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ON THE RELATIONSHIP BETWEEN TWO ASYMPTOTIC
EXPANSIONS FOR THE DISTRIBUTION OF SAMPLE

MEAN AND ITS APPLICATIONS1

By Rick Routledge and Min Tsao

Simon Fraser University and University of Victoria

Although the cumulative distribution function may be differentiated
to obtain the corresponding density function, whether or not a similar re-
lationship exists between their asymptotic expansions remains a question.
We provide a rigorous argument to prove that Lugannani and Rice’s asymp-
totic expansion for the cumulative distribution function of the mean of
a sample of i.i.d. observations may be differentiated to obtain Daniels’s
asymptotic expansion for the corresponding density function. We then ap-
ply this result to study the relationship between the truncated versions
of the two series, which establishes the derivative of a truncated Lugan-
nani and Rice series as an alternative asymptotic approximation for the
density function. This alternative approximation in general does not need
to be renormalized. Numerical examples demonstrating its accuracy are
included.

1. Introduction. Daniels (1954) introduced the method of saddlepoint
approximation into statistics, and derived an asymptotic expansion for the
density function fn�x̄�, where X̄ = ∑

Xi/n is the mean of a sample of n
independently, identically distributed random variables. Lugannani and Rice
(1980) used a closely related method to obtain an asymptotic expansion for the
tail probability of X̄, Qn�x̄�, which leads to an asymptotic expansion for the
cumulative distribution function Fn�x̄�. These two expansions are remarkably
accurate even for very small n. The question of the relationship between them
was first raised by Lugannani and Rice in their 1980 paper, in which they
conjectured, “the integration of Daniels’ series and our series for Qn�x̄� both
give approximation toQn�x̄� that are in error by the same order of magnitude.”
Since then various authors have provided numerical evidence supporting this
conjecture [e.g., Daniels (1983) and Field and Ronchetti (1990)].

In the present paper, we study the relationship between these two expan-
sions by focusing on the derivatives of the entire and truncated Lugannani
and Rice expansion for Fn�x̄�. In Section 2 we introduce the notation and for-
mally differentiate Lugannani and Rice’s expansion for Fn�x̄�. The resulting
expansion resembles Daniels’s expansion for fn�x̄�. In Section 3 we justify
with a rigorous proof that, under a uniform validity assumption concerning
the expansions, we can indeed differentiate Lugannani and Rice’s expansion
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for Fn�x̄� to obtain Daniels’s expansion for fn�x̄�. This result is then applied
in Section 4 to investigate the relationship between the truncated versions of
these two expansions, which establishes the derivative of a truncated Lugan-
nani and Rice expansion as an alternative asymptotic approximation to fn�x̄�
and provides an answer to Lugannani and Rice’s conjecture.

We assume thatXi has a continuous density function f�x� defined on an in-
terval on the real line, and we refer to this interval as the support ofXi. As the
existence of the two expansions depends on the existence of the saddlepoint,
we shall only be concerned with those x̄ values that have saddlepoints. These
x̄ values usually form an interval. We refer to this interval as the domain of
x̄. For more discussion concerning saddlepoints, see Daniels (1954).

2. Formal differentiation. The notation used in this paper is consistent
with that in Daniels (1987, 1954). Daniels’s series for fn�x̄� and Lugannani
and Rice’s series for Fn�x̄� are, respectively,

fn�x̄� ∼ gn�x̄�
∞∑
r=0

ar�x̄�
nr

;(1)

Fn�x̄� = 1−Qn�x̄� ∼ 8�Ŵn1/2� −φ�Ŵn1/2�
∞∑
r=0

br�x̄�
nr+1/2

;(2)

where Ŵ = sgn �T̂��2�T̂K′�T̂� −K�T̂���1/2, K�T� is the cumulant generating
function of Xi, T̂ is the saddlepoint satisfying K′�T̂� = x̄, 8 and φ are the cu-
mulative distribution function and probability density function of the standard
normal distribution, respectively, and gn�x̄� is the saddlepoint approximation
of fn�x̄� given by

gn�x̄� =
(

n

2πK′′�T̂�

)1/2

en�K�T̂�−T̂x̄�:(3)

