and
crosses 0 when t = ρ: Applying X∗ = �1/σ��X − u� ∼ SIEp�0� and V∗ = V/σ ∼
SIEm�0� and using the fact that 2��X�� ��u�� ≤ ��X��2 + ��u��2 yield that

1∗∗2 = EX

(
2��X��2 − 2��X�� ��u�� − b��V��2

a��V��2 + ��X��2
∣∣∣∣ ��V��

2
)

= EX∗

( ��X∗��2 − b��V∗��2 +Y∗
a��V∗��2 + ��X∗��2 + θ2

∗ +Y∗

∣∣∣∣ ��V∗��
2
)
;

where θ2
∗ = θ2/σ2 and Y∗ = Y/σ: Note that we have �a��V∗��2; b��V∗��2� here

instead of �a; b� in the proof of Theorem 3. Using the same argument as in
the proof of Theorem 3 we obtain that

1∗∗2 ≥ −b��V∗��2
[
ν−2 +

4
pa��V∗��2

]
E

(
W2
∗

β∗

∣∣∣∣ ��V∗��
2
)

+
[
1− 4

p
− 4ν3/ν2

p
√
a ��V∗��

− 4ν4/ν2

pa��V∗��2
]
E

(
W2
∗

β∗

∣∣∣∣ ��V∗��
2
)
;

where νi = E�Wi
∗ � ��V∗��2�; i = −2;2;3;4; W∗ = ��X∗�� and β∗ = a��V∗��2 +

W2
∗ + θ2

∗ +Y∗: Let H���V∗��2� = ��V∗��2EV∗�W2
∗/β∗ � ��V∗��2�: Then H���V∗��2� is

nondecreasing in ��V∗��2. Noting that the νi, i = −2;2;3;4, are independent of
V∗ and using the assumptions of the theorem yield that
(

1
σ2

)
1∗2 = E�1∗∗2 ��V∗��2 r�ρ2��

≥ −bEV∗

{[
ν−2 +

4
pa��V∗��2

][
��V∗��2 r�ρ2� H���V∗��2�

]}

+EV∗

{[
1− 4

p
− 4ν3/ν2

p
√
a ��V∗��

− 4ν4/ν2

pa��V∗��2
][
r�ρ2� H���V∗��2�

]}

≥ −b
[
ν−2 +

4γ−2

pa

]
EV∗

[
��V∗��2 r�ρ2�H���V∗��2�

]

+
[
1− 4

p
− 4ν3γ−1

p
√
a ν2
− 4ν4γ−2

paν2

]
EV∗

[
r�ρ2�H���V∗��2�

]

≥ −b
[
ν−2 +

4γ−2

pa

]
EV∗

[
��V∗��2 r�ρ2�H���V∗��2�

]

+
[
1− 4

p
− 4ν3γ−1

p
√
a ν2
− 4ν4γ−2

paν2

](
γ4

γ6

)
EV∗

[
��V∗��2 r�ρ2�H���V∗��2�

]

≥ 0:

(6.9)

The second term of the second to last inequality of (6.9) is obtained by
applying Theorem 2 of Wijsman (1985) with f1���V∗��2� = 1; f2���V∗��2� =
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��V∗��2; g1���V∗��2� = r�ρ2�H���V∗��2� and g2���V∗��2� = ��V∗��4 with the facts
that r�ρ2�/��V∗��2 and H���V∗��2�/��V∗��2 are nonnegative and nonincreasing in
��V∗��2: The last inequality of (6.9) follows from (3.4). The proof is complete. 2
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