The ar�x̄�’s and br�x̄�’s are coefficients in (3.3) in Daniels (1954) and (4.5) in
Daniels (1987), respectively. For brevity we write K�r��T̂�, ar�x̄� and br�x̄� as
K̂�r�, ar and br, respectively. We shall also use λr = K�r��T̂�/�K′′�T̂��r/2. By
differentiating (2) formally and collecting terms according to the powers of n,
we obtain

fn�x̄� =
dFn�x̄�
dx̄

∼ φ�Ŵn1/2�dT̂
dx̄

[
d�Ŵn1/2�
dT̂

+ Ŵn1/2d�Ŵn1/2�
dT̂

∞∑
r=0

br
nr+1/2

−
∞∑
r=0

dbr

dT̂

1
nr+1/2

]
(4)
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= gn�x̄�
∞∑
r=0

1
nr

[
T̂�K̂′′�1/2br − �K̂′′�−1/2dbr−1

dT̂

]

= gn�x̄�
∞∑
r=0

1
nr
cr�x̄�;

where b−1 = −Ŵ and

cr�x̄� = T̂�K̂′′�1/2br − �K̂′′�−1/2dbr−1

dT̂
:(5)

The formal expansion (4) is of the same form as the Daniels expansion (1).
This suggests that they may be identical, that is, cr = ar for r = 0;1; : : : : It is
not difficult to show that c0 = 1 and c1 = 1

8λ4 − 5
24λ

2
3, which indeed match a0

and a1. If this formal expansion can be proven valid, then by the uniqueness
of asymptotic expansion with respect to the asymptotic sequence �1/nr�, it
is the Daniels expansion (1). Consequently, cr = ar for r = 0;1; : : : : We now
discuss the validity of (4).

3. The main theorem. When a function of two variables f�s; t� has an
asymptotic power series in variable s, it is not always true that formally differ-
entiating this series with respect to t will result in an asymptotic power series
for the partial derivative ft�s; t�. Wasow [(1965), pages 43–48] discussed con-
ditions under which this is true. However, these conditions are in general not
satisfied here. We now state and prove the main result of this paper, which
presents a sufficient condition under which the formal expansion (4) is indeed
valid.

Theorem 1. Let Dx̄ be a bounded closed interval in the interior of the do-
main of x̄. If the Daniels expansion (1) and the Lugannani–Rice expansion (2)
are both uniformly valid in Dx̄, then (4) is an asymptotic expansion for fn�x̄�
uniformly valid in Dx̄.

When (1) and (2) are written as

fn�x̄� = gn�x̄�
{

1+ a1�x̄�
n
+ · · · + am�x̄�

nm
+O

(
1

nm+1

)}
;

Fn�x̄� = 8�Ŵn1/2� −φ�Ŵn1/2�
{
b0�x̄�
n3/2

+ · · · + bm�x̄�
nm+1/2

+O
(

1
nm+3/2

)}
;

where m = 0;1; : : : ; the uniform validity condition in the theorem means
that the constants associated with the two O�·�’s are independent of the x̄’s
in Dx̄. See, for example, Wong (1989) for a general discussion on uniform
validity. To prove this theorem, we first establish conditions, through Lemmas
1 and 2 below, under which an asymptotic power series of f�s; t� in s may be
differentiated with respect to t to obtain an asymptotic power series of ft�s; t�.
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Lemma 1 [Wasow (1965), Lemma 9.1, page 45]. Let f�s; t� be bounded in
Ds ×Dt, where 0 ∈ Ds, and let hr�t� be bounded in Dt for r = 0;1; : : : : Then

f�s; t� ∼
∞∑
r=0

hr�t�sr as s→ 0(6)

uniformly for t ∈ Dt iff for every m the function Em�s; t� defined by the relation

f�s; t� =
m∑
r=0

hr�t�sr +Em�s; t�sm+1(7)

is bounded in Ds ×Dt.

Proof. See Wasow [(1965), page 45]. 2

Lemma 2. Assume ∂f�s; t�/∂t is integrable in t and bounded in Ds ×Dt,
where 0 ∈ Ds and Dt is a bounded closed interval on the real line. If

f�s; t� ∼
∞∑
r=0

hr�t�sr as s→ 0(8)

and

∂f�s; t�
∂t

∼
∞∑
r=0

lr�t�sr as s→ 0;(9)

where (9) is uniformly valid with respect to t ∈ Dt and the lr�t�’s are continuous
functions of t, then the hr�t�’s are differentiable in Dt and

lr�t� =
dhr�t�
dt

for r = 0;1; : : : :(10)

Proof. Since ∂f�s; t�/∂t and the lr�t�’s are bounded, Lemma 1 implies
that for every m the function Em�s; t� defined by the relation

∂f�s; t�
∂t

=
m∑
r=0

lr�t�sr +Em�s; t�sm+1(11)

is bounded in Ds ×Dt. For t0 and t in Dt,
∫ t
t0

∂f�s; v�
∂v

dv =
m∑
r=0

[∫ t
t0

lr�v�dv
]
sr +

[∫ t
t0

Em�s; v�dv
]
sm+1:(12)

Since
∫ t
t0
lr�v�dv, r = 0;1; : : : ; are bounded in Dt, and

∫ t
t0

∂f�s; v�
∂v

dv and
∫ t
t0

Em�s; v�dv; m = 0;1; : : : ;

are bounded in Ds ×Dt, by Lemma 1,

f�s; t� − f�s; t0� =
∫ t
t0

∂f�s; v�
∂v

dv ∼
∞∑
r=0

[∫ t
t0

lr�v�dv
]
sr(13)
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uniformly in Dt. By the uniqueness of asymptotic expansion with respect to a
given asymptotic sequence,

hr�t� − hr�t0� =
∫ t
t0

lr�v�dv for r = 0;1; : : : :(14)

Since lr is continuous, (14) implies that h′r�t0� exists and equals lr�t0�, r =
0;1; : : : ; for any t0 in Dt. 2

Nonetheless, since fn�x̄� in (1) is not bounded when n approaches infinity,
and Lugannani and Rice’s series (2) is not a standard power series, Lemma 2
cannot be directly applied to (1) and (2) to prove the theorem. We now focus
on a new function I�n; x̄�, defined below, and show that this function and its
partial derivative have asymptotic power series expansions. Lemma 2 is then
used to establish the relationship between these two power series, which leads
to the theorem.

Lemma 3. Let Dn be the set of positive integers, let Dx̄ be a bounded closed
interval in the domain of x̄ and let I�n; x̄� be defined by the relation

Fn�x̄� = 8�Ŵn1/2� − φ�Ŵn
1/2�b0

n1/2
−φ�Ŵn1/2�I�n; x̄�:(15)

Assume that (1) and (2) are uniformly valid in Dx̄. Then the following hold:

(i) I�n; x̄� ∼
∞∑
r=1

br
nr+1/2

uniformly for x̄ ∈ Dx̄,

(ii)
∂I�n; x̄�
∂x̄

is continuous in x̄ and bounded in Dn ×Dx̄,

(iii)
∂I�n; x̄�
∂x̄

∼
∞∑
r=1

hr�x̄�
1

nr+1/2
uniformly with respect to x̄ ∈ Dx̄,

where hr�x̄� = dbr/dx̄ for r = 1;2; : : : :

Proof. Part (i) is readily obtained upon substituting the series (2) for
Fn�x̄� in (15). To show (ii) is true, differentiate both sides of (15) with respect
to x̄. We obtain

fn�x̄� = gn�x̄�
[
1− �K̂

′′�−1/2db0/dT̂

n
+ n1/2T̂�K̂′′�1/2I�n; x̄�

− n−1/2�K̂′′�1/2 ∂I�n; x̄�
∂x̄

]
:

(16)

Define D1�n; x̄� and L1�n; x̄� by the following relations

fn�x̄�
gn�x̄�

= 1+ a1

n
+ D1�n; x̄�

n2
;(17)

I�n; x̄� = b1

n1+1/2
+ L1�n; x̄�

n2+1/2
:(18)
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For any finite n, D1�n; x̄� and L1�n; x̄� are both bounded due to the bound-
edness of other terms in (17) and (18). When n approaches infinity, by the
uniform validity assumption of (1) and (2), they remain bounded on Dn ×Dx̄.
They are also continuous in x̄ since fn�x̄�/gn�x̄� and I�n; x̄�, and a1 and b1
are all continuous in x̄.

Substitute (17) and (18) into (16), and use the identity a1 = T̂�K̂′′�1/2b1 −
�K̂′′�−1/2db0/dT̂, to obtain

∂I�n; x̄�
∂x̄

= T̂
[
L1�n; x̄�
n1+1/2

]
− �K̂′′�−1/2

[
D1�n; x̄�
n1+1/2

]
:(19)

Thus ∂I�n; x̄�/∂x̄ is continuous in x̄ and bounded in Dn ×Dx̄.
Finally, (iii) may be obtained by substituting (1) for fn�x̄� and the asymp-

totic series in (i) for I�n; x̄� into (16), and collecting terms according to the
powers of n. The hr’s are functions of ar’s, br’s, K̂′′ and T̂, and thus are con-
tinuous in x̄. Part (ii) and Lemma 2 then imply that hr�x̄� = dbr/dx̄ for
r = 1;2; : : : : 2

Proof of Theorem 1. By substituting the uniformly valid expansions of
I�n; x̄� and ∂I�n; x̄�/∂x̄ in Lemma 3 into (16) and collecting terms according to
the powers of n, we obtain (4). Thus (4) is indeed a uniformly valid asymptotic
expansion of fn�x̄� for x̄ in Dx̄. 2

With (4) being a valid expansion for fn�x̄�, the uniqueness of asymptotic
expansion with respect to the asymptotic sequence �1/nr� then implies that
expansion (4) coincides with that of Daniels at each x̄ ∈ Dx̄. We say that we
can differentiate the Lugannani–Rice expansion (2) to obtain the Daniels ex-
pansion (1) in the sense that the formal derivative of (2), (4), is indeed (1).
To conclude, we note that the uniform validity condition required by the theo-
rem is satisfied by all commonly used continuous densities. For four important
classes of densities, Daniels (1954) and Jensen (1988) showed that (1) is uni-
formly valid in the entire domain. Routledge and Tsao (1995) showed that (1)
is, for all practical purposes, always uniformly valid on any compact subset
in the interior of the domain. The uniform validity of (2) has been addressed
by Lugannani and Rice (1980) and Daniels (1987) in a formal manner. Tsao
(1996) contains a detailed proof that (2) is in general uniformly valid on any
compact subset in the interior. We now discuss two applications of the above
result under the assumption that the uniform validity condition in the theo-
rem is satisfied.

4. Applications.

4.1. The derivative of a truncated Lugannani–Rice series as an asymptotic
approximation to the density function. Denote the sum of the first m + 2
terms, including 8�Ŵn1/2�, of (2) by F�m�n �x̄�, and the sum of the first m + 1
terms in (1) by f�m�n �x̄�. By differentiatingF�m�n �x̄� and then using the equation
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cr = ar, r = 0;1; : : : ; we obtain

dF
�m�
n �x̄�
dx̄

= gn�x̄�
[ m∑
r=0

ar
nr
− �K

′′�1/2
nm+1

dbm
dx̄

]
:(20)

Since f�m�n �x̄� = gn�x̄�
∑m
r=0 ar/n

r satisfies

fn�x̄� = gn�x̄�
[ m∑
r=0

ar
nr
+O

(
1

nm+1

)]
;(21)

it follows that

fn�x̄� = gn�x̄�
[ m∑
r=0

ar
nr
− �K

′′�1/2
nm+1

dbm
dx̄
+O

(
1

nm+1

)]
:(22)

Equations (20) and (22) imply that the derivative of F�m�n �x̄� is an asymptotic
approximation for fn�x̄� and that its error is of the same order as that of
f
�m�
n �x̄�.
We give prominence to the derivative of F�0�n �x̄� given below:

dF
�0�
n �x̄�
dx̄

= gn�x̄�
[
1− 1

n

( �T̂��K̂′′�1/2
�2�T̂K̂′ − K̂��3/2

− 1

T̂2K̂′′
− K̂�3�

2T̂�K̂′′�2

)]
:(23)

We shall refer to the right-hand side of (23) as the adjusted saddlepoint ap-
proximation, and the second term in the square brackets as the adjustment
term. It is clear from (22) that the relative error of the adjusted saddlepoint
approximation is O�1/n�, the same as that of the saddlepoint approximation.
Also, computationally it requires little effort beyond that needed for computing
the saddlepoint approximation.

The advantage of the adjusted saddlepoint approximation is that it in gen-
eral does not need to be numerically renormalized since F

�0�
n �x̄� generally

approaches 0 (1) when x̄ approaches the lower (upper) end of its domain.
However, it also raises the following concerns: (1) it could be negative when
the adjustment term is greater than 1; (2) the adjustment term may compro-
mise the accuracy of the original saddlepoint approximation. Nevertheless,
our experience with the adjusted saddlepoint approximation has yet to val-
idate these concerns. The first problem can only emerge when F

�0�
n �x̄� is a

decreasing function of x̄. We have not found any example where this happens.
Based on examples that we looked at, the adjusted saddlepoint approximation
is actually more accurate than the original and is often substantially more ac-
curate near the mean. The following tables further illustrate this point. They
contain, along with the exact values, the values of the saddlepoint approxima-
tion (spa) and of the adjusted saddlepoint approximation (aspa). Table 1 is for
the case where the underlying distribution is gamma with both parameters
equal to 2, and a sample size of 3. Table 2 is for the case where the under-
lying distribution is uniform�−1;1�, and a sample size of 5. Renormalization,
although it can be quite involved, will in general improve the accuracy of the
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Table 1

Approximations to the density function for the mean of three independent obser-
vations from a gamma�2;2� distribution

x̄ 0.5 1.5 2.5 3.5 4.5

spa 0.6133652 0.3694524 0.0117770 0.0001570 1.3673e− 06
aspa 0.6049278 0.3644115 0.0116238 0.0001551 1.3510e− 06
exact 0.6049129 0.3643613 0.0116147 0.0001548 1.3484e− 06

saddlepoint approximation. The renormalized spa values for the uniform case
may be found in Field and Ronchetti (1990) and are indeed more accurate than
the unrenormalized ones. However, even compared with these renormalized
values, aspa values are still more accurate.

When x̄ is near the mean µ, the individual terms making up the adjustment
term are seen to be large. The adjustment term, as given in (23), is undefined
at x̄ = µ where T̂ = 0. One may thus be concerned with the accuracy of ad-
justed saddlepoint approximation near µ. We now show that as x̄ approaches
µ the adjustment term has a finite limit and that this limit equals −a1/n,
the second term in the Daniels expansion (1). Using the identity a1 = c1, the
adjustment term may be expressed in terms of a1 as

1
n
�K̂′′�−1/2db0

dT̂
= 1
n

[
T̂�K̂′′�1/2b1 − a1

]
:(24)

As x̄ approaches µ, T̂ approaches 0 and b1 has a finite limit. See Daniels
[(1987), (4.8)] for a proof of the latter point. Thus the right-hand side of (24) ap-
proaches −a1/n. It follows that, in the neighborhood of µ where T̂�K̂′′�1/2b1 =
O�1/n�, the adjusted saddlepoint approximation satisfies

dF
�0�
n �x̄�
dx̄

= gn�x̄�
{

1− 1
n

[
T̂�K̂′′�1/2b1 − a1

]}

= gn�x̄�
{

1+ a1

n
+O

(
1
n2

)}
:

This means that near the mean the adjusted saddlepoint approximation is a
second-order approximation and agrees with the examples where it is seen to
be more accurate than the original saddlepoint approximation.

Table 2

Approximations to the density function for the mean of five independent observa-
tions from a uniform�−1;1� distribution

x̄ 0.1 0.3 0.5 0.7 0.9

spa 1.4461734 0.8411568 0.2628890 0.0340165 0.0004137
aspa 1.4022376 0.8128860 0.2521337 0.0323275 0.0004034
exact 1.4021810 0.8121745 0.2522786 0.0329590 0.0004069
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To conclude, when asymptotic approximations to both Fn�x̄� and fn�x̄� are
sought, the adjusted saddlepoint approximation is a particularly attractive al-
ternative to saddlepoint approximation since the corresponding approximation
to Fn�x̄�, F

�0�
n �x̄�, is easily available.

4.2. Lugannani and Rice’s conjecture. We examine this conjecture in a
simple setting where the domain of x̄ coincides with the support of Xi, and
F
�m�
n �x̄� approaches 0 (1) when x̄ approaches the lower (upper) endpoint of its

domain. Since

Fn�x̄� −F
�m�
n �x̄� = φ�Ŵn1/2�O�1/nm+3/2�;(25)

the conjecture may be formulated as

Fn�x̄� −
∫ x̄
sl

f
�m�
n �y�dy = φ�Ŵn1/2�O�1/nm+3/2�;(26)

where sl is the lower end of the support. We now rewrite the derivative of
F
�m�
n �y�, given by (20), at a point y in the domain as

dF
�m�
n �y�
dy

= f�m�n �y� −
1

nm+1/2
φ�Wn1/2�dbm

dT

dT

dy
;(27)

where T = T�y� is the saddlepoint corresponding to y and W =
sgn�T��2�TK′�T� − K�T���1/2. By integrating both sides of (27) from sl
to x̄, we obtain

F
�m�
n �x̄� =

∫ x̄
sl

f
�m�
n �y�dy−

1
nm+1/2

R
�m�
n �x̄�;(28)

where

R
�m�
n �x̄� =

∫ T̂
T�sl�

φ�Wn1/2�dbm
dT

dT:(29)

Equations (25) and (28) lead to the difference between Fn�x̄� and integrated
f
�m�
n �x̄�,

Fn�x̄� −
∫ x̄
sl

f
�m�
n �y�dy = φ�Ŵn1/2�O

(
1

nm+3/2

)
− 1
nm+1/2

R
�m�
n �x̄�:(30)

Since −W2�T� has only one extremum at T = 0 and this extremum is a
maximum, we use Laplace’s method to expand R�m�n �x̄� and obtain

R
�m�
n �x̄� =

{
φ�Ŵn1/2�O�1/n�; if x̄ < E�X̄�;
O�1/n1/2�; if x̄ ≥ E�X̄�:(31)

It follows from (30) and (31) that

Fn�x̄� −
∫ x̄
sl

f
�m�
n �y�dy =

{
φ�Ŵn1/2�O�1/nm+3/2�; if x̄ < E�X̄�;
O�1/nm+1�; if x̄ ≥ E�X̄�:(32)
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For x̄ > E�X̄�, Fn�x̄� may be more accurately approximated by subtracting
from 1 the integral of f�m�n �y� over �x̄; su�, where su is the upper end of the
support. By essentially repeating the above procedure, we obtain

Fn�x̄� −
(

1−
∫ su
x̄
f
�m�
n �y�dy

)
= φ�Ŵn1/2�O�1/nm+3/2� if x̄ > E�X̄�:(33)

It follows from (32) and (33) that when x̄ 6= E�X̄� the error for the integrated
truncated Daniels series is φ�Ŵn1/2�O�1/nm+3/2�, the same as that of Lugan-
nani and Rice. At the mean, it is O�1/nm+1�, but that of Lugannani and Rice
is O�1/nm+3/2�. Thus Lugannani and Rice’s conjecture, as formulated in (26),
is correct everywhere, except at the mean.

In particular, for m = 0, this result implies that the first approximation
given by Lugannani and Rice’s expansion [i.e., QA�1� in Lugannani and Rice
(1980) or (4.9) in Daniels (1987)] is asymptotically at least as accurate as the
integrated saddlepoint approximation. This suggests that one should use the
first approximation instead of the integrated saddlepoint approximation since,
unlike the latter, it does not require numerical integration.
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